
Stephan Pauleit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2421605/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Adapting Cities for Climate Change: The Role of the Green Infrastructure. Built Environment, 2007, 33, 115-133.	0.4	1,289
2	A Quantitative Review of Urban Ecosystem Service Assessments: Concepts, Models, and Implementation. Ambio, 2014, 43, 413-433.	2.8	758
3	Nature-based solutions to climate change mitigation and adaptation in urban areas: perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecology and Society, 2016, 21, .	1.0	753
4	From Multifunctionality to Multiple Ecosystem Services? A Conceptual Framework for Multifunctionality in Green Infrastructure Planning for Urban Areas. Ambio, 2014, 43, 516-529.	2.8	503
5	Assessing the environmental performance of land cover types for urban planning. Landscape and Urban Planning, 2000, 52, 1-20.	3.4	377
6	Modeling the environmental impacts of urban land use and land cover change—a study in Merseyside, UK. Landscape and Urban Planning, 2005, 71, 295-310.	3.4	325
7	Towards an integrated understanding of green space in the European built environment. Urban Forestry and Urban Greening, 2009, 8, 65-75.	2.3	322
8	Greening cities – To be socially inclusive? About the alleged paradox of society and ecology in cities. Habitat International, 2017, 64, 41-48.	2.3	313
9	Using green infrastructure for urban climate-proofing: An evaluation of heat mitigation measures at the micro-scale. Urban Forestry and Urban Greening, 2016, 20, 305-316.	2.3	241
10	The uptake of the ecosystem services concept in planning discourses of European and American cities. Ecosystem Services, 2015, 12, 228-246.	2.3	221
11	Key insights for the future of urban ecosystem services research. Ecology and Society, 2016, 21, .	1.0	219
12	Planning multifunctional green infrastructure for compact cities: What is the state of practice?. Ecological Indicators, 2019, 96, 99-110.	2.6	194
13	Crown size and growing space requirement of common tree species in urban centres, parks, and forests. Urban Forestry and Urban Greening, 2015, 14, 466-479.	2.3	187
14	Benefits and Uses of Urban Forests and Trees. , 2005, , 81-114.		186
15	Advancing urban green infrastructure in Europe: Outcomes and reflections from the GREEN SURGE project. Urban Forestry and Urban Greening, 2019, 40, 4-16.	2.3	182
16	Regulating urban surface runoff through nature-based solutions – An assessment at the micro-scale. Environmental Research, 2017, 157, 135-144.	3.7	177
17	Tree establishment practice in towns and cities – Results from a European survey. Urban Forestry and Urban Greening, 2002, 1, 83-96.	2.3	176
18	Characterising the urban environment of UK cities and towns: A template for landscape planning. Landscape and Urban Planning, 2008, 87, 210-222.	3.4	175

#	Article	IF	CITATIONS
19	Traits of trees for cooling urban heat islands: A meta-analysis. Building and Environment, 2020, 170, 106606.	3.0	165
20	The dynamics of peri-urban agriculture during rapid urbanization of Jabodetabek Metropolitan Area. Land Use Policy, 2015, 48, 13-24.	2.5	147
21	Within canopy temperature differences and cooling ability of Tilia cordata trees grown in urban conditions. Building and Environment, 2017, 114, 118-128.	3.0	119
22	The added value of public participation GIS (PPGIS) for urban green infrastructure planning. Urban Forestry and Urban Greening, 2019, 40, 264-274.	2.3	115
23	Mosaic governance for urban green infrastructure: Upscaling active citizenship from a local government perspective. Urban Forestry and Urban Greening, 2019, 40, 53-62.	2.3	111
24	Vertical air temperature gradients under the shade of two contrasting urban tree species during different types of summer days. Science of the Total Environment, 2018, 633, 100-111.	3.9	106
25	Designing public squares with green infrastructure to optimize human thermal comfort. Building and Environment, 2019, 149, 640-654.	3.0	105
26	Microclimatic differences and their influence on transpirational cooling of Tilia cordata in two contrasting street canyons in Munich, Germany. Agricultural and Forest Meteorology, 2017, 232, 443-456.	1.9	98
27	Rethinking urban green infrastructure and ecosystem services from the perspective of sub-Saharan African cities. Landscape and Urban Planning, 2018, 180, 328-338.	3.4	98
28	Landscape character, biodiversity and land use planning: The case of Kwangju City Region, South Korea. Land Use Policy, 2007, 24, 264-274.	2.5	94
29	Nature-Based Solutions and Climate Change – Four Shades of Green. Theory and Practice of Urban Sustainability Transitions, 2017, , 29-49.	1.9	91
30	Making headway in climate policy mainstreaming and ecosystem-based adaptation: two pioneering countries, different pathways, one goal. Climatic Change, 2016, 137, 71-87.	1.7	84
31	Tree cooling effects and human thermal comfort under contrasting species and sites. Agricultural and Forest Meteorology, 2020, 287, 107947.	1.9	83
32	Spatial variation of green space equity and its relation with urban dynamics: A case study in the region of Munich. Ecological Indicators, 2018, 93, 512-523.	2.6	78
33	Multifunctional Green Infrastructure Planning to Promote Ecological Services in the City. , 2011, , 272-285.		77
34	Comparing the transpirational and shading effects of two contrasting urban tree species. Urban Ecosystems, 2019, 22, 683-697.	1.1	73
35	Structure and ecosystem services of small-leaved lime (Tilia cordata Mill.) and black locust (Robinia) Tj ETQq1	1 0.784314 r 2.3	gBT/Overlo 70
	Process based simulation of tree growth and ecosystem services of urban trees under present and		

