Birgitte K Ahring

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2420708/publications.pdf Version: 2024-02-01

RIPCITTE K AHDING

#	Article	IF	CITATIONS
1	Homo-Acetogens: Their Metabolism and Competitive Relationship with Hydrogenotrophic Methanogens. Microorganisms, 2022, 10, 397.	1.6	24
2	Degrading chlorinated aliphatics by reductive dechlorination of groundwater samples from the Santa Susana Field Laboratory. Chemosphere, 2022, 298, 134115.	4.2	7
3	Anaerobic Digestion of Digested Manure Fibers: Influence of Thermal and Alkaline Thermal Pretreatment on the Biogas Yield. Bioenergy Research, 2021, 14, 891-900.	2.2	13
4	Increasing the Production of Volatile Fatty Acids from Corn Stover Using Bioaugmentation of a Mixed Rumen Culture with Homoacetogenic Bacteria. Microorganisms, 2021, 9, 337.	1.6	20
5	Influence of wet oxidation pretreatment with hydrogen peroxide and addition of clarified manure on anaerobic digestion of oil palm empty fruit bunches. Bioresource Technology, 2021, 332, 125033.	4.8	11
6	Anaerobic Biodegradation of Wheat Straw Lignin: The Influence of Wet Explosion Pretreatment. Energies, 2021, 14, 5940.	1.6	10
7	Improving methane yield of oil palm empty fruit bunches by wet oxidation pretreatment: Mesophilic and thermophilic anaerobic digestion conditions and the associated global warming potential effects. Energy Conversion and Management, 2020, 225, 113438.	4.4	35
8	Enhancing the hydrolysis process in a dry anaerobic digestion process for the organic fraction of municipal solid waste. Bioresource Technology Reports, 2020, 11, 100542.	1.5	2
9	Sugar Production from Hybrid Poplar Sawdust: Optimization of Enzymatic Hydrolysis and Wet Explosion Pretreatment. Molecules, 2020, 25, 3396.	1.7	14
10	Continuous in-situ extraction of acetic acid produced by Acetobacterium woodii during fermentation of hydrogen and carbon dioxide using Amberlite FPA53 ion exchange resins. Bioresource Technology Reports, 2020, 12, 100568.	1.5	11
11	Rheology of Polyacrylonitrile/Lignin Blends in Ionic Liquids under Melt Spinning Conditions. Molecules, 2019, 24, 2650.	1.7	7
12	Kinetic Study on Heterotrophic Growth of Acetobacterium woodii on Lignocellulosic Substrates for Acetic Acid Production. Fermentation, 2019, 5, 17.	1.4	19
13	Engineering an Associate Degree-Level STEM Workforce Education Curriculum. Community College Journal of Research and Practice, 2018, 42, 405-421.	0.8	3
14	Anaerobic digestion of organic fraction from hydrothermal liquefied algae wastewater byproduct. Bioresource Technology, 2018, 247, 250-258.	4.8	74
15	Identification of metabolite and protein explanatory variables governing microbiome establishment and re-establishment within a cellulose-degrading anaerobic bioreactor. PLoS ONE, 2018, 13, e0204831.	1.1	Ο
16	A comparison of Agrobacterium-mediated transformation and protoplast-mediated transformation with CRISPR-Cas9 and bipartite gene targeting substrates, as effective gene targeting tools for Aspergillus carbonarius. Journal of Microbiological Methods, 2017, 135, 26-34.	0.7	52
17	Alkane biosynthesis by Aspergillus carbonarius ITEM 5010 through heterologous expression of Synechococcus elongatus acyl-ACP/CoA reductase and aldehyde deformylating oxygenase genes. AMB Express, 2017, 7, 18.	1.4	19
18	Biochemical Production and Separation of Carboxylic Acids for Biorefinery Applications. Fermentation, 2017, 3, 22.	1.4	105

#	Article	IF	CITATIONS
19	Properties of plant nutrient: Comparison of two nutrient recovery techniques using liquid fraction of digestate from anaerobic digester treating pig manure. Science of the Total Environment, 2016, 544, 774-781.	3.9	62
20	Continuous fermentation of clarified corn stover hydrolysate for the production of lactic acid at high yield and productivity. Biochemical Engineering Journal, 2016, 109, 162-169.	1.8	60
