List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2423108/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A High-Voltage Organic Framework for High-Performance Na- and K-Ion Batteries. ACS Energy Letters, 2022, 7, 668-674.	8.8	34
2	Unlocking the Electrochemistry and the Activation Mechanism in the Ironâ€Rich Na _{0.6} Fe _{1.2} PO ₄ Phase for Highâ€Performance Sodiumâ€Ion Storage. Batteries and Supercaps, 2022, 5, .	2.4	5
3	New Cathode Materials in the Feâ€PO ₄ â€F Chemical Space for Highâ€Performance Sodiumâ€Ion Storage. Advanced Science, 2022, 9, .	5.6	3
4	Strong ion pairing at the origin of modified Li-cation solvation and improved performances of dual-salt electrolytes. Journal of Power Sources, 2022, 541, 231644.	4.0	5
5	Materials, electrodes and electrolytes advances for next-generation lithium-based anode-free batteries. Oxford Open Materials Science, 2022, 2, .	0.5	5
6	A perspective on organic electrode materials and technologies for next generation batteries. Journal of Power Sources, 2021, 482, 228814.	4.0	140
7	Conjugated sulfonamides as a class of organic lithium-ion positive electrodes. Nature Materials, 2021, 20, 665-673.	13.3	110
8	High Power Cathodes from Poly(2,2,6,6-Tetramethyl-1-Piperidinyloxy Methacrylate)/Li(NixMnyCoz)O2 Hybrid Composites. Polymers, 2021, 13, 986.	2.0	1
9	Application of Redox-Responsive Hydrogels Based on 2,2,6,6-Tetramethyl-1-Piperidinyloxy Methacrylate and Oligo(Ethyleneglycol) Methacrylate in Controlled Release and Catalysis. Polymers, 2021, 13, 1307.	2.0	4
10	Effects of Electrolyte Additives and Nanowire Diameter on the Electrochemical Performance of Lithiumâ€Ion Battery Anodes based on Interconnected Nickel–Tin Nanowire Networks. Energy Technology, 2021, 9, 2100062.	1.8	5
11	A TiSe ₂ â€Graphite Dual Ion Battery: Fast Naâ€Ion Insertion and Excellent Stability. Angewandte Chemie - International Edition, 2021, 60, 18430-18437.	7.2	102
12	An Electrically Conducting Li-Ion Metal–Organic Framework. Journal of the American Chemical Society, 2021, 143, 11641-11650.	6.6	50
13	Organic Negative Electrode Materials for Metalâ€ion and Molecularâ€ion Batteries: Progress and Challenges from a Molecular Engineering Perspective. Advanced Energy Materials, 2021, 11, 2101562.	10.2	44
14	High Salt-Content Plasticized Flame-Retardant Polymer Electrolytes. ACS Applied Materials & Interfaces, 2021, 13, 44844-44859.	4.0	22
15	Through-Space Charge Modulation Overriding Substituent Effect: Rise of the Redox Potential at 3.35 V in a Lithium-Phenolate Stereoelectronic Isomer. Chemistry of Materials, 2020, 32, 9996-10006.	3.2	39
16	Empowering magnesium. Nature Energy, 2020, 5, 945-946.	19.8	9
17	Batteries and Supercapacitors—Fundamentals, Materials and Devices (Eâ€MRS Spring Meeting 2019): Foreword. Batteries and Supercaps, 2020, 3, 474-475.	2.4	0
18	Mixed Anionic and Cationic Redox Chemistry in a Tetrathiomolybdate Amorphous Coordination	7.2	15

#	Article	IF	CITATIONS
19	Mixed Anionic and Cationic Redox Chemistry in a Tetrathiomolybdate Amorphous Coordination Framework. Angewandte Chemie, 2020, 132, 16722.	1.6	1
20	Phendione–Transitionâ€Metal Complexes with Bipolar Redox Activity for Lithium Batteries. ChemSusChem, 2020, 13, 2225-2231.	3.6	16
21	Versatile Synthesis of Vanadium(III, IV, V) Oxides@Reduced Graphene Oxide Nanocomposites and Evaluation of their Lithium and Sodium Storage Performances. Batteries and Supercaps, 2019, 2, 1016-1025.	2.4	14
22	Lithium Diffusion in Copper. Journal of Physical Chemistry Letters, 2019, 10, 5206-5210.	2.1	26
23	Core-shell nanostructured organic redox polymer cathodes with superior performance. Nano Energy, 2019, 64, 103949.	8.2	26
24	Negative Redox Potential Shift in Fire-Retardant Electrolytes and Consequences for High-Energy Hybrid Batteries. ACS Applied Energy Materials, 2019, 2, 7879-7885.	2.5	14
25	Kinked Silicon Nanowires: Superstructures by Metal-Assisted Chemical Etching. Nano Letters, 2019, 19, 7681-7690.	4.5	24
26	On the Reliability of Sodium Metal Anodes: The Influence of Neglected Parameters. Journal of the Electrochemical Society, 2019, 166, A3122-A3131.	1.3	17
27	A H-bond stabilized quinone electrode material for Li–organic batteries: the strength of weak bonds. Chemical Science, 2019, 10, 418-426.	3.7	108
28	Three-dimensional microsupercapacitors based on interdigitated patterns of interconnected nanowire networks. Energy Storage Materials, 2019, 21, 77-84.	9.5	29
