
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2420677/publications.pdf Version: 2024-02-01

AVEL KARCER

#	Article	IF	CITATIONS
1	Applications of mass spectrometry imaging in virus research. Advances in Virus Research, 2021, 109, 31-62.	2.1	9
2	The role of glycosylation in the N-terminus of the hemagglutinin of a unique H4N2 with a natural polybasic cleavage site in virus fitness <i>in vitro</i> and <i>in vivo</i> . Virulence, 2021, 12, 666-678.	4.4	5
3	Preferential Selection and Contribution of Non-Structural Protein 1 (NS1) to the Efficient Transmission of Panzootic Avian Influenza H5N8 Virus Clades 2.3.4.4A and B in Chickens and Ducks. Journal of Virology, 2021, 95, e0044521.	3.4	8
4	Comparison of the Proteomes of Porcine Macrophages and a Stable Porcine Cell Line after Infection with African Swine Fever Virus. Viruses, 2021, 13, 2198.	3.3	15
5	Ancient Cytokine Interleukin 15-Like (IL-15L) Induces a Type 2 Immune Response. Frontiers in Immunology, 2020, 11, 549319.	4.8	18
6	Protection of Chickens with Maternal Avian Influenza Virus (AIV) Immunity after Vaccination with a Recombinant AIV-Newcastle Disease Vector. Proceedings (mdpi), 2020, 50, 83.	0.2	0
7	Coexpression of soluble and membrane-bound avian influenza virus H5 by recombinant Newcastle disease virus leads to an increase in antigen levels. Journal of General Virology, 2020, 101, 473-483.	2.9	5
8	An Update on African Swine Fever Virology. Viruses, 2019, 11, 864.	3.3	84
9	The Transcriptional Landscape of Marek's Disease Virus in Primary Chicken B Cells Reveals Novel Splice Variants and Genes. Viruses, 2019, 11, 264.	3.3	29
10	NK Cell-Mediated Processing Of Chlamydia psittaci Drives Potent Anti-Bacterial Th1 Immunity. Scientific Reports, 2019, 9, 4799.	3.3	11
11	W protein expression by Newcastle disease virus. Virus Research, 2019, 263, 207-216.	2.2	25
12	<i>Chlamydia psittaci</i> -Infected Dendritic Cells Communicate with NK Cells via Exosomes To Activate Antibacterial Immunity. Infection and Immunity, 2019, 88, .	2.2	19
13	Whole animal matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry of ticks – Are spectra of Ixodes ricinus nymphs influenced by environmental, spatial, and temporal factors?. PLoS ONE, 2019, 14, e0210590.	2.5	19
14	Imaging Mass Spectrometry and Proteome Analysis of Marek's Disease Virus-Induced Tumors. MSphere, 2019, 4, .	2.9	11
15	Identification and characterization of the 285L and K145R proteins of African swine fever virus. Journal of General Virology, 2019, 100, 1303-1314.	2.9	16
16	Francisella tularensis and other bacteria in hares and ticks in North Rhine-Westphalia (Germany). Ticks and Tick-borne Diseases, 2018, 9, 325-329.	2.7	19
17	The intracellular proteome of African swine fever virus. Scientific Reports, 2018, 8, 14714.	3.3	59
18	Mito-xenophagic killing of bacteria is coordinated by a metabolic switch in dendritic cells. Scientific Reports, 2017, 7, 3923.	3.3	12