21	Enhanced succinic acid production in Aspergillus saccharolyticus by heterologous expression of fumarate reductase from Trypanosoma brucei. Applied Microbiology and Biotechnology, 2016, 100, 1799-1809.	1.7	27
22	Pretreatment of forest residues of Douglas fir by wet explosion for enhanced enzymatic saccharification. Bioresource Technology, 2015, 192, 46-53.	4.8	23
23	Heterologous expression of cellobiohydrolases in filamentous fungi – An update on the current challenges, achievements and perspectives. Process Biochemistry, 2015, 50, 211-220.	1.8	25
24	Optimization of the Co-Digestion of Catch Crops with Manure Using a Central Composite Design and Reactor Operation. Applied Biochemistry and Biotechnology, 2015, 175, 1710-1723.	1.4	6
25	Wet Explosion: a Universal and Efficient Pretreatment Process for Lignocellulosic Biorefineries. Bioenergy Research, 2015, 8, 1101-1116.	2.2	87
26	Biogas production from catch crops: Increased yield by combined harvest of catch crops and straw and preservation by ensiling. Biomass and Bioenergy, 2015, 79, 3-11.	2.9	18
27	Biochar of corn stover: Microwave-assisted pyrolysis condition induced changes in surface functional groups and characteristics. Journal of Analytical and Applied Pyrolysis, 2015, 115, 149-156.	2.6	102
28	lsomerization of hexoses from enzymatic hydrolysate of poplar sawdust using low leaching K ₂ MgSiO ₄ catalysts for one-pot synthesis of HMF. RSC Advances, 2015, 5, 96990-96996.	1.7	1
29	Making lignin accessible for anaerobic digestion by wet-explosion pretreatment. Bioresource Technology, 2015, 175, 182-188.	4.8	86
30	Performance and stability of Amberliteâ,,¢ IRA-67 ion exchange resin for product extraction and pH control during homolactic fermentation of corn stover sugars. Biochemical Engineering Journal, 2015, 94, 1-8.	1.8	32
31	Comparison of SHF and SSF of wet exploded corn stover and loblolly pine using in-house enzymes produced from T. reesei RUT C30 and A. saccharolyticus. SpringerPlus, 2014, 3, 516.	1.2	30
32	Integrated â€~omics analysis for studying the microbial community response to a pH perturbation of a cellulose-degrading bioreactor culture. FEMS Microbiology Ecology, 2014, 90, 802-815.	1.3	10
33	Process Modeling of Enzymatic Hydrolysis of Wet-Exploded Corn Stover. Bioenergy Research, 2014, 7, 450-459.	2.2	13
34	Point mutation of the xylose reductase (XR) gene reduces xylitol accumulation and increases citric acid production in <i>Aspergillus carbonarius</i> . Journal of Industrial Microbiology and Biotechnology, 2014, 41, 733-739.	1.4	22
35	Design and optimization of a semi-continuous high pressure carbon dioxide extraction system for acetic acid. Journal of Supercritical Fluids, 2014, 95, 243-251.	1.6	6
36	Liquid–Liquid Extraction of Biomass Pyrolysis Bio-oil. Energy & Fuels, 2014, 28, 1207-1212.	2.5	84

#	Article	IF	CITATIONS
37	Quantitative monitoring of yeast fermentation using Raman spectroscopy. Analytical and Bioanalytical Chemistry, 2014, 406, 4911-4919.	1.9	41
38	New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella thermoacetica metabolic profiles. Applied Microbiology and Biotechnology, 2014, 98, 8367-8375.	1.7	14
39	Wet explosion pretreatment of sugarcane bagasse for enhanced enzymatic hydrolysis. Biomass and Bioenergy, 2014, 61, 104-113.	2.9	65
40	On-site enzymes produced from Trichoderma reesei RUT-C30 and Aspergillus saccharolyticus for hydrolysis of wet exploded corn stover and loblolly pine. Bioresource Technology, 2014, 154, 282-289.	4.8	74
41	Screening of carbon sources for beta-glucosidase production by Aspergillus saccharolyticus. International Biodeterioration and Biodegradation, 2014, 93, 78-83.	1.9	24
42	Biogas production from catch crops: Evaluation of biomass yield and methane potential of catch crops in organic crop rotations. Biomass and Bioenergy, 2013, 59, 285-292.	2.9	36
43	Conversion of C6 and C5 sugars in undetoxified wet exploded bagasse hydrolysates using Scheffersomyces (Pichia) stipitis CBS6054. AMB Express, 2013, 3, 42.	1.4	23