29	Study of the Electrochemical Performance of Activated Carbon Bulky Paper Electrode for Electrical Double Layer Capacitor (EDLC). IOP Conference Series: Materials Science and Engineering, 2018, 436, 012015.	0.3	0
30	Kinked silicon nanowires-enabled interweaving electrode configuration for lithium-ion batteries. Scientific Reports, 2018, 8, 9794.	1.6	20
31	Porous materials get energized. Nature Materials, 2017, 16, 161-162.	13.3	66
32	Electroactive polymer/carbon nanotube hybrid materials for energy storage synthesized via a "grafting to―approach. RSC Advances, 2017, 7, 17301-17310.	1.7	30
33	Hybrid LiMn2O4–radical polymer cathodes for pulse power delivery applications. Electrochimica Acta, 2017, 255, 442-448.	2.6	16
34	Mechanochemical Synthesis of PEDOT:PSS Hydrogels for Aqueous Formulation of Li-Ion Battery Electrodes. ACS Applied Materials & Interfaces, 2017, 9, 34865-34874.	4.0	43
35	Mechanochemical assembly of 3D mesoporous conducting-polymer aerogels for high performance hybrid electrochemical energy storage. Nano Energy, 2017, 41, 193-200.	8.2	20
36	On the improved electrochemistry of hybrid conducting-redox polymer electrodes. Scientific Reports, 2017, 7, 4847.	1.6	12

#	Article	IF	CITATIONS
37	Design of Flexible and Selfâ€Standing Electrodes for Liâ€Ion Batteries. Chinese Journal of Chemistry, 2017, 35, 41-47.	2.6	14
38	One-pot synthesis of electro-active polymer gels via Cu(0)-mediated radical polymerization and click chemistry. Polymer Chemistry, 2017, 8, 441-450.	1.9	17
39	Coated silicon nanowires for battery applications. Series in Materials Science and Engineering, 2017, , 475-494.	0.1	0
40	Surveying colloid sedimentation by coplanar waveguides. Nanotechnology, 2016, 27, 225502.	1.3	1
41	Three-dimensional interconnected Ni _{core} –NiO _{shell} nanowire networks for lithium microbattery architectures. Journal of Materials Chemistry A, 2016, 4, 1603-1607.	5.2	27
42	Redox-controlled upper critical solution temperature behaviour of a nitroxide containing polymer in alcohol–water mixtures. Polymer Chemistry, 2016, 7, 1088-1095.	1.9	22
43	Probing Graphene χ ⁽²⁾ Using a Gold Photon Sieve. Nano Letters, 2016, 16, 48-54.	4.5	10
44	Design Considerations for Unconventional Electrochemical Energy Storage Architectures. Advanced Energy Materials, 2015, 5, 1402115.	10.2	271
45	Meltâ€Polymerization of TEMPO Methacrylates with Nano Carbons Enables Superior Battery Materials. ChemSusChem, 2015, 8, 1692-1696.	3.6	59
46	Synthesis of an original fluorinated triethylene glycol methacrylate monomer and its radical copolymerisation with vinylidene fluoride. Its application as a gel polymer electrolyte for Li-ion batteries. Polymer Chemistry, 2015, 6, 6021-6028.	1.9	20
47	Synthesis of polymer precursors of electroactive materials by SET-LRP. Polymer Chemistry, 2015, 6, 6067-6072.	1.9	28
48	Single-ion diblock copolymers for solid-state polymer electrolytes. Polymer, 2015, 68, 344-352.	1.8	71
49	A new design of organic radical batteries (ORBs): carbon nanotube buckypaper electrode functionalized by electrografting. Chemical Communications, 2015, 51, 9301-9304.	2.2	40
50	Exploring the potential of polymer battery cathodes with electrically conductive molecular backbone. Journal of Materials Chemistry A, 2015, 3, 11189-11193.	5.2	58
51	Grafting of a redox polymer onto carbon nanotubes for high capacity battery materials. Journal of Materials Chemistry A, 2015, 3, 8832-8839.	5.2	77
52	Nanostructured organic radical cathodes from self-assembled nitroxide-containing block copolymer thin films. Journal of Materials Chemistry A, 2015, 3, 19575-19581.	5.2	26
53	Micellar Cathodes from Selfâ€Assembled Nitroxideâ€Containing Block Copolymers in Battery Electrolytes. Macromolecular Rapid Communications, 2014, 35, 228-233	2.0	45
54	A facile and fast electrochemical route to produce functional few-layer graphene sheets for lithium battery anode application. Journal of Materials Chemistry A, 2014, 2, 15298-15302.	5.2	17

#	Article	IF	CITATIONS
55	Colloidal pattern replication through contact photolithography operated in a â€~Talbot–Fabry–Perot' regime. Nanotechnology, 2014, 25, 145303.	1.3	2
56	Surface Coating Mediated Swelling and Fracture of Silicon Nanowires during Lithiation. ACS Nano, 2014, 8, 9427-9436.	7.3	48