³⁶ Process based simulation of tree growth and ecosystem services of urban trees under present and future climate conditions. Science of the Total Environment, 2019, 676, 651-664.

3.9 65

#	Article	IF	CITATIONS
37	Peri-urban agriculture in Jabodetabek Metropolitan Area and its relationship with the urban socioeconomic system. Land Use Policy, 2016, 55, 265-274.	2.5	64
38	Urban morphological determinants of temperature regulating ecosystem services in two African cities. Ecological Indicators, 2014, 42, 43-57.	2.6	59
39	The Urban Environment Can Modify Drought Stress of Small-Leaved Lime (Tilia cordata Mill.) and Black Locust (Robinia pseudoacacia L.). Forests, 2016, 7, 71.	0.9	59
40	The impact of different urban dynamics on green space availability: A multiple scenario modeling approach for the region of Munich, Germany. Ecological Indicators, 2018, 93, 1-12.	2.6	57
41	Urban street tree plantings: identifying the key requirements. Proceedings of the Institution of Civil Engineers: Municipal Engineer, 2003, 156, 43-50.	0.4	54
42	A multi-dimensional assessment of urban vulnerability to climate change in Sub-Saharan Africa. Natural Hazards, 2016, 82, 149-172.	1.6	54
43	Surface runoff in urban areas: The role of residential cover and urban growth form. Journal of Cleaner Production, 2020, 262, 121421.	4.6	53
44	Promoting the Natural Greenstructure of Towns and Cities: English Nature's Accessible Natural Greenspace Standards Model. Built Environment, 2003, 29, 157-170.	0.4	51
45	Urban green infrastructure planning in Ethiopia: The case of emerging towns of Oromia special zone surrounding Finfinne. Journal of Urban Management, 2019, 8, 75-88.	2.3	48
46	Integrating the ecosystem-based approach into municipal climate adaptation strategies: The case of Germany. Journal of Cleaner Production, 2018, 170, 966-977.	4.6	45
47	Stakeholder Mapping to Co-Create Nature-Based Solutions: Who Is on Board?. Sustainability, 2020, 12, 8625.	1.6	45
48	Spatial patterns of urban green infrastructure for equity: A novel exploration. Journal of Cleaner Production, 2019, 238, 117858.	4.6	44
49	Growth patterns and effects of urban micro-climate on two physiologically contrasting urban tree species. Landscape and Urban Planning, 2019, 183, 88-99.	3.4	43
50	Sustainable stormwater management under the impact of climate change and urban densification. Journal of Hydrology, 2021, 596, 126137.	2.3	43
51	Inter- and intraannual growth patterns of urban small-leaved lime (Tilia cordata mill.) at two public squares with contrasting microclimatic conditions. International Journal of Biometeorology, 2017, 61, 1095-1107.	1.3	42
52	Urban green infrastructure – connecting people and nature for sustainable cities. Urban Forestry and Urban Greening, 2019, 40, 1-3.	2.3	42
53	Comparing the infiltration potentials of soils beneath the canopies of two contrasting urban tree species. Urban Forestry and Urban Greening, 2019, 38, 22-32.	2.3	40
54	Living Labs—A Concept for Co-Designing Nature-Based Solutions. Sustainability, 2021, 13, 188.	1.6	40

