
Stephan Michel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/242216/publications.pdf Version: 2024-02-01

STEDHAN MICHEL

#	Article	IF	CITATIONS
1	Disrupted circadian rhythms in VIP- and PHI-deficient mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 285, R939-R949.	1.8	333
2	A GABAergic Mechanism Is Necessary for Coupling Dissociable Ventral and Dorsal Regional Oscillators within the Circadian Clock. Current Biology, 2005, 15, 886-893.	3.9	289
3	Seasonal Encoding by the Circadian Pacemaker of the SCN. Current Biology, 2007, 17, 468-473.	3.9	223
4	Evidence for Neuronal Desynchrony in the Aged Suprachiasmatic Nucleus Clock. Journal of Neuroscience, 2012, 32, 5891-5899.	3.6	193
5	Fast delayed rectifier potassium current is required for circadian neural activity. Nature Neuroscience, 2005, 8, 650-656.	14.8	124
6	Seasonal induction of GABAergic excitation in the central mammalian clock. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9627-9632.	7.1	101
7	Daily and seasonal adaptation of the circadian clock requires plasticity of the SCN neuronal network. European Journal of Neuroscience, 2010, 32, 2143-2151.	2.6	97
8	Phase Shifting Capacity of the Circadian Pacemaker Determined by the SCN Neuronal Network Organization. PLoS ONE, 2009, 4, e4976.	2.5	88
9	Circadian Rhythm in Inhibitory Synaptic Transmission in the Mouse Suprachiasmatic Nucleus. Journal of Neurophysiology, 2004, 92, 311-319.	1.8	79
10	Aging of the Suprachiasmatic Clock. Neuroscientist, 2014, 20, 44-55.	3.5	77
11	Circadian Regulation of A-Type Potassium Currents in the Suprachiasmatic Nucleus. Journal of Neurophysiology, 2010, 103, 632-640.	1.8	73
12	Regulation of glutamatergic signalling by PACAP in the mammalian suprachiasmatic nucleus. BMC Neuroscience, 2006, 7, 15.	1.9	67
13	Excitatory Mechanisms in the Suprachiasmatic Nucleus: The Role of AMPA/KA Glutamate Receptors. Journal of Neurophysiology, 2002, 88, 817-828.	1.8	64
14	Age-related changes in large-conductance calcium-activated potassium channels in mammalian circadian clock neurons. Neurobiology of Aging, 2015, 36, 2176-2183.	3.1	53
15	Role of vasoactive intestinal peptide in seasonal encoding by the suprachiasmatic nucleus clock. European Journal of Neuroscience, 2012, 35, 1466-1474.	2.6	48
16	Evidence for Weakened Intercellular Coupling in the Mammalian Circadian Clock under Long Photoperiod. PLoS ONE, 2016, 11, e0168954.	2.5	42
17	Processing of daily and seasonal light information in the mammalian circadian clock. General and Comparative Endocrinology, 2007, 152, 159-164.	1.8	36
18	Enhanced circadian phase resetting in R192Q Ca _v 2.1 calcium channel migraine mice. Annals of Neurology, 2008, 64, 315-324.	5.3	33

STEPHAN MICHEL

#	Article	IF	CITATIONS
19	Dynamic neuronal network organization of the circadian clock and possible deterioration in disease. Progress in Brain Research, 2012, 199, 143-162.	1.4	33
20	Mechanism of bilateral communication in the suprachiasmatic nucleus. European Journal of Neuroscience, 2013, 37, 964-971.	2.6	32
21	From clock to functional pacemaker. European Journal of Neuroscience, 2020, 51, 482-493.	2.6	32
22	Amine and amino acid transmitters in the eye of the molluscBulla gouldiana: An immunocytochemical study. Journal of Comparative Neurology, 2000, 425, 244-256.	1.6	24
23	Neurophysiological Analysis of the Suprachiasmatic Nucleus. Methods in Enzymology, 2015, 552, 75-102.	1.0	22
24	Role of vasoactive intestinal peptide in the light input to the circadian system. European Journal of Neuroscience, 2015, 42, 1839-1848.	2.6	22
25	PHASE OF THE ELECTRICAL ACTIVITY RHYTHM IN THE SCN IN VITRO NOT INFLUENCED BY PREPARATION TIME. Chronobiology International, 2009, 26, 1075-1089.	2.0	20
26	Aging Affects the Capacity of Photoperiodic Adaptation Downstream from the Central Molecular Clock. Journal of Biological Rhythms, 2020, 35, 167-179.	2.6	19
27	A multiâ€level assessment of the bidirectional relationship between aging and the circadian clock. Journal of Neurochemistry, 2021, 157, 73-94.	3.9	17
28	Aging selectively dampens oscillation of lipid abundance in white and brown adipose tissue. Scientific Reports, 2021, 11, 5932.	3.3	16
29	Ryanodineâ€sensitive intracellular Ca ²⁺ channels are involved in the output from the SCN circadian clock. European Journal of Neuroscience, 2016, 44, 2504-2514.	2.6	14
30	Uncovering functional signature in neural systems via random matrix theory. PLoS Computational Biology, 2019, 15, e1006934.	3.2	12
31	Differential Phase Arrangement of Cellular Clocks along the Tonotopic Axis of the Mouse Cochlea ExÂVivo. Current Biology, 2017, 27, 2623-2629.e2.	3.9	11
32	Neural Circuits Underlying Circadian Oscillations in Mammals: Clocks in a Dish. Neuromethods, 2012, , 183-210.	0.3	9
33	Photoperiod Modulates Fast Delayed Rectifier Potassium Currents in the Mammalian Circadian Clock. ASN Neuro, 2016, 8, 175909141667077.	2.7	5
34	The influence of neuronal electrical activity on the mammalian central clock metabolome. Metabolomics, 2018, 14, 122.	3.0	5
35	Brief light exposure at dawn and dusk can encode dayâ€length in the neuronal network of the mammalian circadian pacemaker. FASEB Journal, 2020, 34, 13685-13695.	0.5	5
36	Electrophysiological Approaches to Studying the Suprachiasmatic Nucleus. Methods in Molecular Biology, 2021, 2130, 303-324.	0.9	3

#	Article	IF	CITATIONS
37	Phase of the Electrical Activity Rhythm in the SCN in Vitro Not Influenced by Preparation Time. Chronobiology International, 2009, 26, 1075-1089.	2.0	1
38	Induction of Fatigue by Specific Anthracycline Cancer Drugs through Disruption of the Circadian Pacemaker. Cancers, 2022, 14, 2421.	3.7	0