List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2421507/publications.pdf Version: 2024-02-01

XINULLINC

#	Article	IF	CITATIONS
1	High-Performance Pd/AC Catalyst for Meropenem Synthesis Based on Selective Surface Modification of Activated Carbon. Catalysis Letters, 2022, 152, 2078-2089.	2.6	3
2	Enhanced thermal resistance and ablation properties of ethylene-propylene-diene monomer rubber with boron-containing phenolic resins. Reactive and Functional Polymers, 2022, 170, 105136.	4.1	8
3	Synthesis of Boron-Doped Phenolic Porous Carbon As Efficient Catalyst for the Dehydration of Fructose into 5-Hydroxymethylfurfural. Industrial & Engineering Chemistry Research, 2022, 61, 4222-4234.	3.7	2
4	Healable ablative composites from synergistically crosslinked phenolic resin. Chemical Engineering Journal, 2022, 447, 137571.	12.7	14
5	In-depth understanding on the early stage of phenolic resin thermal pyrolysis through ReaxFF-molecular dynamics simulation. Polymer Degradation and Stability, 2021, 186, 109534.	5.8	25
6	Facilely prepared conductive hydrogels based on polypyrrole nanotubes. Chemical Papers, 2021, 75, 5113-5120.	2.2	7
7	Fully recyclable and high performance phenolic resin based on dynamic urethane bonds and its application in self-repairable composites. Polymer, 2021, 229, 124022.	3.8	20
8	Pyrolysis mechanism of phenylboronic acid modified phenolic resin. Polymer Degradation and Stability, 2021, 191, 109672.	5.8	14
9	Facile preparation of recyclable cyclic polyolefin/polystyrene vitrimers with low dielectric loss based on semi-interpenetrating polymer networks for high-frequency copper-clad laminates. Polymer, 2021, 233, 124214.	3.8	16
10	Fully recyclable and reprocessable polystyrene-based vitrimers with improved thermal stability and mechanical properties through nitrogen-coordinating cyclic boronic ester bonds. Applied Surface Science, 2021, 570, 151157.	6.1	17
11	Cross-linked polymers based on B–O bonds: synthesis, structure and properties. Materials Chemistry Frontiers, 2021, 5, 5534-5548.	5.9	22
12	Recyclable, Self-Healable, and Highly Malleable Poly(urethane-urea)s with Improved Thermal and Mechanical Performances. ACS Applied Materials & Interfaces, 2020, 12, 35403-35414.	8.0	63
13	Boronic Ester Based Vitrimers with Enhanced Stability via Internal Boron–Nitrogen Coordination. Journal of the American Chemical Society, 2020, 142, 21852-21860.	13.7	150
14	Azo dye aggregates and their roles in the morphology and conductivity of polypyrrole. Dyes and Pigments, 2020, 177, 108329.	3.7	18
15	A dense hybrid network of epoxide hyperbranched polyurethane and benzoxazine with improved thermomechanical properties via tuning its curing reaction and physical state. Polymer, 2019, 179, 121659.	3.8	7
16	The effect of free dihydroxydiphenylmethanes on the thermal stability of novolac resin. Polymer Degradation and Stability, 2019, 168, 108946.	5.8	7
17	Curing behavior and microstructure of epoxy-POSS modified novolac phenolic resin with different substitution degree. Polymer, 2019, 178, 121587.	3.8	34
18	A robust and versatile superhydrophobic coating: Wear-resistance study upon sandpaper abrasion. Applied Surface Science, 2019, 480, 738-748.	6.1	71