#	Article	IF	CITATIONS
55	Urban green spaces supply in rapidly urbanizing countries: The case of Sebeta Town, Ethiopia. Remote Sensing Applications: Society and Environment, 2019, 13, 138-149.	0.8	39
56	Spatial and temporal changes of outdoor thermal stress: influence of urban land cover types. Scientific Reports, 2022, 12, 671.	1.6	36
57	A single tree model to consistently simulate cooling, shading, and pollution uptake of urban trees. International Journal of Biometeorology, 2021, 65, 277-289.	1.3	33
58	A stakeholder approach, door opener for farmland and multifunctionality in urban green infrastructure. Urban Forestry and Urban Greening, 2019, 40, 73-83.	2.3	32
59	A conceptual model of the social–ecological system of nature-based solutions in urban environments. Ambio, 2021, 50, 335-345.	2.8	30
60	Perspectives on Urban Greenspace in Europe. Built Environment, 2003, 29, 89-93.	0.4	29
61	Societal Drivers of European Water Governance: A Comparison of Urban River Restoration Practices in France and Germany. Water (Switzerland), 2017, 9, 206.	1.2	29
62	Urban green spaces use and management in rapidly urbanizing countries:-The case of emerging towns of Oromia special zone surrounding Finfinne, Ethiopia. Urban Forestry and Urban Greening, 2019, 43, 126357.	2.3	29
63	Landscape metrics to assess the ecological conditions of city regions: Application to Kwangju City, South Korea. International Journal of Sustainable Development and World Ecology, 2005, 12, 227-244.	3.2	27
64	Effect of native habitat on the cooling ability of six nursery-grown tree species and cultivars for future roadside plantings. Urban Forestry and Urban Greening, 2018, 30, 37-45.	2.3	27
65	Multifunctional adaption of farmers as response to urban growth in the Jabodetabek Metropolitan Area, Indonesia. Journal of Rural Studies, 2017, 55, 100-111.	2.1	26
66	Farmland – an Elephant in the Room of Urban Green Infrastructure? Lessons learned from connectivity analysis in three German cities. Ecological Indicators, 2018, 94, 151-163.	2.6	26
67	Model-Based Evaluation of the Effects of River Discharge Modulations on Physical Fish Habitat Quality. Water (Switzerland), 2018, 10, 374.	1.2	26
68	The use of urban spatial scenario design model as a strategic planning tool for Addis Ababa. Landscape and Urban Planning, 2018, 180, 308-318.	3.4	25
69	Urban Green Infrastructure in the Global South. Cities and Nature, 2021, , 107-143.	0.6	25
70	Urban and rural river restoration in France: a typology. Restoration Ecology, 2017, 25, 994-1004.	1.4	24
71	Land-Use and Surface-Cover as Urban Ecological Indicators. , 2011, , 19-30.		24
72	Greenhouse gas emission accounting for EU member states from 1991 to 2012. Applied Energy, 2016, 184, 759-768.	5.1	23

