Keith A Houck

List of Publications by Citations

Source: https://exaly.com/author-pdf/2420904/keith-a-houck-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

14,121 115 112 53 h-index g-index citations papers 6.9 5.85 115 15,473 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
112	The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. <i>Science</i> , 1992 , 255, 989-9	3 3.3	1809
111	Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocrine Reviews, 1992 , 13, 18-32	27.2	1353
110	The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. <i>Molecular Endocrinology</i> , 1991 , 5, 1806-14		1150
109	The ToxCast program for prioritizing toxicity testing of environmental chemicals. <i>Toxicological Sciences</i> , 2007 , 95, 5-12	4.4	678
108	The vascular endothelial growth factor family of polypeptides. <i>Journal of Cellular Biochemistry</i> , 1991 , 47, 211-8	4.7	476
107	In vitro screening of environmental chemicals for targeted testing prioritization: the ToxCast project. <i>Environmental Health Perspectives</i> , 2010 , 118, 485-92	8.4	439
106	An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core. <i>Nature Nanotechnology</i> , 2015 , 10, 817-23	28.7	373
105	Update on EPAS ToxCast program: providing high throughput decision support tools for chemical risk management. <i>Chemical Research in Toxicology</i> , 2012 , 25, 1287-302	4	357
104	The toxicity data landscape for environmental chemicals. <i>Environmental Health Perspectives</i> , 2009 , 117, 685-95	8.4	340
103	ToxCast Chemical Landscape: Paving the Road to 21st Century Toxicology. <i>Chemical Research in Toxicology</i> , 2016 , 29, 1225-51	4	301
102	Increased AKT activity contributes to prostate cancer progression by dramatically accelerating prostate tumor growth and diminishing p27Kip1 expression. <i>Journal of Biological Chemistry</i> , 2000 , 275, 24500-5	5.4	283
101	Integration of dosimetry, exposure, and high-throughput screening data in chemical toxicity assessment. <i>Toxicological Sciences</i> , 2012 , 125, 157-74	4.4	280
100	The vascular endothelial growth factor proteins: identification of biologically relevant regions by neutralizing monoclonal antibodies. <i>Growth Factors</i> , 1992 , 7, 53-64	1.6	260
99	Endocrine profiling and prioritization of environmental chemicals using ToxCast data. <i>Environmental Health Perspectives</i> , 2010 , 118, 1714-20	8.4	231
98	Induction of DNA synthesis in cultured rat hepatocytes through stimulation of alpha 1 adrenoreceptor by norepinephrine. <i>Science</i> , 1985 , 227, 749-51	33.3	230
97	Zebrafish developmental screening of the ToxCastlPhase I chemical library. <i>Reproductive Toxicology</i> , 2012 , 33, 174-87	3.4	228
96	Integrated Model of Chemical Perturbations of a Biological Pathway Using 18 In Vitro High-Throughput Screening Assays for the Estrogen Receptor. <i>Toxicological Sciences</i> , 2015 , 148, 137-54	4.4	201

(2013-2010)