#	Article	IF	CITATIONS
19	Water-based acrylate copolymer/silica hybrids for facile preparation of robust and durable superhydrophobic coatings. Applied Surface Science, 2018, 447, 489-499.	6.1	46
20	Synthesis and characterization of poly (dihydroxybiphenyl borate) with high char yield for high-performance thermosetting resins. Applied Surface Science, 2018, 428, 912-923.	6.1	17
21	Room-temperature fully recyclable carbon fibre reinforced phenolic composites through dynamic covalent boronic ester bonds. Journal of Materials Chemistry A, 2018, 6, 10868-10878.	10.3	122
22	Timeâ€ŧemperatureâ€ŧransformation diagram of modified resol phenolic resin and the thermomechanical performance of resol phenolic resin/glass fabric composite. Polymers for Advanced Technologies, 2018, 29, 2827-2837.	3.2	4
23	Low-temperature synthesis of high-purity boron carbide via an aromatic polymer precursor. Journal of Materials Research, 2018, 33, 1659-1670.	2.6	4
24	Situ preparation of SiO2 on graphene-assisted anti-oxidation for resol phenolic resin. Polymer Degradation and Stability, 2018, 154, 222-233.	5.8	15
25	Synthesis of epoxide functionalized hyperbranched polyurethane and its blending with benzoxazine: cure kinetics and thermal properties. Polymer Bulletin, 2017, 74, 4209-4222.	3.3	10
26	Initial reaction mechanism between HOÂ∙ and bisphenolâ€F: Conformational dependence and the role of nonbond interactions. International Journal of Quantum Chemistry, 2017, 117, e25342.	2.0	4
27	Curing behaviour and properties of a novel benzoxazine resin via catalysis of 2-phenyl-1,3,2-benzodioxaborole. Reactive and Functional Polymers, 2017, 117, 60-69.	4.1	25
28	Polypyrrole composites with carbon materials for supercapacitors. Chemical Papers, 2017, 71, 293-316.	2.2	49
29	Influence of poly (dihydroxybiphenyl borate) on the curing behaviour and thermal pyrolysis mechanism of phenolic resin. Polymer Degradation and Stability, 2017, 144, 378-391.	5.8	33
30	Fabrication and characterization of poly (bisphenol A borate) with high thermal stability. Applied Surface Science, 2017, 392, 481-491.	6.1	24
31	Structure and thermal pyrolysis mechanism of poly(resorcinol borate) with high char yield. Polymer Degradation and Stability, 2016, 130, 328-337.	5.8	19
32	Thermal stability of phenolic resin: new insights based on bond dissociation energy and reactivity of functional groups. RSC Advances, 2016, 6, 55007-55016.	3.6	22
33	Role of Nonbond Interactions in the Glass Transition of Novolac-Type Phenolic Resin: A Molecular Dynamics Study. Industrial & Engineering Chemistry Research, 2016, 55, 9440-9451.	3.7	20
34	The temperature dependence of the coefficients of thermal expansion of phenolic resin. Polymer Composites, 2016, 37, 146-152.	4.6	3
35	Behavior investigation of phenolic hydroxyl groups during the pyrolysis of cured phenolic resin via molecular dynamics simulation. Polymer Degradation and Stability, 2016, 125, 97-104.	5.8	49
36	Polyaniline selfâ€assembled with <scp>DTPA</scp> : Facilely tuned morphology and properties. Journal of Applied Polymer Science, 2015, 132, .	2.6	3

#	Article	IF	CITATIONS
37	Influence of borate structure on the thermal stability of boron-containing phenolic resins: A DFT study. Polymer Degradation and Stability, 2015, 119, 190-197.	5.8	24
38	Facile preparation of a mechanically robust superhydrophobic acrylic polyurethane coating. Journal of Materials Chemistry A, 2015, 3, 13856-13863.	10.3	116
39	The thermal stability and pyrolysis mechanism of boron-containing phenolic resins: The effect of phenyl borates on the char formation. Applied Surface Science, 2015, 331, 519-529.	6.1	122
40	An investigation on the effect of phenylboronic acid on the processibilities and thermal properties of bis-benzoxazine resins. Reactive and Functional Polymers, 2015, 93, 111-119.	4.1	29
41	Effect of chemical structure and cross-link density on the heat resistance of phenolic resin. Polymer Degradation and Stability, 2015, 111, 239-246.	5.8	72
42	Pendulum hardness of polyurethane coatings during curing. Pigment and Resin Technology, 2014, 43, 271-276.	0.9	2
43	Synthesis and characterization of novel phenolic resins containing aryl-boron backbone and their utilization in polymeric composites with improved thermal and mechanical properties. Polymers for Advanced Technologies, 2014, 25, 152-159.	3.2	44
44	Polyaniline precipitation in aqueous medium: from bulk aggregates to nanoparticles. Colloid and Polymer Science, 2014, 292, 1099-1110.	2.1	4
45	Influence of temperature on the phase inversion of chlorinated polypropylene. Journal of Applied Polymer Science, 2014, 131, .	2.6	2
46	High char yield of aryl boron-containing phenolic resins: The effect of phenylboronic acid on the thermal stability and carbonization of phenolic resins. Polymer Degradation and Stability, 2014, 99, 1-11.	5.8	119
47	Easy preparation of an MRI contrast agent with high longitudinal relaxivity based on gadolinium ions-loaded graphene oxide. RSC Advances, 2014, 4, 53987-53992.	3.6	16
48	Facile preparation of gadolinium(<scp>iii</scp>) chelates functionalized carbon quantum dot-based contrast agent for magnetic resonance/fluorescence multimodal imaging. Journal of Materials Chemistry B, 2014, 2, 5541-5549.	5.8	53
49	The dependence of pendulum hardness on the thickness of acrylic coating. Journal of Coatings Technology Research, 2013, 10, 433-439.	2.5	11
50	Enhanced thermal resistance of phenolic resin composites at low loading of graphene oxide. Composites Part A: Applied Science and Manufacturing, 2013, 54, 166-172.	7.6	57
51	Adhesion improvement of electroless copper plating on phenolic resin matrix composite through a tin-free sensitization process. Applied Surface Science, 2013, 271, 303-310.	6.1	38
52	Polyaniline micro-/nanostructures: morphology control and formation mechanism exploration. Chemical Papers, 2013, 67, .	2.2	24
53	Self-assembly of aniline oligomers and their induced polyaniline supra-molecular structures. Chemical Papers, 2013, 67, .	2.2	14
54	A high concentration graphene dispersion stabilized by polyaniline nanofibers. Synthetic Metals, 2012, 162, 1107-1113.	3.9	26