#	Article	IF	CITATIONS
19	The amino terminal subdomain of glycoprotein Gc of Schmallenberg virus: disulfide bonding and structural determinants of neutralization. Journal of General Virology, 2017, 98, 1259-1273.	2.9	9
20	Current developments to use linear MALDIâ€TOF spectra for the identification and typing of bacteria and the characterization of other cells/organisms related to infectious diseases. Proteomics - Clinical Applications, 2016, 10, 982-993.	1.6	22
21	Expression, characterisation and antigenicity of a truncated Hendra virus attachment protein expressed in the protozoan host Leishmania tarentolae. Journal of Virological Methods, 2016, 228, 48-54.	2.1	11
22	An alternative method for serum protein depletion/enrichment by precipitation at mildly acidic pH values and low ionic strength. Proteomics, 2015, 15, 1935-1940.	2.2	13
23	ANP32B Is a Nuclear Target of Henipavirus M Proteins. PLoS ONE, 2014, 9, e97233.	2.5	29
24	Identification of a gene for an ancient cytokine, interleukin 15-like, in mammals; interleukins 2 and 15 co-evolved with this third family member, all sharing binding motifs for IL-15Rα. Immunogenetics, 2014, 66, 93-103.	2.4	33
25	Rapid identification of differentially virulent genotypes of Paenibacillus larvae, the causative organism of American foulbrood of honey bees, by whole cell MALDI-TOF mass spectrometry. Veterinary Microbiology, 2014, 170, 291-297.	1.9	39
26	Analysis of the bovine plasma proteome by matrix-assisted laser desorption/ionisation time-of-flight tandem mass spectrometry. Veterinary Journal, 2014, 199, 175-180.	1.7	15
27	German Francisella tularensis isolates from European brown hares (Lepus europaeus)reveal genetic and phenotypic diversity. BMC Microbiology, 2013, 13, 61.	3.3	66
28	Interlaboratory Comparison of Intact-Cell Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry Results for Identification and Differentiation of Brucella spp. Journal of Clinical Microbiology, 2013, 51, 3123-3126.	3.9	48
29	Species determination and characterization of developmental stages of ticks by whole-animal matrix-assisted laser desorption/ionization mass spectrometry. Ticks and Tick-borne Diseases, 2012, 3, 78-89.	2.7	75
30	Mesenteric Lymphangitis and Sepsis Due to RTX Toxin-Producing <i>Actinobacillus</i> spp in 2 Foals With Hypothyroidism–Dysmaturity Syndrome. Veterinary Pathology, 2012, 49, 592-601.	1.7	7
31	Assessment of inactivated human rabies vaccines: Biochemical characterization and genetic identification of virus strains. Vaccine, 2012, 30, 3603-3609.	3.8	10
32	Rapid identification of Burkholderia mallei and Burkholderia pseudomallei by intact cell Matrix-assisted Laser Desorption/Ionisation mass spectrometric typing. BMC Microbiology, 2012, 12, 229.	3.3	54
33	Determination of Serotypes of Shiga Toxin-Producing Escherichia coli Isolates by Intact Cell Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. Applied and Environmental Microbiology, 2011, 77, 896-905.	3.1	40
34	Influence of insertion site of the avian influenza virus haemagglutinin (HA) gene within the Newcastle disease virus genome on HA expression. Journal of General Virology, 2011, 92, 355-360.	2.9	11
35	Rapid characterisation of cell cultures by matrix-assisted laser desorption/ionisation mass spectrometric typing. Journal of Virological Methods, 2010, 164, 116-121.	2.1	33
36	Gene expression profiling of Pseudorabies virus (PrV) infected bovine cells by combination of transcript analysis and quantitative proteomic techniques. Veterinary Microbiology, 2010, 143, 14-20.	1.9	20