95	Incorporating human dosimetry and exposure into high-throughput in vitro toxicity screening. <i>Toxicological Sciences</i> , 2010 , 117, 348-58	4.4	189	
94	Estimating toxicity-related biological pathway altering doses for high-throughput chemical risk assessment. <i>Chemical Research in Toxicology</i> , 2011 , 24, 451-62	4	166	
93	Impact of environmental chemicals on key transcription regulators and correlation to toxicity end points within EPAS ToxCast program. <i>Chemical Research in Toxicology</i> , 2010 , 23, 578-90	4	164	
92	ACToRAggregated Computational Toxicology Resource. <i>Toxicology and Applied Pharmacology</i> , 2008 , 233, 7-13	4.6	164	
91	Chemical genomics profiling of environmental chemical modulation of human nuclear receptors. <i>Environmental Health Perspectives</i> , 2011 , 119, 1142-8	8.4	150	
90	Incorporating High-Throughput Exposure Predictions With Dosimetry-Adjusted In Vitro Bioactivity to Inform Chemical Toxicity Testing. <i>Toxicological Sciences</i> , 2015 , 148, 121-36	4.4	148	
89	T0901317 is a dual LXR/FXR agonist. Molecular Genetics and Metabolism, 2004, 83, 184-7	3.7	147	
88	Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. <i>Chemical Research in Toxicology</i> , 2013 , 26, 878-95	4	145	
87	Phenotypic screening of the ToxCast chemical library to classify toxic and therapeutic mechanisms. <i>Nature Biotechnology</i> , 2014 , 32, 583-91	44.5	141	
86	Molecular and Biological Properties of the Vascular Endothelial Growth Factor Family of Proteins		136	
85	Informing selection of nanomaterial concentrations for ToxCast in vitro testing based on occupational exposure potential. <i>Environmental Health Perspectives</i> , 2011 , 119, 1539-46	8.4	135	
84	Analysis of eight oil spill dispersants using rapid, in vitro tests for endocrine and other biological activity. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	127	
83	Editor's Highlight: Analysis of the Effects of Cell Stress and Cytotoxicity on In Vitro Assay Activity Across a Diverse Chemical and Assay Space. <i>Toxicological Sciences</i> , 2016 , 152, 323-39	4.4	125	
82	Predictive model of rat reproductive toxicity from ToxCast high throughput screening. <i>Biology of Reproduction</i> , 2011 , 85, 327-39	3.9	122	
81	The Next Generation Blueprint of Computational Toxicology at the U.S. Environmental Protection Agency. <i>Toxicological Sciences</i> , 2019 , 169, 317-332	4.4	121	
80	Computational toxicologya state of the science mini review. <i>Toxicological Sciences</i> , 2008 , 103, 14-27	4.4	121	
79	Nanomaterial categorization for assessing risk potential to facilitate regulatory decision-making. <i>ACS Nano</i> , 2015 , 9, 3409-17	16.7	119	
78	Using in vitro high throughput screening assays to identify potential endocrine-disrupting chemicals. <i>Environmental Health Perspectives</i> , 2013 , 121, 7-14	8.4	119	

77	Activity profiles of 309 ToxCastIthemicals evaluated across 292 biochemical targets. <i>Toxicology</i> , 2011 , 282, 1-15	4.4	115
76	Development and Validation of a Computational Model for Androgen Receptor Activity. <i>Chemical Research in Toxicology</i> , 2017 , 30, 946-964	4	114
75	Profiling of the Tox21 10K compound library for agonists and antagonists of the estrogen receptor alpha signaling pathway. <i>Scientific Reports</i> , 2014 , 4, 5664	4.9	113
74	The hypolipidemic natural product guggulsterone is a promiscuous steroid receptor ligand. <i>Molecular Pharmacology</i> , 2005 , 67, 948-54	4.3	110
73	Perspectives on validation of high-throughput assays supporting 21st century toxicity testing. <i>ALTEX: Alternatives To Animal Experimentation</i> , 2013 , 30, 51-6	4.3	105
72	In vitro and modelling approaches to risk assessment from the U.S. Environmental Protection Agency ToxCast programme. <i>Basic and Clinical Pharmacology and Toxicology</i> , 2014 , 115, 69-76	3.1	96
71	Evaluation of high-throughput genotoxicity assays used in profiling the US EPA ToxCast chemicals. <i>Regulatory Toxicology and Pharmacology</i> , 2009 , 55, 188-99	3.4	89
70	Profiling bioactivity of the ToxCast chemical library using BioMAP primary human cell systems. Journal of Biomolecular Screening, 2009 , 14, 1054-66		88
69	Understanding mechanisms of toxicity: insights from drug discovery research. <i>Toxicology and Applied Pharmacology</i> , 2008 , 227, 163-78	4.6	81
68	Multi-well microelectrode array recordings detect neuroactivity of ToxCast compounds. <i>NeuroToxicology</i> , 2014 , 44, 204-17	4.4	75
67	Altered responses of regenerating hepatocytes to norepinephrine and transforming growth factor type beta. <i>Journal of Cellular Physiology</i> , 1989 , 141, 503-9	7	68
66	Tiered High-Throughput Screening Approach to Identify Thyroperoxidase Inhibitors Within the ToxCast Phase I and II Chemical Libraries. <i>Toxicological Sciences</i> , 2016 , 151, 160-80	4.4	67
65	Retinoid X receptor is a nonsilent major contributor to vitamin D receptor-mediated transcriptional activation. <i>Molecular Endocrinology</i> , 2003 , 17, 2320-8		67
64	Predictive endocrine testing in the 21st century using in vitro assays of estrogen receptor signaling responses. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	64
63	Norepinephrine modulates the growth-inhibitory effect of transforming growth factor-beta in primary rat hepatocyte cultures. <i>Journal of Cellular Physiology</i> , 1988 , 135, 551-5	7	64
62	In vitro perturbations of targets in cancer hallmark processes predict rodent chemical carcinogenesis. <i>Toxicological Sciences</i> , 2013 , 131, 40-55	4.4	60
61	A natural product ligand of the oxysterol receptor, liver X receptor. <i>Journal of Pharmacology and Experimental Therapeutics</i> , 2003 , 307, 291-6	4.7	55
60	Using ToxCastIData to Reconstruct Dynamic Cell State Trajectories and Estimate Toxicological Points of Departure. <i>Environmental Health Perspectives</i> , 2016 , 124, 910-9	8.4	55

