Wolfgang Schmitt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2422661/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A supramolecular Tröger's base derived coordination zinc polymer for fluorescent sensing of phenolic-nitroaromatic explosives in water. Chemical Science, 2017, 8, 1535-1546.	3.7	164
2	Hierarchical supramolecular fullerene architectures with controlled dimensionality. Chemical Communications, 2005, , 5982.	2.2	156
3	Universal scaling relations for the rational design of molecular water oxidation catalysts with near-zero overpotential. Nature Communications, 2019, 10, 4993.	5.8	151
4	Hybrid Organic–Inorganic Polyoxometalates: Functionalization of V ^{IV} /V ^V Nanosized Clusters to Produce Molecular Capsules. Angewandte Chemie - International Edition, 2008, 47, 6904-6908.	7.2	137
5	From Platonic Templates to Archimedean Solids: Successive Construction of Nanoscopic {V16As8}, {V16As10}, {V20As8}, and {V24As8} Polyoxovanadate Cages. Journal of the American Chemical Society, 2011, 133, 11240-11248.	6.6	94
6	Highlights of the development and application of luminescent lanthanide based coordination polymers, MOFs and functional nanomaterials. Dalton Transactions, 2021, 50, 770-784.	1.6	92
7	Tuning photoactive metal–organic frameworks for luminescence and photocatalytic applications. Coordination Chemistry Reviews, 2021, 437, 213757.	9.5	88
8	Asymmetric spin crossover behaviour and evidence of light-induced excited spin state trapping in a dinuclear iron(<scp>ii</scp>) helicate. Chemical Communications, 2009, , 221-223.	2.2	70
9	Formation of Positively Charged Copper Hydroxide Nanostrands and Their Structural Characterization. Chemistry of Materials, 2006, 18, 1795-1802.	3.2	66
10	Synthesis, structures and properties of hydrolytic Al(III) aggregates and Fe(III) analogues formed with iminodiacetate-based chelating ligands. Coordination Chemistry Reviews, 2002, 228, 115-126.	9.5	64
11	Detection of explosive vapors with a charge transfer molecule: self-assembly assisted morphology tuning and enhancement in sensing efficiency. Chemical Communications, 2010, 46, 874.	2.2	63
12	Influencing the Symmetry of Highâ€Nuclearity and Highâ€5pin Manganese Oxo Clusters: Supramolecular Approaches to Manganeseâ€Based Keplerates and Chiral Solids. Angewandte Chemie - International Edition, 2012, 51, 3007-3011.	7.2	63
13	Partial spin crossover behaviour in a dinuclear iron(ii) triple helicate. Dalton Transactions, 2011, 40, 12368.	1.6	55
14	Recognition and Sensing of Biologically Relevant Anions in Alcohol and Mixed Alcohol–Aqueous Solutions Using Charge Neutral Cleft-Like Glycol-Derived Pyridyl–Amidothiourea Receptors. Journal of Organic Chemistry, 2012, 77, 3115-3126.	1.7	51
15	Supramolecular Coordination Assemblies of Dinuclear FeIII Complexes. Angewandte Chemie - International Edition, 2005, 44, 4187-4192.	7.2	50
16	Time-dependent growth of zinc hydroxide nanostrands and their crystal structure. Chemical Communications, 2008, , 1904.	2.2	49
17	"Turn-on―fluorescence sensing of volatile organic compounds using a 4-amino-1,8-naphthalimide Tr¶ger's base functionalised triazine organic polymer. Chemical Communications, 2019, 55, 12140-12143.	2.2	48
18	[Al15(μ3-O)4(μ3-OH)6(μ-OH)14(hpdta)4]3â^3â€"A New Al15 Aggregate Which Forms a Supramolecular Zeo	type	47

[AI15(I¼3-O)4(I¼3-OH)6(I¼-OH)14(hpdta)4]3ã~ã€~A New AI15 Aggregate Which Forms a Supramole H5hpdta=HOCH2[CH2N(CH2COOH)2]2.. Angewandte Chemie - International Edition, 2001, 40, 3577.