57	Chemically anchored liquid-PEO based block copolymer electrolytes for solid-state lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 11839-11846.	5.2	78
58	Graphene-coated holey metal films: Tunable molecular sensing by surface plasmon resonance. Applied Physics Letters, 2013, 102, .	1.5	58
59	Synthesis of nitroxideâ€eontaining block copolymers for the formation of organic cathodes. Journal of Polymer Science Part A, 2013, 51, 101-108.	2.5	56
60	Flexible fiber batteries for applications in smart textiles. Materials Research Society Symposia Proceedings, 2013, 1489, 7.	0.1	3
61	Direct Transcription of Twoâ€Dimensional Colloidal Crystal Arrays into Threeâ€Dimensional Photonic Crystals. Advanced Functional Materials, 2013, 23, 1164-1171.	7.8	33
62	Paintable Battery. Scientific Reports, 2012, 2, 481.	1.6	144
63	Roll up nanowire battery from silicon chips. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15168-15173.	3.3	118
64	Amine-functionalized nanoporous thin films from a poly(ethylene oxide)-block-polystyrene diblock copolymer bearing a photocleavable o-nitrobenzyl carbamate junction. Soft Matter, 2012, 8, 4486.	1.2	32
65	Wavelength-scale lens microscopy via thermal reshaping of colloidal particles. Nanotechnology, 2012, 23, 285708.	1.3	36
66	Functionalized Nanoporous Thin Films From Blends of Block Copolymers and Homopolymers Interacting via Hydrogen Bonding. Macromolecular Chemistry and Physics, 2012, 213, 2075-2080.	1.1	17
67	Functionalized Nanoporous Thin Films From Photocleavable Block Copolymers. Macromolecular Rapid Communications, 2012, 33, 199-205.	2.0	37
68	Technological and Material Related Challenges for Large Area, High Aspect-Ratio, Near Teradot/Inch ² Areal Density and Three-Dimensional Structuring of Polyaniline. Journal of Nanoscience and Nanotechnology, 2011, 11, 8924-8935.	0.9	1
69	Erbium Silicide Growth in the Presence of Residual Oxygen. Journal of the Electrochemical Society, 2011, 158, H715-H723.	1.3	3
70	Vertical Nanowire Architectures: Statistical Processing of Porous Templates Towards Discrete Nanochannel Integration. Small, 2010, 6, 1974-1980.	5.2	5
71	Femtogramâ€Controlled Synthesis and Selfâ€Aligned Fabrication of Polyaniline Micro―and Nanostructures. Small, 2010, 6, 627-632.	5.2	10
72	Structural and Charge-Transport Properties of a Liquid-Crystalline α,ω-Disubstituted Thiophene Derivative: A Joint Experimental and Theoretical Study. Journal of Physical Chemistry C, 2010, 114, 4617-4627.	1.5	18

#	Article	IF	CITATIONS
73	Nanowire-templated microelectrodes for high-sensitivity pH detection. Applied Physics Letters, 2009, 94, .	1.5	26
74	Nanowires and nanostructures fabrication using template methods: a step forward to real devices combining electrochemical synthesis with lithographic techniques. Journal of Materials Science: Materials in Electronics, 2009, 20, 249-254.	1.1	27
75	Towards Allâ€Organic Fieldâ€Effect Transistors by Additive Soft Lithography. Small, 2009, 5, 1117-1122.	5.2	59
76	Miscibility between Differently Shaped Mesogens: Structural and Morphological Study of a Phthalocyanine-Perylene Binary System. Journal of Physical Chemistry B, 2009, 113, 5448-5457.	1.2	37
77	Highly Ordered Conjugated Polymer Nanoarchitectures with Three-Dimensional Structural Control. Nano Letters, 2009, 9, 2838-2843.	4.5	28
78	MIMC reliability and electrical behavior defined by a physical layer property of the dielectric. Microelectronics Reliability, 2008, 48, 1553-1556.	0.9	8
79	Nanowireâ€Decorated Microscale Metallic Electrodes. Small, 2008, 4, 557-560.	5.2	39
80	MIMC Reliability and Electrical Behavior Defined by a Physical Layer Properties of the Dielectric. ECS Transactions, 2008, 13, 83-90.	0.3	1
81	Low-power dihexylquaterthiophene-based thin film transistors for analog applications. Applied Physics Letters, 2008, 92, .	1.5	7
82	Controlled growth of single nanowires within a supported alumina template. Nanotechnology, 2006, 17, 4873-4876.	1.3	36
83	Thermopower evidence for Wigner crystallization in the insulating phase of two-dimensional GaAs bilayer hole systems. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 34, 120-123.	1.3	1
84	Nâ€doped carbon nanotube sponges and their excellent lithium storage performances. Nano Select, 0, , .	1.9	4
85	Visibleâ€light Augmented Lithium Storage Capacity in a Ruthenium(II) Photosensitizer Conjugated with a dioneâ€catechol Redox Couple. Chemistry - A European Journal, 0, ,	1.7	2