(2017-2016)

59	Environmental surveillance and monitoringThe next frontiers for high-throughput toxicology. <i>Environmental Toxicology and Chemistry</i> , 2016 , 35, 513-25	3.8	50	
58	Xenobiotic-metabolizing enzyme and transporter gene expression in primary cultures of human hepatocytes modulated by ToxCast chemicals. <i>Journal of Toxicology and Environmental Health - Part B: Critical Reviews</i> , 2010 , 13, 329-46	8.6	47	
57	An "EAR" on Environmental Surveillance and Monitoring: A Case Study on the Use of Exposure-Activity Ratios (EARs) to Prioritize Sites, Chemicals, and Bioactivities of Concern in Great Lakes Waters. <i>Environmental Science & Environmental Science & 2017</i> , 51, 8713-8724	10.3	45	
56	Differential effect of growth factors on growth stimulation and phenotypic stability of glutamine-synthetase-positive and -negative hepatocytes in primary culture. <i>Differentiation</i> , 1986 , 33, 45-55	3.5	44	
55	Evaluation of food-relevant chemicals in the ToxCast high-throughput screening program. <i>Food and Chemical Toxicology</i> , 2016 , 92, 188-96	4.7	44	
54	Comprehensive Analyses and Prioritization of Tox21 10K Chemicals Affecting Mitochondrial Function by in-Depth Mechanistic Studies. <i>Environmental Health Perspectives</i> , 2018 , 126, 077010	8.4	44	
53	Using nuclear receptor activity to stratify hepatocarcinogens. PLoS ONE, 2011, 6, e14584	3.7	43	
52	Proline is required for the stimulation of DNA synthesis in hepatocyte cultures by EGF. <i>In Vitro</i> , 1985 , 21, 121-4		43	
51	Potential Toxicity of Complex Mixtures in Surface Waters from a Nationwide Survey of United States Streams: Identifying in Vitro Bioactivities and Causative Chemicals. <i>Environmental Science & Environmental Science</i>	10.3	43	
50	High-content screening assay for activators of the Wnt/Fzd pathway in primary human cells. <i>Assay and Drug Development Technologies</i> , 2005 , 3, 133-41	2.1	41	
49	The Tox21 10K Compound Library: Collaborative Chemistry Advancing Toxicology. <i>Chemical Research in Toxicology</i> , 2021 , 34, 189-216	4	40	
48	Dosimetric anchoring of in vivo and in vitro studies for perfluorooctanoate and perfluorooctanesulfonate. <i>Toxicological Sciences</i> , 2013 , 136, 308-27	4.4	39	
47	Screening the ToxCast phase II libraries for alterations in network function using cortical neurons grown on multi-well microelectrode array (mwMEA) plates. <i>Archives of Toxicology</i> , 2018 , 92, 487-500	5.8	36	
46	Real-time growth kinetics measuring hormone mimicry for ToxCast chemicals in T-47D human ductal carcinoma cells. <i>Chemical Research in Toxicology</i> , 2013 , 26, 1097-107	4	34	
45	Acidic fibroblast growth factor (HBGF-1) stimulates DNA synthesis in primary rat hepatocyte cultures. <i>Journal of Cellular Physiology</i> , 1990 , 143, 129-32	7	34	
44	Limited Chemical Structural Diversity Found to Modulate Thyroid Hormone Receptor in the Tox21 Chemical Library. <i>Environmental Health Perspectives</i> , 2019 , 127, 97009	8.4	33	
43	Quantitative high-throughput profiling of environmental chemicals and drugs that modulate farnesoid X receptor. <i>Scientific Reports</i> , 2014 , 4, 6437	4.9	33	
42	On selecting a minimal set of in vitro assays to reliably determine estrogen agonist activity. <i>Regulatory Toxicology and Pharmacology</i> , 2017 , 91, 39-49	3.4	27	