47

#	Article	IF	CITATIONS
19	Self-assembly of hybrid organic–inorganic polyoxovanadates: functionalised mixed-valent clusters and molecular cages. Dalton Transactions, 2012, 41, 2918.	1.6	45
20	Polymorphism of metal–organic frameworks: direct comparison of structures and theoretical N ₂ -uptake of topological pto- and tbo-isomers. Chemical Communications, 2014, 50, 4207-4210.	2.2	45
21	Thermolysis of a Hybrid Organic-Inorganic Supramolecular Coordination Assembly: Templating the Formation of Nanostructured Fibrous Materials and Carbon-Based Microcapsules. Angewandte Chemie - International Edition, 2005, 44, 7048-7053.	7.2	43
22	Regulating the stability of 2D crystal structures using an oxidation state-dependent molecular conformation. Chemical Communications, 2006, , 2320.	2.2	43
23	Strategies for producing cluster-based magnetic arrays. Polyhedron, 2001, 20, 1687-1697.	1.0	42
24	Ultra-large supramolecular coordination cages composed of endohedral Archimedean and Platonic bodies. Nature Communications, 2017, 8, 15268.	5.8	39
25	Towards multifunctional lanthanide-based metal–organic frameworks. Chemical Communications, 2015, 51, 13313-13316.	2.2	38
26	Hybrid Polyoxovanadates: Anion-Influenced Formation of Nanoscopic Cages and Supramolecular Assemblies of Asymmetric Clusters. Inorganic Chemistry, 2012, 51, 19-21.	1.9	37
27	Computational modelling of water oxidation catalysts. Current Opinion in Electrochemistry, 2018, 7, 22-30.	2.5	35
28	Structures, Spectral and Electrochemical Properties ofN-(Naphth-2-ylmethyl)-Appended Porphyrinogens. European Journal of Organic Chemistry, 2005, 2005, 2893-2902.	1.2	34
29	Formal encapsulation of [Fe(H2O)6]3+ by {Fe2(hpdta)} units gives a system of S= 13/2 FeIII9 oxo clusters showing magnetic hysteresis. Chemical Communications, 2005, , 2098.	2.2	34
30	Cationâ^'ĩ€ Binding of an Alkali Metal Ion by Pendant α,α-Dimethylbenzyl Groups within a Dinuclear Iron(III) Structural Unit. Journal of the American Chemical Society, 2003, 125, 11142-11143.	6.6	32
31	Graphene composites with dental and biomedical applicability. Beilstein Journal of Nanotechnology, 2018, 9, 801-808.	1.5	31
32	Supramolecular Approach by Using Jahn–Teller Sites to Construct a {Mn ₁₃ }â€Based Coordination Polymer and Modify its Magnetic Properties. Chemistry - A European Journal, 2012, 18, 13984-13988.	1.7	30
33	Biomimetic hydrolytic activation by Fe(III) aggregates: structures, reactivity and properties of novel oxo-bridged iron complexes. Journal of Inorganic Biochemistry, 2002, 91, 173-189.	1.5	29
34	Reversible adsorption and storage of secondary explosives from water using a Tröger's base-functionalised polymer. Journal of Materials Chemistry A, 2017, 5, 25014-25024.	5.2	29
35	Supramolecular approaches to metal–organic gels using â€~Chevrel-type' coordination clusters as building units. Chemical Communications, 2013, 49, 66-68.	2.2	28
36	Homologous size-extension of hybrid vanadate capsules – solid state structures, solution stability and surface deposition. Chemical Communications, 2014, 50, 2265-2267.	2.2	28

#	Article	IF	CITATIONS
37	Self-Assembly of Hybrid Organicâ`'Inorganic Polyoxomolybdates: Solid-State Structures and Investigation of Formation and Core Rearrangements in Solution. Inorganic Chemistry, 2011, 50, 604-613.	1.9	27
38	A resilient and luminescent stimuli-responsive hydrogel from a heterotopic 1,8-naphthalimide-derived ligand. Chemical Communications, 2017, 53, 5989-5992.	2.2	25
39	Enhancing capacitance behaviour of CoOOH nanostructures using transition metal dopants by ambient oxidation. Scientific Reports, 2016, 6, 20704.	1.6	24
