Mei-Rong Ke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2422972/publications.pdf Version: 2024-02-01

		430874	434195
32	1,129	18	31
papers	citations	h-index	g-index
32	32	32	1496
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	New application of phthalocyanine molecules: from photodynamic therapy to photothermal therapy by means of structural regulation rather than formation of aggregates. Chemical Science, 2018, 9, 2098-2104.	7.4	164
2	Facile Supramolecular Approach to Nucleic-Acid-Driven Activatable Nanotheranostics That Overcome Drawbacks of Photodynamic Therapy. ACS Nano, 2018, 12, 681-688.	14.6	149
3	A Tumor-pH-Responsive Supramolecular Photosensitizer for Activatable Photodynamic Therapy with Minimal <i>In Vivo</i> Skin Phototoxicity. Theranostics, 2017, 7, 2746-2756.	10.0	117
4	A non-aggregated and tumour-associated macrophage-targeted photosensitiser for photodynamic therapy: a novel zinc(<scp>ii</scp>) phthalocyanine containing octa-sulphonates. Chemical Communications, 2015, 51, 4704-4707.	4.1	63
5	A tumor-targeted activatable phthalocyanine-tetrapeptide-doxorubicin conjugate for synergistic chemo-photodynamic therapy. European Journal of Medicinal Chemistry, 2017, 127, 200-209.	5.5	59
6	Progress in the development of nanosensitizers for X-ray-induced photodynamic therapy. Drug Discovery Today, 2018, 23, 1791-1800.	6.4	58
7	Highly positive-charged zinc(II) phthalocyanine as non-aggregated and efficient antifungal photosensitizer. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2386-2389.	2.2	51
8	Preparation and sonodynamic activities of water-soluble tetra-α-(3-carboxyphenoxyl) zinc(II) phthalocyanine and its bovine serum albumin conjugate. Ultrasonics Sonochemistry, 2015, 22, 125-131.	8.2	46
9	Mono- and tetra-substituted zinc(II) phthalocyanines containing morpholinyl moieties: Synthesis, antifungal photodynamic activities, and structure-activity relationships. European Journal of Medicinal Chemistry, 2016, 114, 380-389.	5.5	42
10	Size-Tunable Targeting-Triggered Nanophotosensitizers Based on Self-Assembly of a Phthalocyanine–Biotin Conjugate for Photodynamic Therapy. ACS Applied Materials & Interfaces, 2019, 11, 36435-36443.	8.0	40
11	A pH-responsive stellate mesoporous silica based nanophotosensitizer for in vivo cancer diagnosis and targeted photodynamic therapy. Biomaterials Science, 2019, 7, 211-219.	5.4	35
12	Aggregationâ€Enhanced Sonodynamic Activity of Phthalocyanine–Artesunate Conjugates. Angewandte Chemie - International Edition, 2022, 61, .	13.8	33
13	C-Phycocyanin as a tumour-associated macrophage-targeted photosensitiser and a vehicle of phthalocyanine for enhanced photodynamic therapy. Chemical Communications, 2017, 53, 4112-4115.	4.1	30
14	A non-aggregated zinc(II) phthalocyanine with hexadeca cations for antitumor and antibacterial photodynamic therapies. Journal of Photochemistry and Photobiology B: Biology, 2020, 213, 112086.	3.8	30
15	Comparison between amine-terminated phthalocyanines and their chlorambucil conjugates: Synthesis, spectroscopic properties, and inÂvitro anticancer activity. Tetrahedron, 2017, 73, 378-384.	1.9	27
16	Synthesis and photodynamic activities of integrin-targeting silicon(IV) phthalocyanine-cRGD conjugates. European Journal of Medicinal Chemistry, 2018, 155, 24-33.	5.5	26
17	Silicon(IV) phthalocyanines substituted axially with different nucleoside moieties. Effects of nucleoside type on the photosensitizing efficiencies and in vitro photodynamic activities. Journal of Photochemistry and Photobiology B: Biology, 2016, 159, 196-204.	3.8	24
18	Novel unsymmetrical silicon(IV) phthalocyanines as highly potent anticancer photosensitizers. Synthesis, characterization, and in vitro photodynamic activities. Dyes and Pigments, 2020, 177, 108286.	3.7	20

Mei-Rong Ke

#	Article	IF	CITATIONS
19	Highly photocytotoxic silicon(IV) phthalocyanines axially modified with l-tyrosine derivatives: Effects of mode of axial substituent connection and of formulation on photodynamic activity. Dyes and Pigments, 2017, 141, 521-529.	3.7	19
20	A non-aggregated silicon(IV) phthalocyanine-lactose conjugate for photodynamic therapy. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127164.	2.2	16
21	A phthalocyanine-based liposomal nanophotosensitizer with highly efficient tumor-targeting and photodynamic activity. Dyes and Pigments, 2020, 180, 108455.	3.7	15
22	Noncovalent Indocyanine Green Conjugate of C-Phycocyanin: Preparation and Tumor-Associated Macrophages-Targeted Photothermal Therapeutics. Bioconjugate Chemistry, 2020, 31, 1438-1448.	3.6	15
23	A Silicon(IV) Phthalocyanine–Folate Conjugate as an Efficient Photosensitizer. Chemistry Letters, 2014, 43, 1701-1703.	1.3	13
24	A pH-sensitive nanoagent self-assembled from a highly negatively-charged phthalocyanine with excellent biosafety for photothermal therapy. Journal of Materials Chemistry B, 2021, 9, 2845-2853.	5.8	11
25	Synthesis, Spectroscopic and Fibroblast Activation Protein (FAP)â€Responsive Properties of Phthalocyanineâ€Doxorubicin Conjugates. ChemistrySelect, 2018, 3, 5405-5411.	1.5	6
26	Artesunate-Based Multifunctional Nanoplatform for Photothermal/Photoinduced Thermodynamic Synergistic Anticancer Therapy. ACS Applied Bio Materials, 2020, 3, 7876-7885.	4.6	6
27	A phthalocyanine-based self-assembled nanophotosensitizer for efficient in vivo photodynamic anticancer therapy. Journal of Inorganic Biochemistry, 2021, 217, 111371.	3.5	4
28	Molecular and Supramolecular Approach to Highly Photocytotoxic Phthalocyanines with Dual Cell Uptake Pathways and Albumin-Enhanced Tumor Targeting. ACS Applied Materials & Interfaces, 2022, 14, 28581-28590.	8.0	4
29	Solid-state supramolecular structures and excellent photothermal activities of dimeric zinc(II) phthalocyanines axially bridged with bipyridine derivatives. Dyes and Pigments, 2022, 199, 110037.	3.7	3
30	Aggregationâ€Enhanced Sonodynamic Activity of Phthalocyanine–Artesunate Conjugates. Angewandte Chemie, 2022, 134, .	2.0	2
31	Frontispiece: Aggregationâ€Enhanced Sonodynamic Activity of Phthalocyanine–Artesunate Conjugates. Angewandte Chemie - International Edition, 2022, 61,	13.8	1
32	Frontispiz: Aggregationâ€Enhanced Sonodynamic Activity of Phthalocyanine–Artesunate Conjugates. Angewandte Chemie, 2022, 134, .	2.0	0