41	The Key Characteristics of Carcinogens: Relationship to the Hallmarks of Cancer, Relevant Biomarkers, and Assays to Measure Them. <i>Cancer Epidemiology Biomarkers and Prevention</i> , 2020 , 29, 1887-1903	4	25
40	Identifying environmental chemicals as agonists of the androgen receptor by using a quantitative high-throughput screening platform. <i>Toxicology</i> , 2017 , 385, 48-58	4.4	22
39	Incorporating biological, chemical, and toxicological knowledge into predictive models of toxicity. <i>Toxicological Sciences</i> , 2012 , 130, 440-1; author reply 442-3	4.4	20
38	Nontarget Screening of Per- and Polyfluoroalkyl Substances Binding to Human Liver Fatty Acid Binding Protein. <i>Environmental Science & Environmental S</i>	10.3	19
37	Conditional transformation of rat embryo fibroblast cells by a cyclin D1-cdk4 fusion gene. <i>Oncogene</i> , 1999 , 18, 6343-56	9.2	19
36	Identification of thyroid hormone receptor active compounds using a quantitative high-throughput screening platform. <i>Current Chemical Genomics and Translational Medicine</i> , 2014 , 8, 36-46		18
35	Profiling the ToxCast Library With a Pluripotent Human (H9) Stem Cell Line-Based Biomarker Assay for Developmental Toxicity. <i>Toxicological Sciences</i> , 2020 , 174, 189-209	4.4	17
34	Bioactivity profiling of per- and polyfluoroalkyl substances (PFAS) identifies potential toxicity pathways related to molecular structure. <i>Toxicology</i> , 2021 , 457, 152789	4.4	17
33	High-Throughput Screening to Predict Chemical-Assay Interference. Scientific Reports, 2020 , 10, 3986	4.9	14
32	Use of high-throughput enzyme-based assay with xenobiotic metabolic capability to evaluate the inhibition of acetylcholinesterase activity by organophosphorous pesticides. <i>Toxicology in Vitro</i> , 2019 , 56, 93-100	3.6	14
31	A 15-ketosterol is a liver X receptor ligand that suppresses sterol-responsive element binding protein-2 activity. <i>Journal of Lipid Research</i> , 2006 , 47, 1037-44	6.3	12
30	Cyclic AMP-independent activation of CYP3A4 gene expression by forskolin. <i>European Journal of Pharmacology</i> , 2005 , 512, 9-13	5.3	12
29	An evaluation of 25 selected ToxCast chemicals in medium-throughput assays to detect genotoxicity. <i>Environmental and Molecular Mutagenesis</i> , 2015 , 56, 468-76	3.2	11
28	Use of Neural Models of Proliferation and Neurite Outgrowth to Screen Environmental Chemicals in the ToxCast Phase I Library. <i>Applied in Vitro Toxicology</i> , 2015 , 1, 131-139	1.3	10
27	New approach methods for testing chemicals for endocrine disruption potential. <i>Current Opinion in Toxicology</i> , 2018 , 9, 40-47	4.4	10
26	Evaluating biological activity of compounds by transcription factor activity profiling. <i>Science Advances</i> , 2018 , 4, eaar4666	14.3	10
25	Characterization of physicochemical properties of hanomaterials and their immediate environments in high-throughput screening of hanomaterial biological activity. <i>Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology</i> , 2013 , 5, 430-48	9.2	9
24	High-throughput toxicogenomic screening of chemicals in the environment using metabolically competent hepatic cell cultures. <i>Npj Systems Biology and Applications</i> , 2021 , 7, 7	5	8

(2021-2004)