40	Flexible Porous Coordination Polymers from Divergent Photoluminescent 4-Oxo-1,8-naphthalimide Ligands. Inorganic Chemistry, 2016, 55, 11570-11582.	1.9	22
41	Tetraarylpyrrolo[3,2- <i>b</i>]pyrroles as versatile and responsive fluorescent linkers in metal–organic frameworks. Dalton Transactions, 2018, 47, 10080-10092.	1.6	22
42	A bioinspired approach to control over size, shape and function of polynuclear iron compounds. Coordination Chemistry Reviews, 1999, 190-192, 1067-1083.	9.5	21
43	Multimodal switching of a redox-active macrocycle. Nature Communications, 2019, 10, 1007.	5.8	20
44	A highly augmented, (12,3)-connected Zr-MOF containing hydrated coordination sites for the catalytic transformation of gaseous CO2 to cyclic carbonates. Dalton Transactions, 2019, 48, 15487-15492.	1.6	18
45	Modulating topologies and magnetic properties of coordination polymers using 2,2′-bipyridine and 5-aminodiacetic isophthalic acid as ligands. CrystEngComm, 2009, 11, 1666.	1.3	17
46	Extending the family of Zn-based MOFs: synthetic approaches to chiral framework structures and MOFs with large pores and channels. Chemical Communications, 2012, 48, 3638.	2.2	17
47	Structural analysis of hydroxyapatite coating on magnetite nanoparticles using energy filter imaging and electron tomography. Journal of Electron Microscopy, 2010, 59, 173-179.	0.9	16
48	Heteroâ€Epitaxial Approach by Using Labile Coordination Sites to Prepare Catenated Metal–Organic Frameworks with High Surface Areas. Chemistry - A European Journal, 2014, 20, 3595-3599.	1.7	16
49	Benzene-1,3,5-tricarboxamide n-alkyl ester and carboxylic acid derivatives: tuneable structural, morphological and thermal properties. CrystEngComm, 2017, 19, 1427-1438.	1.3	16
50	A Lanthanide Luminescent Cation Exchange Material Derived from a Flexible Tricarboxylic Acid 2,6-Bis(1,2,3-triazol-4-yl)pyridine (btp) Tecton. Inorganic Chemistry, 2018, 57, 3920-3930.	1.9	16
51	Lighting Up Two-Dimensional Lanthanide Phosphonates: Tunable Structure–Property Relationships toward Visible and Near-Infrared Emitters. Journal of Physical Chemistry C, 2014, 118, 10291-10301.	1.5	13
52	Self-assembly of FeIII complexes via hydrogen bonded water molecules into supramolecular coordination networks. New Journal of Chemistry, 2007, 31, 1882.	1.4	12
53	Charge-modulated self-assembly and growth of conjugated polyelectrolyte–polyoxometalate hybrid networks. Chemical Communications, 2014, 50, 5233-5235.	2.2	12
54	Synthesis, crystal structure and fluorescence properties of two dinuclear zinc(II) complexes incorporating tridentate (NNO) Schiff bases. Journal of Coordination Chemistry, 2016, 69, 2403-2414.	0.8	12

#	Article	IF	CITATIONS
55	Fluorescent supramolecular hierarchical self-assemblies from glycosylated 4-amino- and 4-bromo-1,8-naphthalimides. Organic and Biomolecular Chemistry, 2020, 18, 3475-3480.	1.5	12
56	Aggregation of dinuclear {Fe2hpdta} units to form polynuclear oxy/hydroxy-bridged Fe(iii) coordination complexes. Dalton Transactions, 2010, 39, 10279.	1.6	11
57	Framework Isomerism: Highly Augmented Copper(II)â€Paddlewheelâ€ÂBased MOF with Unusual (3,4)â€Net Topology. European Journal of Inorganic Chemistry, 2016, 2016, 1939-1943.	1.0	11
58	Facile adaptation of 1D Mn(ii) chain motifs to form 3D azo-pyridine-based coordination polymers. CrystEngComm, 2017, 19, 994-1000.	1.3	11
59	Coordination chemistry of flexible benzene-1,3,5-tricarboxamide derived carboxylates; notable structural resilience and vaguely familiar packing motifs. Dalton Transactions, 2018, 47, 5259-5268.	1.6	11
60	Light-harvesting, 3rd generation Ru ^{II} /Co ^{II} MOF with a large, tubular channel aperture. Chemical Communications, 2019, 55, 5013-5016.	2.2	11
