Mette Vestergård

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2420566/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Soil nematode abundance and functional group composition at a global scale. Nature, 2019, 572, 194-198.	13.7	635
2	Fifty thousand years of Arctic vegetation and megafaunal diet. Nature, 2014, 506, 47-51.	13.7	505
3	Impacts of Root Metabolites on Soil Nematodes. Frontiers in Plant Science, 2019, 10, 1792.	1.7	80
4	The plant-growth promoting bacteria promote cadmium uptake by inducing a hormonal crosstalk and lateral root formation in a hyperaccumulator plant Sedum alfredii. Journal of Hazardous Materials, 2020, 395, 122661.	6.5	67
5	A global database of soil nematode abundance and functional group composition. Scientific Data, 2020, 7, 103.	2.4	46
6	The "soil microbial loop―is not always needed to explain protozoan stimulation of plants. Soil Biology and Biochemistry, 2009, 41, 2336-2342.	4.2	43
7	Long-term multifactorial climate change impacts on mesofaunal biomass and nitrogen content. Applied Soil Ecology, 2015, 92, 54-63.	2.1	43
8	Pseudomonas fluorescens promote photosynthesis, carbon fixation and cadmium phytoremediation of hyperaccumulator Sedum alfredii. Science of the Total Environment, 2020, 726, 138554.	3.9	43
9	Rhizosphere bacterial community composition responds to arbuscular mycorrhiza, but not to reductions in microbial activity induced by foliar cutting. FEMS Microbiology Ecology, 2008, 64, 78-89.	1.3	41
10	Bioaccumulation of cadmium in soil organisms – With focus on wood ash application. Ecotoxicology and Environmental Safety, 2018, 156, 452-462.	2.9	41
11	Enhanced priming of old, not new soil carbon at elevated atmospheric CO2. Soil Biology and Biochemistry, 2016, 100, 140-148.	4.2	39
12	Nematode assemblages in the rhizosphere of spring barley (Hordeum vulgare L.) depended on fertilisation and plant growth phase. Pedobiologia, 2004, 48, 257-265.	0.5	38
13	Trophic interactions between rhizosphere bacteria and bacterial feeders influenced by phosphate and aphids in barley. Biology and Fertility of Soils, 2006, 43, 1-11.	2.3	35
14	The relative importance of the bacterial pathway and soil inorganic nitrogen increase across an extreme woodâ€ash application gradient. GCB Bioenergy, 2018, 10, 320-334.	2.5	35
15	Decomposer biomass in the rhizosphere to assess rhizodeposition. Oikos, 2007, 116, 65-74.	1.2	31
16	Aphid effects on rhizosphere microorganisms and microfauna depend more on barley growth phase than on soil fertilization. Oecologia, 2004, 141, 84-93.	0.9	30
17	Transient negative biochar effects on plant growth are strongest after microbial species loss. Soil Biology and Biochemistry, 2017, 115, 442-451.	4.2	29
18	Specialized microbiomes facilitate natural rhizosphere microbiome interactions counteracting high salinity stress in plants. Environmental and Experimental Botany, 2021, 186, 104430.	2.0	28