23	The discovery of a new structural class of cyclin-dependent kinase inhibitors, aminoimidazo[1,2-a]pyridines. <i>Molecular Cancer Therapeutics</i> , 2004 , 3, 1-9	6.1	8	
22	Screening for activators of the wingless type/Frizzled pathway by automated fluorescent microscopy. <i>Methods in Enzymology</i> , 2006 , 414, 140-50	1.7	7	
21	Workflow for defining reference chemicals for assessing performance of in vitro assays. <i>ALTEX:</i> Alternatives To Animal Experimentation, 2019 , 36, 261-276	4.3	7	
20	Comment on "On the Utility of ToxCastland ToxPi as Methods for Identifying New Obesogens". <i>Environmental Health Perspectives</i> , 2017 , 125, A8-A11	8.4	6	
19	Assessing bioactivity-exposure profiles of fruit and vegetable extracts in the BioMAP profiling system. <i>Toxicology in Vitro</i> , 2019 , 54, 41-57	3.6	6	
18	Confirmation of high-throughput screening data and novel mechanistic insights into VDR-xenobiotic interactions by orthogonal assays. <i>Scientific Reports</i> , 2018 , 8, 8883	4.9	5	
17	Hepatopoietins A and B and hepatocyte growth. <i>Digestive Diseases and Sciences</i> , 1991 , 36, 681-6	4	5	
16	Methods for evaluating variability in human health dose-response characterization. <i>Human and Ecological Risk Assessment (HERA)</i> , 2019 , 25, 1-24	4.9	5	
15	Selecting a minimal set of androgen receptor assays for screening chemicals. <i>Regulatory Toxicology and Pharmacology</i> , 2020 , 117, 104764	3.4	4	
14	Development of a quantitative morphological assessment of toxicant-treated zebrafish larvae using brightfield imaging and high-content analysis. <i>Journal of Applied Toxicology</i> , 2016 , 36, 1214-22	4.1	4	
13	Exploration of xenobiotic metabolism within cell lines used for Tox21 chemical screening. <i>Toxicology in Vitro</i> , 2021 , 73, 105109	3.6	3	
12	Tox21BodyMap: a webtool to map chemical effects on the human body. <i>Nucleic Acids Research</i> , 2020 , 48, W472-W476	20.1	2	
11	Evaluation of a multiplexed, multispecies nuclear receptor assay for chemical hazard assessment. <i>Toxicology in Vitro</i> , 2021 , 72, 105016	3.6	2	
10	Comprehensive interpretation of in vitro micronucleus test results for 292 chemicals: from hazard identification to risk assessment application <i>Archives of Toxicology</i> , 2022 , 1	5.8	2	
9	ToxCast: Predicting Toxicity Potential Through High-Throughput Bioactivity Profiling 2013, 1-31		1	
8	The benefits of data mining. <i>ELife</i> , 2017 , 6,	8.9	1	
7	Harmonized Cross-Species Assessment of Endocrine and Metabolic Disruptors by Ecotox FACTORIAL Assay. <i>Environmental Science & Endocrine and Metabolic Disruptors by Ecotox</i>	10.3	1	
6	Characterisation and validation of an in vitro transactivation assay based on the 22Rv1/MMTV_GR-KO cell line to detect human androgen receptor agonists and antagonists. <i>Food and Chemical Toxicology</i> , 2021 , 152, 112206	4.7	1	

5	Comprehensive assessment of NR ligand polypharmacology by a multiplex reporter NR assay <i>Scientific Reports</i> , 2022 , 12, 3115	4.9	1
4	A gene expression biomarker for predictive toxicology to identify chemical modulators of NF- B <i>PLoS ONE</i> , 2022 , 17, e0261854	3.7	Ο
3	Quantitative Chemical Proteomics Reveals Interspecies Variations on Binding Schemes of L-FABP with Perfluorooctanesulfonate. <i>Environmental Science & Environmental Science & </i>	10.3	O
2	Primary Cell Phenotypic Screening Illuminates ADRs and AOPs. <i>Cell Chemical Biology</i> , 2017 , 24, 781-782	8.2	
1	Differential effect of growth factors on growth stimulation and phenotypic stability of glutamine-synthetase-positive and -negative hepatocytes in primary culture. <i>Differentiation</i> , 1987 , 33, 45-55	3.5	