#	Article	IF	CITATIONS
37	Post-Endoplasmic Reticulum Rescue of Unstable MHC Class I Requires Proprotein Convertase PC7. Journal of Immunology, 2010, 184, 2985-2998.	0.8	42
38	Plus- and Minus-End Directed Microtubule Motors Bind Simultaneously to Herpes Simplex Virus Capsids Using Different Inner Tegument Structures. PLoS Pathogens, 2010, 6, e1000991.	4.7	191
39	Diagnosis and strain differentiation of avian influenza viruses by restriction fragment mass analysis. Journal of Virological Methods, 2009, 158, 63-69.	2.1	12
40	A comprehensive proteome map of bovine cerebrospinal fluid. Proteomics, 2009, 9, 5199-5205.	2.2	5
41	Quantitative Whole-Cell Proteome Analysis of Pseudorabies Virus-Infected Cells. Journal of Virology, 2008, 82, 9689-9699.	3.4	28
42	Efficient Incorporation of Tegument Proteins pUL46, pUL49, and pUS3 into Pseudorabies Virus Particles Depends on the Presence of pUL21. Journal of Virology, 2007, 81, 1048-1051.	3.4	27
43	Relevance of the Interaction between Alphaherpesvirus UL3.5 and UL48 Proteins for Virion Maturation and Neuroinvasion. Journal of Virology, 2007, 81, 9307-9318.	3.4	14
44	Evaluation of baculovirus-derived recombinant 53-kDa protein of Trichinella spiralis for detection of Trichinella-specific antibodies in domestic pigs by ELISA. Parasitology Research, 2006, 100, 429-437.	1.6	11
45	Pseudorabies virus particles lacking tegument proteins pUL11 or pUL16 incorporate less full-length pUL36 than wild-type virus, but specifically accumulate a pUL36 N-terminal fragment. Journal of General Virology, 2006, 87, 3503-3507.	2.9	21
46	Composition of Pseudorabies Virus Particles Lacking Tegument Protein US3, UL47, or UL49 or Envelope Glycoprotein E. Journal of Virology, 2006, 80, 1332-1339.	3.4	74
47	Identification, Subviral Localization, and Functional Characterization of the Pseudorabies Virus UL17 Protein. Journal of Virology, 2005, 79, 13442-13453.	3.4	27
48	High-level expression of biologically active bovine alpha interferon by Bovine herpesvirus 1 interferes only marginally with recombinant virus replication in vitro. Journal of General Virology, 2005, 86, 2685-2695.	2.9	10
49	Binding of a N,Nâ€2-bisheteryl derivative of dispirotripiperazine to heparan sulfate residues on the cell surface specifically prevents infection of viruses from different families. Virology, 2003, 311, 134-143.	2.4	44
50	The Pseudorabies Virus UL11 Protein Is a Virion Component Involved in Secondary Envelopment in the Cytoplasm. Journal of Virology, 2003, 77, 5339-5351.	3.4	91
51	Chimeric Bovine Respiratory Syncytial Virus with Attachment and Fusion Glycoproteins Replaced by Bovine Parainfluenza Virus Type 3 Hemagglutinin-Neuraminidase and Fusion Proteins. Journal of Virology, 2001, 75, 9367-9377.	3.4	17
52	Identification and ultrastructural characterization of a novel virus from fish. Journal of General Virology, 2001, 82, 2849-2859.	2.9	27
53	Recombinant bovine respiratory syncytial virus with deletions of the G or SH genes: G and F proteins bind heparin. Journal of General Virology, 2001, 82, 631-640.	2.9	71
54	Effects of Truncation of the Carboxy Terminus of Pseudorabies Virus Glycoprotein B on Infectivity. Journal of Virology, 2000, 74, 7137-7145.	3.4	75

#	Article	IF	CITATIONS
55	Infection of Chinese Hamster Ovary Cells by Pseudorabies Virus. Journal of Virology, 1999, 73, 8019-8026.	3.4	33
56	Simple and rapid purification of alphaherpesviruses by chromatography on a cation exchange membrane. Journal of Virological Methods, 1998, 70, 219-224.	2.1	44
57	Infectivity of a Pseudorabies Virus Mutant Lacking Attachment Glycoproteins C and D. Journal of Virology, 1998, 72, 7341-7348.	3.4	27
58	Glycoprotein gH of Pseudorabies Virus is Essential for Penetration and Propagation in Cell Culture and in the Nervous System of Mice. Journal of General Virology, 1996, 77, 2277-2285.	2.9	56
59	Glycoproteins gIII and gp50 Play Dominant Roles in the Biphasic Attachment of Pseudorabies Virus. Virology, 1993, 194, 654-664.	2.4	108
60	2,3,7,8-Tetrachlorodibenzo-p-dioxin and ethinylestradiol as co-mitogens in cultured rat hepatocytes. Carcinogenesis, 1992, 13, 453-456.	2.8	45