61	Engineering coordination assemblies of dinuclear Cull complexes. Dalton Transactions, 2007, , 5248.	1.6	10
62	A facile "bottom-up―approach to prepare free-standing nano-films based on manganese coordination clusters. Chemical Communications, 2013, 49, 7400.	2.2	10
63	Flexible Metal–Organic Frameworks for Light-Switchable CO ₂ Sorption Using an Auxiliary Ligand Strategy. Inorganic Chemistry, 2019, 58, 9766-9772.	1.9	10
64	Exploring the coordination chemistry of bifunctional organoarsonate ligands: syntheses and characterisation of coordination polymers that contain 4-(1,2,4-triazol-4-yl)phenylarsonic acid. CrystEngComm, 2014, 16, 7894-7905.	1.3	9
65	Photoluminescent lead(II) coordination polymers stabilised by bifunctional organoarsonate ligands. Science and Technology of Advanced Materials, 2015, 16, 024803.	2.8	9
66	Structural variation in cation-assisted assembly of high-nuclearity Mn arsonate and phosphonate wheels. Dalton Transactions, 2016, 45, 1349-1353.	1.6	9
67	An Fe(<scp>iii</scp>)-doped coordination polymer of Mn ₁₃ -clusters with improved activity for the oxygen reduction reaction. Dalton Transactions, 2019, 48, 4794-4797.	1.6	9
68	CO2 Adsorption in SIFSIX-14-Cu-i: High Performance, Inflected Isotherms, and Water-Triggered Release via Reversible Structural Transformation. European Journal of Inorganic Chemistry, 2018, 2018, 1993-1997.	1.0	8
69	The 4-pyridonyl group as a multifunctional electron donor in 1,8-naphthalimide-based photoluminescent and mechanically interlocked coordination compounds. Materials Chemistry Frontiers, 2018, 2, 1366-1373.	3.2	8
70	Multicomponent halide templating: The effect of structure-directing agents on the assembly of molecular and extended coordination compounds. Coordination Chemistry Reviews, 2018, 371, 67-85.	9.5	8
71	Towards Nanoscopic Mn-Containing Hybrid Polyoxomolybdates: Synthesis, Structure, Magnetic Properties, and Solution Behavior of a {Mn6Mo10} Cluster. European Journal of Inorganic Chemistry, 2013, 2013, 1654-1658.	1.0	7
72	A Mn ₁₃ -cluster based coordination polymer as a co-catalyst of CdS for enhanced visible-light driven H ₂ evolution. Dalton Transactions, 2018, 47, 10857-10860.	1.6	7

#	Article	IF	CITATIONS
73	Assembly, disassembly and reassembly: a "top-down―synthetic strategy towards hybrid, mixed-metal {Mo ₁₀ Co ₆ } POM clusters. Dalton Transactions, 2019, 48, 3018-3027.	1.6	7
74	Node-Dependent Photoinduced Electron Transfer in Third-Generation 2D MOFs Containing Earth-Abundant Metal Ions. Inorganic Chemistry, 2020, 59, 17244-17250.	1.9	7
75	Hyper-crosslinked 4-amino-1,8-naphthalimide Tröger's base containing pyridinium covalent organic polymer (COP) for discriminative fluorescent sensing of chemical explosives. Supramolecular Chemistry, 2020, 32, 508-517.	1.5	7
76	Bioinspired Water Oxidation Using a Mn-Oxo Cluster Stabilized by Non-Innocent Organic Tyrosine Y161 and Plastoquinone Mimics. ACS Sustainable Chemistry and Engineering, 2020, 8, 13648-13659.	3.2	7
77	Anion-directed supramolecular chemistry modulating the magnetic properties of nanoscopic Mn coordination clusters: from polynuclear high-spin complexes to SMMs. Dalton Transactions, 2016, 45, 17705-17713.	1.6	6
78	Self-assembled bright luminescent hierarchical materials from a tripodal benzoate antenna and heptadentate Eu(III) and Tb(III) cyclen complexes. Frontiers of Chemical Science and Engineering, 2019, 13, 171-184.	2.3	6
79	A cubane-type manganese complex with H ₂ O oxidation capabilities. Sustainable Energy and Fuels, 2020, 4, 4464-4468.	2.5	6
80	Hetero-metallic, functionalizable polyoxomolybdate clusters via a "top-down―synthetic method. Chemical Communications, 2017, 53, 10660-10663.	2.2	5