Mette Vestergĥrd

#	Article	IF	CITATIONS
19	Long-term and realistic global change manipulations had low impact on diversity of soil biota in temperate heathland. Scientific Reports, 2017, 7, 41388.	1.6	25
20	Can microorganisms assist the survival and parasitism of plant-parasitic nematodes?. Trends in Parasitology, 2021, 37, 947-958.	1.5	23
21	A field study reveals links between hyperaccumulating Sedum plants-associated bacterial communities and Cd/Zn uptake and translocation. Science of the Total Environment, 2022, 805, 150400.	3.9	22
22	Evaluation of Metabarcoding Primers for Analysis of Soil Nematode Communities. Diversity, 2020, 12, 388.	0.7	20
23	Freezing eliminates efficient colonizers from nematode communities in frost-free temperate soils. Soil Biology and Biochemistry, 2012, 48, 167-174.	4.2	19
24	Above–belowground interactions govern the course and impact of biological invasions. AoB PLANTS, 2015, 7, .	1.2	19
25	Decreasing prevalence of rhizosphere IAA producing and seedling root growth promoting bacteria with barley development irrespective of protozoan grazing regime. Plant and Soil, 2007, 295, 115-125.	1.8	18
26	Trap crops for Meloidogyne hapla management and its integration with supplementary strategies. Applied Soil Ecology, 2019, 134, 105-110.	2.1	18
27	Evidence for a transient increase of rhizodeposition within one and a half day after a severe defoliation of Plantago arenaria grown in soil. Soil Biology and Biochemistry, 2008, 40, 1264-1267.	4.2	17
28	Benzoxazinoids selectively affect maize root-associated nematode taxa. Journal of Experimental Botany, 2021, 72, 3835-3845.	2.4	15
29	The complexity of wood ash fertilization disentangled: Effects on soil pH, nutrient status, plant growth and cadmium accumulation. Environmental and Experimental Botany, 2021, 185, 104424.	2.0	15
30	Nematode migration and nutrient diffusion between vetch and barley material in soil. Soil Biology and Biochemistry, 2007, 39, 1410-1417.	4.2	14
31	Elevated CO2 increases fungal-based micro-foodwebs in soils of contrasting plant species. Plant and Soil, 2017, 415, 549-561.	1.8	13
32	Wood ash effects on growth and cadmium uptake in Deschampsia flexuosa (Wavy hair-grass). Environmental Pollution, 2019, 249, 886-893.	3.7	13
33	Wood ash decreases cadmium toxicity to the soil nematode Caenorhabditis elegans. Ecotoxicology and Environmental Safety, 2019, 172, 290-295.	2.9	12
34	Rice diterpenoid phytoalexins are involved in defence against parasitic nematodes and shape rhizosphere nematode communities. New Phytologist, 2022, 235, 1231-1245.	3.5	12
35	Natural 13C abundance reveals age of dietary carbon sources in nematode trophic groups. Soil Biology and Biochemistry, 2019, 130, 1-7.	4.2	11
36	Phytohormones selectively affect plant parasitic nematodes associated with Arabidopsis roots. New Phytologist, 2021, 232, 1272-1285.	3.5	11

Mette Vestergård

#	Article	IF	CITATIONS
37	Are nitrous oxide emissions and nitrogen fixation linked in temperate bogs?. Soil Biology and Biochemistry, 2018, 123, 74-79.	4.2	9
38	Effect of ash application on the decomposer food web and N mineralization in a Norway spruce plantation. Science of the Total Environment, 2020, 715, 136793.	3.9	9
39	Deciphering bacteria associated with a pre-parasitic stage of the root-knot nematode Meloidogyne hapla in nemato-suppressive and nemato-conducive soils. Applied Soil Ecology, 2022, 172, 104344.	2.1	9
40	Genetic disruption of <i>Arabidopsis</i> secondary metabolite synthesis leads to microbiome-mediated modulation of nematode invasion. ISME Journal, 2022, 16, 2230-2241.	4.4	9
41	Nematode communities of natural and managed beech forests – a pilot survey. Pedobiologia, 2002, 46, 53-62.	0.5	8
42	Starved bacteria retain their size but lose culturability – Lessons from a 5000 years old undisturbed A-horizon. Soil Biology and Biochemistry, 2011, 43, 1379-1382.	4.2	7
43	Bacteria Respond Stronger Than Fungi Across a Steep Wood Ash-Driven pH Gradient. Frontiers in Forests and Global Change, 2021, 4, .	1.0	7
44	Specific antibiotics and nematode trophic groups agree in assessing fungal:bacterial activity in agricultural soil. Soil Biology and Biochemistry, 2012, 55, 17-19.	4.2	5
45	Ash application enhances decomposition of recalcitrant organic matter. Soil Biology and Biochemistry, 2019, 135, 316-322.	4.2	5
46	Plants increase laccase activity in soil with long-term elevated CO2 legacy. European Journal of Soil Biology, 2015, 70, 97-103.	1.4	4
47	AgNO3 Sterilizes Grains of Barley (Hordeum vulgare) without Inhibiting Germination—A Necessary Tool for Plant–Microbiome Research. Plants, 2020, 9, 372.	1.6	4
48	Soil microorganisms decrease barley biomass uniformly across contrasting nitrogen availability. European Journal of Soil Biology, 2021, 104, 103311.	1.4	4
49	Increased Likelihood of High Nitrous Oxide (N2O) Exchange in Soils at Reduced Microbial Diversity. Sustainability, 2021, 13, 1685.	1.6	1