44	Comparing oxidative and dilute acid wet explosion pretreatment of C ocksfoot grass at high dry matter concentration for cellulosic ethanol production. Energy Science and Engineering, 2013, 1, 89-98.	1.9	12
45	Aromatic hydrocarbons production from packed-bed catalysis coupled with microwave pyrolysis of Douglas fir sawdust pellets. RSC Advances, 2013, 3, 14609.	1.7	28
46	Fungal Beta-Glucosidases: A Bottleneck in Industrial Use of Lignocellulosic Materials. Biomolecules, 2013, 3, 612-631.	1.8	200
47	Coregulation of Terpenoid Pathway Genes and Prediction of Isoprene Production in Bacillus subtilis Using Transcriptomics. PLoS ONE, 2013, 8, e66104.	1.1	30
48	Recombinant thermostable AP exonuclease from Thermoanaerobacter tengcongensis: cloning, expression, purification, properties and PCR application. Polish Journal of Microbiology, 2013, 62, 121-9.	0.6	0
49	Identifying and characterizing the most significant β-glucosidase of the novel species Aspergillus saccharolyticus. Canadian Journal of Microbiology, 2012, 58, 1035-1046.	0.8	18
50	Producing high sugar concentrations from loblolly pine using wet explosion pretreatment. Bioresource Technology, 2012, 121, 61-67.	4.8	57
51	Onsite Enzyme Production During Bioethanol Production from Biomass: Screening for Suitable Fungal Strains. Applied Biochemistry and Biotechnology, 2011, 164, 1058-1070.	1.4	63
52	Selective Hydrogenation of Trans,Transâ€Muconic Acid to Adipic Acid over a Titaniaâ€Supported Rhenium Catalyst. ChemSusChem, 2011, 4, 1071-1073.	3.6	32
53	Aspergillus saccharolyticus sp. nov., a black Aspergillus species isolated in Denmark. International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 3077-3083.	0.8	30
54	Enhancing Isoprene Production by Genetic Modification of the 1-Deoxy- <scp>d</scp> -Xylulose-5-Phosphate Pathway in <i>Bacillus subtilis</i> . Applied and Environmental Microbiology, 2011, 77, 2399-2405.	1.4	103

#	Article	IF	CITATIONS
55	Production of methane by co-digestion of cassava pulp with various concentrations of pig manure. Biomass and Bioenergy, 2010, 34, 1117-1124.	2.9	133
56	Autohydrolysis of plant xylans by apoplastic expression of thermophilic bacterial endoâ€xylanases. Plant Biotechnology Journal, 2010, 8, 363-374.	4.1	40
57	Pre-treatment and ethanol fermentation potential of olive pulp at different dry matter concentrations. Biomass and Bioenergy, 2009, 33, 1643-1651.	2.9	31
58	Ethanol Production from Wet-Exploded Wheat Straw Hydrolysate by Thermophilic Anaerobic Bacterium Thermoanaerobacter BG1L1 in a Continuous Immobilized Reactor. Applied Biochemistry and Biotechnology, 2008, 145, 99-110.	1.4	105
59	Enzymatic Hydrolysis and Ethanol Fermentation of High Dry Matter Wet-Exploded Wheat Straw at Low Enzyme Loading. Applied Biochemistry and Biotechnology, 2008, 148, 35-44.	1.4	74
60	Hydrolysis of Miscanthus for bioethanol production using dilute acid presoaking combined with wet explosion pre-treatment and enzymatic treatment. Bioresource Technology, 2008, 99, 6602-6607.	4.8	161
61	ALISâ€FLP: Amplified ligation selected fragmentâ€length polymorphism method for microbial genotyping. Scandinavian Journal of Clinical and Laboratory Investigation, 2008, 68, 720-730.	0.6	2
62	Coproduction of Bioethanol with Other Biofuels. , 2007, 108, 289-302.		14
63	Effect of temperature on ethanol tolerance of a thermophilic anaerobic ethanol producerThermoanaerobacter A10: Modeling and simulation. Biotechnology and Bioengineering, 2007, 98, 1161-1170.	1.7	33
64	Archaeal diversity in Icelandic hot springs. FEMS Microbiology Ecology, 2007, 59, 71-80.	1.3	53
65	High ethanol tolerance of the thermophilic anaerobic ethanol producer Thermoanaerobacter BG1L1. Open Life Sciences, 2007, 2, 364-377.	0.6	23
66	Specific single-cell isolation and genomic amplification of uncultured microorganisms. Applied Microbiology and Biotechnology, 2007, 74, 926-935.	1.7	106