#	Article	IF	CITATIONS
73	Comparative analysis of shade and underlying surfaces on cooling effect. Urban Forestry and Urban Greening, 2021, 63, 127223.	2.3	23
74	Assessing the Recreation Value of Urban Woodland Using the Ecosystem Service Approach in Two Forests in the Munich Metropolitan Region. Sustainability, 2016, 8, 1156.	1.6	22
75	DESIGNING A RESILIENT WATERSCAPE USING A LIVING LAB AND CATALYZING POLYCENTRIC GOVERNANCE. Landscape Architecture Frontiers, 2019, 7, 12.	0.4	21
76	Selection Approach of Urban Trees for Inner-city Environments: Learning from Nature. Arboriculture and Urban Forestry, 2012, 38, 194-204.	0.2	21
77	Impact of peri-urban agriculture on runoff and soil erosion in the rapidly developing metropolitan area of Jakarta, Indonesia. Regional Environmental Change, 2018, 18, 2129-2143.	1.4	20
78	Model-Based Evaluation of Urban River Restoration: Conflicts between Sensitive Fish Species and Recreational Users. Sustainability, 2018, 10, 1747.	1.6	20
79	Transformation of rural-urban cultural landscapes in Europe: Integrating approaches from ecological, socio-economic and planning perspectives. Landscape Online, 0, 20, 1-10.	0.0	20
80	Effects of Drought on the Phenology, Growth, and Morphological Development of Three Urban Tree Species and Cultivars. Sustainability, 2019, 11, 5117.	1.6	19
81	Trade-Offs between Urban Green Space and Densification: Balancing Outdoor Thermal Comfort, Mobility, and Housing Demand. Urban Planning, 2021, 6, 5-19.	0.7	19
82	Tree species from two contrasting habitats for use in harsh urban environments respond differently to extreme drought. International Journal of Biometeorology, 2019, 63, 197-208.	1.3	18
83	Urban tree growth and ecosystem services under extreme drought. Agricultural and Forest Meteorology, 2021, 308-309, 108532.	1.9	18
84	Some examples of different landscape systems and their biodiversity potential. Landscape and Urban Planning, 1998, 41, 249-261.	3.4	17
85	Urban Forest Resources in European Cities. , 2005, , 49-80.		16
86	StadtĶkosysteme. , 2016, , .		14
87	Exploring the future of rural – urban connections in sub-Saharan Africa: modelling urban expansion and its impact on food production in the Addis Ababa region. Geografisk Tidsskrift, 2017, 117, 68-81.	0.4	14
88	Towards sustainable management of the stock and ecosystem services of urban trees. From theory to model and application. Trees - Structure and Function, 2023, 37, 177-196.	0.9	14
89	The role of urban green space and trees in relation to climate change CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-18.	0.6	14
90	Unearthing time-honored examples of nature-based solutions. Socio-Ecological Practice Research, 2021, 3, 329-335.	0.9	14

Stephan Pauleit

#	Article	IF	CITATIONS
91	Stakeholder Perceptions of Nature-Based Solutions and Their Collaborative Co-Design and Implementation Processes in Rural Mountain Areas—A Case Study From PHUSICOS. Frontiers in Environmental Science, 2021, 9, .	1.5	14
92	An Integrated Indicator Framework for the Assessment of Multifunctional Green Infrastructure—Exemplified in a European City. Remote Sensing, 2019, 11, 1869.	1.8	12
93	Crown Shapes of Urban Trees-Their Dependences on Tree Species, Tree Age and Local Environment, and Effects on Ecosystem Services. Forests, 2022, 13, 748.	0.9	12
94	Modelling Urban Tree Growth and Ecosystem Services: Review and Perspectives. Progress in Botany Fortschritte Der Botanik, 2020, , 405-464.	0.1	11
95	Assessment of landscape changes under different urban dynamics based on a multiple-scenario modeling approach. Environment and Planning B: Urban Analytics and City Science, 2020, 47, 1361-1379.	1.0	11
96	Regulating the microclimate with urban green in densifiying cities: Joint assessment on two scales. Building and Environment, 2021, 205, 108233.	3.0	11
97	Using green infrastructure to stimulate discourse with and for planning practice: experiences with fuzzy concepts from a pan-European, a national and a local perspective. Socio-Ecological Practice Research, 2021, 3, 257-280.	0.9	10
98	The spatial impact of urban compaction: A fine-scale investigation based on Merseyside. Town Planning Review, 2005, 76, 143-166.	0.9	9
99	Mapping the Loss of Ecosystem Services in a Region Under Intensive Land Use Along the Southern Coast of South Africa. Land, 2019, 8, 51.	1.2	9
100	Non-Structural Flood Management in European Rural Mountain Areas—Are Scientists Supporting Implementation?. Hydrology, 2021, 8, 167.	1.3	9
101	Woodland Changes and their Impacts on the Landscape Structure in South Korea, Kwangju City Region. Landscape Research, 2009, 34, 257-277.	0.7	8
102	Visitor Counting and Monitoring in Forests Using Camera Traps: A Case Study from Bavaria (Southern) Tj ETQq0	0 0 rgBT /	Overlock 10
103	Urban street tree plantings: identifying the key requirements. Proceedings of the Institution of Civil Engineers: Municipal Engineer, 2003, 156, 43-50.	0.4	8
104	Quantifying targets for nature conservation in future European landscapes. Landscape and Urban Planning, 1997, 37, 73-84.	3.4	7
105	Habitat Studies Identifying Potential Trees for Urban Paved Environments: A Case Study from Qinling Mt., China. Arboriculture and Urban Forestry, 2010, 36, 261-271.	0.2	7
106	Urban Tree Growth Characteristics of Four Common Species in South Germany. Arboriculture and Urban Forestry, 2021, 47, 150-169.	0.2	6
107	Effects of recreational use on restored urban floodplain vegetation in urban areas. Urban Forestry and Urban Greening, 2022, 67, 127444.	2.3	6