#	Article	IF	CITATIONS
55	Bis-benzoxazine resins with high char yield and toughness modified by hyperbranched poly(resorcinol) Tj ETQq1 1	0.784314 7.6	rgBT /Over
56	Self-assembly of aniline oligomers in aqueous medium. Colloid and Polymer Science, 2012, 290, 817-828.	2.1	17
57	Early stage pH profile: the key factor controlling the construction of polyaniline micro/nanostructures. Journal of Polymer Research, 2011, 18, 2119-2131.	2.4	20
58	High carbon yield thermoset resin based on phenolic resin, hyperbranched polyborate, and paraformaldehyde. Polymers for Advanced Technologies, 2011, 22, 2592-2595.	3.2	25
59	Thermal properties of hyperbranched polyborate functionalized multiwall carbon nanotube/polybenzoxazine composites. Polymer Composites, 2011, 32, 1352-1361.	4.6	20
60	Pyrolysis of hyperbranched polyborate modified phenolic resin. Polymer Engineering and Science, 2010, 50, 1382-1388.	3.1	37
61	Computer Simulation of Resin Flow through the Bleeder in the Autoclave Curing Process. Polymers and Polymer Composites, 2010, 18, 275-282.	1.9	2
62	Preparation of a Stable Graphene Dispersion with High Concentration by Ultrasound. Journal of Physical Chemistry B, 2010, 114, 10368-10373.	2.6	137
63	Effects of ultrasonic irradiation on the morphology of chemically prepared polyaniline nanofibers. Journal of Applied Polymer Science, 2009, 113, 868-875.	2.6	16
64	Morphology control of chemically prepared polyaniline nanostructures: Effects of mass transfer. Reactive and Functional Polymers, 2009, 69, 797-807.	4.1	20
65	Preparation and characterization of polyaniline with high electrical conductivity. Polymers for Advanced Technologies, 2009, 20, 689-695.	3.2	21
66	Miscibility, morphology, and thermal properties of hyperbranched polyborates modified phenolic resins. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 2012-2021.	2.1	17
67	Formation of Polyaniline Nanofibers:  A Morphological Study. Journal of Physical Chemistry B, 2008, 112, 1157-1162.	2.6	85
68	Polyaniline nanofibers prepared with hydrogen peroxide as oxidant. Synthetic Metals, 2007, 157, 269-275.	3.9	70
69	Novel adamantane-containing epoxy resin. Journal of Applied Polymer Science, 2007, 106, 737-742.	2.6	13
70	Sonochemical synthesis of polyaniline nanofibers. Ultrasonics Sonochemistry, 2007, 14, 75-80.	8.2	163
71	Pyrolysis and structure of hyperbranched polyborate modified phenolic resins. Carbon, 2007, 45, 1965-1971.	10.3	96
72	Synthesis and properties of a novel hyperbranched borate. Journal of Polymer Science Part A, 2007, 45, 3473-3476.	2.3	17

5

#	Article	IF	CITATIONS
73	Preparation of polystyrene/polyaniline core/shell structured particles and their epoxy-based conductive composites. Polymer International, 2007, 56, 126-131.	3.1	16
74	Transparent conductive thin films based on polyaniline nanofibers. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2007, 138, 95-100.	3.5	56
75	Study on the Effect of the Lead Dioxide Particles on the Anodic Electrode Performance for Ozone Generation. Electrochemistry, 2006, 74, 539-543.	1.4	11
76	Polyaniline nanofibers prepared with ultrasonic irradiation. Journal of Polymer Science Part A, 2006, 44, 1014-1019.	2.3	85
77	Effect of solution concentration on the UV–vis spectroscopy measured oxidation state of polyaniline base. Polymer Testing, 2005, 24, 153-156.	4.8	35
78	Electrical conductivity and electromagnetic interference shielding of polyaniline/polyacrylate composite coatings. Journal of Applied Polymer Science, 2005, 98, 2149-2156.	2.6	73
79	Intrinsically conducting polymers for electromagnetic interference shielding. Polymers for Advanced Technologies, 2005, 16, 344-351.	3.2	510
80	Preparation and characterization of PVC/PANI conductive composite with extremely low percolation threshold. Polymers for Advanced Technologies, 2004, 15, 481-484.	3.2	5
81	Preparation of an Epoxy/Polyaniline Composite Coating and Its Passivation Effect on Cold Rolled Steel. Polymer Journal, 2004, 36, 374-379.	2.7	34
82	Title is missing!. Journal of Materials Science Letters, 2000, 19, 377-379.	0.5	184
83	Investigation of the performance of microelectrodes with micrometer size structural diameters. Electroanalysis, 1997, 9, 718-721.	2.9	2