67	Evaluation of continuous ethanol fermentation of dilute-acid corn stover hydrolysate using thermophilic anaerobic bacterium Thermoanaerobacter BG1L1. Applied Microbiology and Biotechnology, 2007, 77, 61-68.	1.7	87
68	Anaerobic Codigestion of Municipal, Farm, and Industrial Organic Wastes: A Survey of Recent Literature. Water Environment Research, 2006, 78, 607-636.	1.3	131
69	An improved method for single cell isolation of prokaryotes from meso-, thermo- and hyperthermophilic environments using micromanipulation. Applied Microbiology and Biotechnology, 2006, 69, 510-514.	1.7	52
70	A simple model for simultaneous methanogenic-denitrification systems. Journal of Chemical Technology and Biotechnology, 2006, 81, 173-181.	1.6	9
71	A novel process configuration for anaerobic digestion of source-sorted household waste using hyper-thermophilic post-treatment. Biotechnology and Bioengineering, 2005, 90, 830-837.	1.7	51
72	Diversity of thermophilic and non-thermophilic crenarchaeota at 80 Ã,°C. FEMS Microbiology Letters, 2005, 244, 61-68.	0.7	36

#	Article	IF	CITATIONS
73	Anaerobic digestion of the organic fraction of municipal solid waste: Influence of co-digestion with manure. Water Research, 2005, 39, 1543-1552.	5.3	261
74	Cloning, sequencing, and sequence analysis of two novel plasmids from the thermophilic anaerobic bacterium Anaerocellum thermophilum. Plasmid, 2004, 52, 131-138.	0.4	15
75	Thermal and enzymatic pretreatment of sludge containing phthalate esters prior to mesophilic anaerobic digestion. Biotechnology and Bioengineering, 2004, 85, 561-567.	1.7	28
76	Wet oxidation pre-treatment of woody yard waste: parameter optimization and enzymatic digestibility for ethanol production. Journal of Chemical Technology and Biotechnology, 2004, 79, 889-895.	1.6	42
77	Efficiency of the Anaerobic Treatment of the Organic Fraction of Municipal Solid Waste: Collection and Pretreatment. Waste Management and Research, 2004, 22, 35-41.	2.2	42
78	Thermal Wet Oxidation Improves Anaerobic Biodegradability of Raw and Digested Biowaste. Environmental Science & Technology, 2004, 38, 3418-3424.	4.6	98
79	Identification of bacterial cultures from archaeological wood using molecular biological techniques. International Biodeterioration and Biodegradation, 2004, 53, 79-88.	1.9	34
80	Biological Degradation and Greenhouse Gas Emissions during Preâ€Storage of Liquid Animal Manure. Journal of Environmental Quality, 2004, 33, 27-36.	1.0	112
81	Parameter Identification of Thermophilic Anaerobic Degradation of Valerate. Applied Biochemistry and Biotechnology, 2003, 109, 47-62.	1.4	20
82	Anaerobic degradation of linear alkylbenzene sulfonate. Environmental Toxicology and Chemistry, 2003, 22, 706-711.	2.2	32
83	A new VFA sensor technique for anaerobic reactor systems. Biotechnology and Bioengineering, 2003, 82, 54-61.	1.7	47
84	Dynamics of the anaerobic process: Effects of volatile fatty acids. Biotechnology and Bioengineering, 2003, 82, 791-801.	1.7	140
85	Production of cellulose and hemicellulose-degrading enzymes by filamentous fungi cultivated on wet-oxidised wheat straw. Enzyme and Microbial Technology, 2003, 32, 606-615.	1.6	91
86	Kinetics and Modeling of Anaerobic Digestion Process. Advances in Biochemical Engineering/Biotechnology, 2003, 81, 57-93.	0.6	98
87	Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. Effect of pre-treatment at elevated temperature. Water Research, 2003, 37, 4561-4572.	5.3	339
88	Perspectives for Anaerobic Digestion. Advances in Biochemical Engineering/Biotechnology, 2003, 81, 1-30.	0.6	85
89	NORTH AMERICA'S FIRST NEW TEMPERATURE PHASED ANAEROBIC DIGESTION SYSTEM – A SUCCESSFUL START-UP AT THE WESTERN LAKE SUPERIOR SANITARY DISTRICT (WLSSD). Proceedings of the Water Environment Federation, 2002, 2002, 452-470.	0.0	4
