
Donghai Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2420446/publications.pdf Version: 2024-02-01

ΠΟΝΟΗΛΙ ΥΛΝΟ

#	Article	IF	CITATIONS
1	Properties of Nanofluids and Their Applications in Enhanced Oil Recovery: A Comprehensive Review. Energy & Fuels, 2020, 34, 1202-1218.	5.1	83
2	The electrocoalescence behavior of surfactant-laden droplet pairs in oil under a DC electric field. Chemical Engineering Science, 2018, 191, 350-357.	3.8	45
3	Investigation on Transient Oscillation of Droplet Deformation before Conical Breakup under Alternating Current Electric Field. Langmuir, 2015, 31, 8275-8283.	3.5	38
4	Deformation and coalescence of water droplets in viscous fluid under a direct current electric field. International Journal of Multiphase Flow, 2019, 118, 1-9.	3.4	37
5	Breakup modes and criterion of droplet with surfactant under direct current electric field. Chemical Engineering Research and Design, 2018, 132, 822-830.	5.6	28
6	Critical electric field strength for partial coalescence of droplets on oil–water interface under DC electric field. Chemical Engineering Research and Design, 2018, 136, 83-93.	5.6	28
7	The influence and optimisation of electrical parameters for enhanced coalescence under pulsed DC electric field in a cylindrical electrostatic coalescer. Chemical Engineering Science, 2015, 138, 71-85.	3.8	26
8	Breakup mode transformation of leaky dielectric droplet under direct current electric field. International Journal of Multiphase Flow, 2017, 96, 123-133.	3.4	23
9	Breakup characteristics of aqueous droplet with surfactant in oil under direct current electric field. Journal of Colloid and Interface Science, 2017, 505, 460-466.	9.4	21
10	Influence of alkali concentration, electric waveform, and frequency on the critical electric field strength of droplet–interface partial coalescence. Chemical Engineering Science, 2019, 208, 115136.	3.8	20
11	Separation Characteristics of Water-in-Oil Emulsion under the Coupling of Electric Field and Magnetic Field. Energy & Fuels, 2019, 33, 2565-2574.	5.1	20
12	Numerical study on transient response of droplet deformation in a steady electric field. Journal of Electrostatics, 2016, 82, 29-37.	1.9	19
13	Effect of hydrolyzed polyacrylamide used in polymer flooding on droplet–interface electro-coalescence: Variation of critical electric field strength of partial coalescence. Separation and Purification Technology, 2019, 227, 115737.	7.9	19
14	Enhanced mixing of binary droplets induced by capillary pressure. Journal of Colloid and Interface Science, 2019, 545, 35-42.	9.4	18
15	Ultra-high frequency and Self-adaptive voltage technology for water separation from oil emulsion. Separation and Purification Technology, 2021, 279, 119732.	7.9	14
16	Electrocoalescence of Two Drops with Different Surfactant Concentrations Suspended in Oil. Journal of Physical Chemistry C, 2018, 122, 22615-22621.	3.1	12
17	Coalescence characteristics of droplets at oil–water interface subjected to different electric waveforms. Chemical Engineering and Processing: Process Intensification, 2018, 134, 28-37.	3.6	12
18	Experimental study on the falling and coalescence characteristics of droplets under alternating electric fields. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603, 125136.	4.7	12

Donghai Yang

#	Article	IF	CITATIONS
19	Non oalescence and chain formation of droplets under an alternating current electric field. AICHE Journal, 2021, 67, e17165.	3.6	12
20	An experimental study on the coalescence behavior of oil droplet in ASP solution. Separation and Purification Technology, 2018, 203, 152-158.	7.9	11
21	Coalescence characteristics of silica nanoparticle-laden droplets with a planar interface under direct current electric field. Chemical Engineering Research and Design, 2018, 140, 128-141.	5.6	11
22	Partial coalescence of droplets at oil–water interface subjected to different electric waveforms: Effects of non-ionic surfactant on critical electric field strength. Chemical Engineering Research and Design, 2019, 142, 214-224.	5.6	11
23	Charge-Transfer-Induced Noncoalescence and Chain Formation of Free Droplets under a Pulsed DC Electric Field. Langmuir, 2020, 36, 14255-14267.	3.5	11
24	Convergence effect of droplet coalescence under AC and pulsed DC electric fields. International Journal of Multiphase Flow, 2021, 143, 103776.	3.4	11
25	Coalescence, Partial Coalescence, and Noncoalescence of Two Free Droplets Suspended in Low-Viscosity Oil under a DC Electric Field. Journal of Physical Chemistry B, 2020, 124, 7508-7517.	2.6	10
26	Non oalescence behavior of neutral droplets suspended in oil under a direct current electric field. AICHE Journal, 2019, 65, e16739.	3.6	9
27	An experimental study on the floating motion of oil drop in ASP solution. Chemical Engineering and Processing: Process Intensification, 2018, 125, 97-104.	3.6	8
28	An experimental investigation on the deformation of alkali-surfactant-polymer droplet under AC electric field. Colloid and Polymer Science, 2016, 294, 1651-1658.	2.1	7
29	The droplet-interface coalescence characteristics of water containing nanoparticles in oil under electric fields of different waveforms. Chemical Engineering and Processing: Process Intensification, 2018, 132, 89-97.	3.6	7
30	Study on the Effect of Nanoparticle Used in Nano-Fluid Flooding on Droplet–Interface Electro-Coalescence. Nanomaterials, 2021, 11, 1764.	4.1	5
31	Flow structure and pressure gradient of extra heavy crude oil solution CO2. Experimental Thermal and Fluid Science, 2019, 104, 229-237.	2.7	3