108The Way Forward: Climate Resilient Cities for Africa's Future. Future City, 2015, , 369-399.0.24

#	Article	IF	CITATIONS
109	A Simplified Method to Assess the Impact of Sediment and Nutrient Inputs on River Water Quality in Two Regions of the Southern Coast of South Africa. Environmental Management, 2019, 63, 658-672.	1.2	3
110	SUSTAINABLE CONSERVATION PERSPECTIVES FOR EPIPHYTIC ORCHIDS IN THE CENTRAL HIMALAYAS, NEPAL. Applied Ecology and Environmental Research, 2015, 13, .	0.2	3
111	Tracing the introduction history of a potentially invasive ornamental shrub: variation in frost hardiness and climate change. Nordic Journal of Botany, 2012, 30, 739-746.	0.2	2
112	Incorporating spatial autocorrelation and settlement type segregation to improve the performance of an urban growth model. Environment and Planning B: Urban Analytics and City Science, 2020, 47, 1184-1200.	1.0	2
113	Urbanisierung und ihre Herausforderungen für die ökologische Stadtentwicklung. , 2016, , 1-30.		2
114	Nature-Based Solutions in Latin American Cities. , 2020, , 1-28.		2
115	Spectrum analysis of national greenhouse gas emission: a case study of Germany. Energy, Ecology and Environment, 2016, 1, 267-282.	1.9	1
116	Land Use Pollution Potential of Water Sources Along the Southern Coast of South Africa. Change and Adaptation in Socio-Ecological Systems, 2018, 4, 7-20.	1.5	1
117	Urbanisation and Its Challenges for Ecological Urban Development. , 2021, , 1-39.		1
118	Editorial: Transformative Urban Greening: Advancing Green Space Governance. Frontiers in Sustainable Cities, 2021, 3, .	1.2	1
119	USSDM – Urban Spatial Scenario Design Modelling. Future City, 2015, , 259-286.	0.2	1
120	Management urbaner WÄ k ler zwischen Ansprļchen der Gesellschaft und Besitzerzielen. Schweizerische Zeitschrift Fur Forstwesen, 2017, 168, 261-268.	0.5	1
121	Worum geht es bei Stadtökologie und ihrer Anwendungen in der Stadtentwicklung?. , 2016, , 245-254.		1
122	Wie verwundbar sind Stadtökosysteme und wie kann mit ihnen urbane Resilienz entwickelt werden?. , 2016, , 165-205.		1
123	Green Infrastructures to Face Climate Change in an Urbanizing World. , 2020, , 207-234.		1
124	Green Infrastructures to Face Climate Change in an Urbanizing World. , 2020, , 1-29.		1
125	Smart Urban Forestry: Is It the Future?. Urban Book Series, 2022, , 161-182.	0.3	1
126	What Are the Relationships Between the Spatial Urban Structure and the Ecological Characteristics of the City?. , 2021, , 41-77.		0

#	Article	IF	CITATIONS
127	How Vulnerable Are Urban Ecosystems and How Can Urban Resilience Be Developed with Them?. , 2021, , 209-262.		0
128	What is Urban Ecology and What Are Its Applications in Urban Development?. , 2021, , 313-323.		0
129	Embodied Services of Greenhouse Gas Emissions: A Case Study of the EU Member Countries. Journal of Environmental Accounting and Management, 2016, 4, 269-286.	0.3	0
130	Grüne Infrastruktur – ein innovativer Ansatz für die Landschaftsplanung. RaumFragen: Stadt - Region - Landschaft, 2019, , 781-794.	1.0	0
131	Nature-Based Solutions in Latin American Cities. , 2021, , 961-988.		0