90	Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresource Technology, 2002, 82, 15-26.	4.8	351

#	Article	IF	CITATIONS
91	Inhibition of the anaerobic digestion process by linear alkylbenzene sulfonates. Biodegradation, 2002, 13, 201-209.	1.5	33
92	Effect of temperature increase from 55 to 65°C on performance and microbial population dynamics of an anaerobic reactor treating cattle manure. Water Research, 2001, 35, 2446-2452.	5.3	185
93	Amplification and Direct Sequence Analysis of the 23S rRNA Gene from Thermophilic Bacteria. BioTechniques, 2001, 30, 414-420.	0.8	13
94	A comprehensive study into the molecular methodology and molecular biology of methanogenic Archaea. FEMS Microbiology Reviews, 2001, 25, 553-571.	3.9	58
95	NEW PERSPECTIVES OF THERMOPHILIC ANAEROBIC DIGESTION. Proceedings of the Water Environment Federation, 2001, 2001, 426-431.	0.0	3
96	Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors. Biotechnology and Bioengineering, 2000, 49, 229-246.	1.7	409
97	In Situ Reverse Transcription-PCR for Monitoring Gene Expression in Individual Methanosarcina mazei S-6 Cells. Applied and Environmental Microbiology, 2000, 66, 1796-1800.	1.4	25
98	Extraction of Intact Ribosomal RNA from Anaerobic Bioreactor Samples for Molecular Ecological Studies. BioTechniques, 1999, 27, 1132-1138.	0.8	9
99	Stress Genes and Proteins in the Archaea. Microbiology and Molecular Biology Reviews, 1999, 63, 923-967.	2.9	188
100	Quantification of Syntrophic Fatty Acid-β-Oxidizing Bacteria in a Mesophilic Biogas Reactor by Oligonucleotide Probe Hybridization. Applied and Environmental Microbiology, 1999, 65, 4767-4774.	1.4	81
101	Caldicellulosiruptor kristjanssonii sp. nov., a cellulolytic, extremely thermophilic, anaerobic bacterium. International Journal of Systematic and Evolutionary Microbiology, 1999, 49, 991-996.	0.8	73
102	A comprehensive model of anaerobic bioconversion of complex substrates to biogas. , 1999, 63, 363-372.		298
103	The genes coding for the hsp70(dnaK) molecular chaperone machine occur in the moderate thermophilic archaeon Methanosarcina thermophila TM-1. Gene, 1999, 238, 387-395.	1.0	11
104	Kinetics of Sulfate and Hydrogen Uptake by the Thermophilic Sulfate-Reducing Bacteria <i>Thermodesulfobacterium</i> sp. Strain JSP and <i>Thermodesulfovibrio</i> sp. Strain R1Ha3. Applied and Environmental Microbiology, 1999, 65, 1304-1307.	1.4	50
105	Purification and characterization of the 3-chloro-4-hydroxy-phenylacetate reductive dehalogenase of Desulfitobacterium hafniense. FEBS Letters, 1998, 436, 159-162.	1.3	70
106	Improved Dechlorinating Performance of Upflow Anaerobic Sludge Blanket Reactors by Incorporation of Dehalospirillum multivorans into Granular Sludge. Applied and Environmental Microbiology, 1998, 64, 1860-1863.	1.4	32
107	Heat-Shock Response in Methanosarcina mazei S-6. Current Microbiology, 1997, 35, 116-121.	1.0	14
108	Inactivation of virus during anaerobic digestion of manure in laboratory scale biogas reactors. Antonie Van Leeuwenhoek, 1996, 69, 25-31.	0.7	58

#	Article	IF	CITATIONS
109	Effects of electron acceptors, reducing agents, and toxic metabolites on anaerobic degradation of heterocyclic compounds. Biodegradation, 1996, 7, 83-90.	1.5	34
110	Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors. , 1996, 49, 229.		1
111	Extremely thermophilic cellulolytic anaerobes from icelandic hot springs. Antonie Van Leeuwenhoek, 1995, 68, 263-271.	0.7	9
112	Isolation and characterization of Caldicellulosiruptor lactoaceticus sp. nov., an extremely thermophilic, cellulolytic, anaerobic bacterium. Archives of Microbiology, 1995, 163, 223-230.	1.0	52
113	A two-stage thermophilic anaerobic process for the treatment of source sorted household solid waste. Biotechnology Letters, 1994, 16, 1097-1102.	1.1	10
114	Thermophilic anaerobic digestion of source-sorted household solid waste: the effects of enzyme additions. Applied Microbiology and Biotechnology, 1994, 40, 916-919.	1.7	38