81	Bio-inspired synthetic approaches: from hierarchical, hybrid supramolecular assemblies to CaCO3-based microspheres. Dalton Transactions, 2017, 46, 6456-6463.	1.6	5
82	2D Porphyrinic Metal-Organic Frameworks Featuring Rod-Shaped Secondary Building Units. Molecules, 2021, 26, 2955.	1.7	5
83	Synthesis and crystallographic analysis of short pyridine-based oligoamides as DNA-targeting supramolecular binders. Supramolecular Chemistry, 2010, 22, 483-490.	1.5	4
84	Ligand displacement for fixing manganese: relevance to cellular metal ion transport and synthesis of polymeric coordination complexes. Dalton Transactions, 2013, 42, 2779-2785.	1.6	4
85	Exploring the reversible host–guest chemistry of a crystalline octanuclear Ag(i) metallosupramolecular macrocycle formed from a simple pyrazinylpyridine ligand. Dalton Transactions, 2018, 47, 17266-17275.	1.6	4
86	Synthesis of new Mn ₁₉ analogues and their structural, electrochemical and catalytic properties. Dalton Transactions, 2019, 48, 4830-4836.	1.6	4
87	Modulating Structural and Electronic Properties of Rare Archimedean and Johnson-Type Mn Cages. Inorganic Chemistry, 2021, 60, 8388-8393.	1.9	4
88	A Schiff-base cross-linked supramolecular polymer containing diiminophenol compartments and its interaction with copper(II) ions. Supramolecular Chemistry, 2018, 30, 93-102.	1.5	3
89	Passing it up the ranks: hierarchical ion-size dependent supramolecular response in 1D coordination polymers. CrystEngComm, 2018, 20, 5127-5131.	1.3	3
90	Mixed donor, phenanthroline photoactive MOFs with favourable CO ₂ selectivity. Chemical Communications, 2020, 56, 13377-13380.	2.2	2

#	Article	IF	CITATIONS
91	Synthetic Approaches to Metallo-Supramolecular Co ^{II} Polygons and Potential Use for H ₂ O Oxidation. Inorganic Chemistry, 2020, 59, 14432-14438.	1.9	2
92	Altering the nature of coupling by changing the oxidation state in a {Mn6} cage. Dalton Transactions, 2020, 49, 8086-8095.	1.6	2
93	Tuning the Catalytic Water Oxidation Activity through Structural Modifications of High-Nuclearity Mn-oxo Clusters [Mn18M] (M = Sr2+, Mn2+). Water (Switzerland), 2021, 13, 2042.	1.2	2
94	J2suscep: Calculation of magnetic exchange coupling and temperature dependence of magnetic susceptibility. Journal of Open Source Software, 2021, 6, 2838.	2.0	2
95	A Photostable 1D Rutheniumâ^'Zinc Coordination Polymer as a Multimetallic Building Block for Light Harvesting Systems. ChemPhotoChem, 2022, 6, e202100299.	1.5	2
96	Supramolecular Coordination Assemblies Using 2-Aminodiacetic Terephthalic Acid Ligands: K[NiII(Hadta)(H2O)2]·H2O and K[Cu 1.5 II (adta)(H2O)1.5]·H2O. Journal of Inorganic and Organometallic Polymers and Materials, 2011, 21, 655-661.	1.9	1
97	{4,6-Bis[(E)-1-methyl-2-(pyridin-2-ylmethylidene-κN)hydrazinyl-κN2]pyrimidine-κN1}dichloridocopper(II) methanol disolvate monohydrate. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, m1073-m1074.	0.2	1
98	Tetrabutylammonium hydrogen phenylarsonate–phenylarsonic acid (1/1). Acta Crystallographica Section E: Structure Reports Online, 2012, 68, m1212-m1213.	0.2	1
99	Multi-metallic Hydrate Hollow Structures in Cobalt Hydrate Based Systems. Crystal Growth and Design, 2017, 17, 1568-1573.	1.4	1
100	{4,6-Bis[(E)-1-methyl-2-(pyridin-2-ylmethylidene)hydrazinyl]pyrimidine-κ3N,N′,N′′}dichloridomanganese(Acta Crystallographica Section E: Structure Reports Online, 2011, 67, m1676-m1676.	ll) _{0.2}	1
101	Cover Picture: Supramolecular Coordination Assemblies of Dinuclear Felll Complexes (Angew. Chem.) Tj ETQq1 1	0,784314	rgBT /Overlo
102	catena-Poly[[[dichlorido(pyridin-1-ium-3-yl)arsenic(III)]-μ-chlorido] monohydrate]. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, m1437-m1438.	0.2	0