115	Application of thermostable xylanase of Dictyoglomus sp. in enzymatic treatment of kraft pulps. Applied Microbiology and Biotechnology, 1994, 41, 130-133.	1.7	38
116	Thermophilic anaerobic digestion of source-sorted household solid waste: the effects of enzyme additions. Applied Microbiology and Biotechnology, 1994, 40, 916-919.	1.7	3
117	Anaerobic dechlorination of pentachlorophenol in fixed-film and upflow anaerobic sludge blanket reactors using different inocula. Biodegradation, 1993, 3, 399.	1.5	22
118	Xylanolytic anaerobic thermophiles from Icelandic hot-springs. Applied Microbiology and Biotechnology, 1993, 38, 537.	1.7	24
119	Thermoanaerobium acetigenum spec. nov., a new anaerobic, extremely thermophilic, xylanolytic non-spore-forming bacterium isolated from an Icelandic hot spring. Archives of Microbiology, 1993, 159, 460-464.	1.0	22
120	Temperature-dependent enumeration and characterization of anaerobic, thermophilic xylan-degrading bacteria present in two Icelandic hot springs. FEMS Microbiology Ecology, 1993, 12, 79-86.	1.3	6
121	Acetate Degradation at 70°C in Upflow Anaerobic Sludge Blanket Reactors and Temperature Response of Granules Grown at 70°C. Applied and Environmental Microbiology, 1993, 59, 1742-1746.	1.4	21
122	Influence of pH and Temperature on Enumeration of Cellulose- and Hemicellulose-Degrading Thermophilic Anaerobes in Neutral and Alkaline Icelandic Hot Springs. Applied and Environmental Microbiology, 1993, 59, 1963-1965.	1.4	7
123	The influence of sulphate on substrate utilization in a thermophilic sewage sludge digestor. Applied Microbiology and Biotechnology, 1992, 36, 805.	1.7	8
124	Effects of ammonia on growth and morphology of thermophilic hydrogen-oxidizing methanogenic bacteria. FEMS Microbiology Letters, 1991, 85, 241-246.	0.7	42
125	Acetate oxidation in a thermophilic anaerobic sewage-sludge digestor: the importance of non-aceticlastic methanogenesis from acetate. FEMS Microbiology Letters, 1991, 86, 149-158.	0.7	93
126	Kinetics of lactate, acetate and propionate in unadapted and lactate-adapted thermophilic, anaerobic sewage sludge: the influence of sludge adaptation for start-up of thermophilic UASB-reactors. Applied Microbiology and Biotechnology, 1991, 34, 823.	1.7	57

#	Article	IF	CITATIONS
127	Analysis of sulfate in sewage sludge using ion chromatographic techniques. Journal of Microbiological Methods, 1990, 12, 225-230.	0.7	5
128	Threshold Acetate Concentrations for Acetate Catabolism by Aceticlastic Methanogenic Bacteria. Applied and Environmental Microbiology, 1989, 55, 514-515.	1.4	94
129	Temperature Compensation in <i>Methanosarcina barkeri</i> by Modulation of Hydrogen and Acetate Affinity. Applied and Environmental Microbiology, 1989, 55, 1262-1266.	1.4	88
130	Acetate Production by Methanogenic Bacteria. Applied and Environmental Microbiology, 1989, 55, 2257-2261.	1.4	36
131	Product Inhibition of Butyrate Metabolism by Acetate and Hydrogen in a Thermophilic Coculture. Applied and Environmental Microbiology, 1988, 54, 2393-2397.	1.4	127
132	Thermophilic Anaerobic Degradation of Butyrate by a Butyrate-Utilizing Bacterium in Coculture and Triculture with Methanogenic Bacteria. Applied and Environmental Microbiology, 1987, 53, 429-433.	1.4	75
133	Kinetics of Butyrate, Acetate, and Hydrogen Metabolism in a Thermophilic, Anaerobic, Butyrate-Degrading Triculture. Applied and Environmental Microbiology, 1987, 53, 434-439.	1.4	90
134	Methanogenesis from acetate: Physiology of a thermophilic, acetate-utilizing methanogenic bacterium. FEMS Microbiology Letters, 1985, 28, 15-19.	0.7	32
135	Sensitivity of thermophilic methanogenic bacteria to heavy metals. Current Microbiology, 1985, 12, 273-276.	1.0	57
136	Isolation and characterization of a thermophilic, acetate-utilizing methanogenic bacterium. FEMS Microbiology Letters, 1984, 25, 47-52.	0.7	25