José L Pruneda-Paz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2420361/publications.pdf

Version: 2024-02-01

33 papers 4,786 citations

201674 27 h-index 395702 33 g-index

35 all docs 35 docs citations

35 times ranked 5614 citing authors

#	Article	IF	CITATIONS
1	Linking photoreceptor excitation to changes in plant architecture. Genes and Development, 2012, 26, 785-790.	5.9	460
2	<i>Arabidopsis</i> circadian clock protein, TOC1, is a DNA-binding transcription factor. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3167-3172.	7.1	436
3	A Functional Genomics Approach Reveals CHE as a Component of the <i>Arabidopsis</i> Circadian Clock. Science, 2009, 323, 1481-1485.	12.6	398
4	LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10387-10392.	7.1	381
5	Genome-wide identification of CCA1 targets uncovers an expanded clock network in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4802-10.	7.1	230
6	Cis and trans determinants of epigenetic silencing by Polycomb repressive complex 2 in Arabidopsis. Nature Genetics, 2017, 49, 1546-1552.	21.4	226
7	Control of plant stem cell function by conserved interacting transcriptional regulators. Nature, 2015, 517, 377-380.	27.8	224
8	F-Box Proteins FKF1 and LKP2 Act in Concert with ZEITLUPE to Control <i>Arabidopsis</i> Progression Â. Plant Cell, 2010, 22, 606-622.	6.6	220
9	Nitrate foraging by <i>Arabidopsis</i> roots is mediated by the transcription factor TCP20 through the systemic signaling pathway. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15267-15272.	7.1	202
10	PRR3 Is a Vascular Regulator of TOC1 Stability in the <i>Arabidopsis</i> Circadian Clock. Plant Cell, 2007, 19, 3462-3473.	6.6	192
11	BRANCHED1 Interacts with FLOWERING LOCUS T to Repress the Floral Transition of the Axillary Meristems in <i>Arabidopsis</i> ÂÂÂ. Plant Cell, 2013, 25, 1228-1242.	6.6	189
12	Bone marrow plasmacytoid dendritic cells can differentiate into myeloid dendritic cells upon virus infection. Nature Immunology, 2004, 5, 1227-1234.	14.5	183
13	Spatial and temporal regulation of biosynthesis of the plant immune signal salicylic acid. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9166-9173.	7.1	181
14	A Genome-Scale Resource for the Functional Characterization of Arabidopsis Transcription Factors. Cell Reports, 2014, 8, 622-632.	6.4	164
15	An expanding universe of circadian networks in higher plants. Trends in Plant Science, 2010, 15, 259-265.	8.8	161
16	Plant Stress Tolerance Requires Auxin-Sensitive Aux/IAA Transcriptional Repressors. Current Biology, 2017, 27, 437-444.	3.9	148
17	Enhanced Y1H assays for Arabidopsis. Nature Methods, 2011, 8, 1053-1055.	19.0	115
18	HsfB2b-mediated repression of <i>PRR7</i> directs abiotic stress responses of the circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16172-16177.	7.1	96

#	Article	IF	CITATIONS
19	Rapid Array Mapping of Circadian Clock and Developmental Mutations in Arabidopsis. Plant Physiology, 2005, 138, 990-997.	4.8	85
20	TCP4-dependent induction of CONSTANS transcription requires GIGANTEA in photoperiodic flowering in Arabidopsis. PLoS Genetics, 2017, 13, e1006856.	3.5	80
21	Transcriptional Regulation of LUX by CBF1 Mediates Cold Input to the Circadian Clock in Arabidopsis. Current Biology, 2014, 24, 1518-1524.	3.9	79
22	The <i>6xABRE</i> Synthetic Promoter Enables the Spatiotemporal Analysis of ABA-Mediated Transcriptional Regulation. Plant Physiology, 2018, 177, 1650-1665.	4.8	63
23	Multi-level Modulation of Light Signaling by GIGANTEA Regulates Both the Output and Pace of the Circadian Clock. Developmental Cell, 2019, 49, 840-851.e8.	7.0	53
24	Decoys Untangle Complicated Redundancy and Reveal Targets of Circadian Clock F-Box Proteins. Plant Physiology, 2018, 177, 1170-1186.	4.8	49
25	Interaction and Regulation Between Lipid Mediator Phosphatidic Acid and Circadian Clock Regulators. Plant Cell, 2019, 31, 399-416.	6.6	39
26	A Localized Pseudomonas syringae Infection Triggers Systemic Clock Responses in Arabidopsis. Current Biology, 2018, 28, 630-639.e4.	3.9	37
27	FBH1 affects warm temperature responses in the <i>Arabidopsis</i> circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14595-14600.	7.1	36
28	ZINC-FINGER interactions mediate transcriptional regulation of hypocotyl growth in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4503-E4511.	7.1	28
29	Novel cell surface luciferase reporter for high-throughput yeast one-hybrid screens. Nucleic Acids Research, 2017, 45, e157-e157.	14.5	15
30	Highâ€Throughput Yeast Oneâ€Hybrid Screens Using a Cell Surface gLUC Reporter. Current Protocols in Plant Biology, 2019, 4, e20086.	2.8	6
31	Functional dissection of the <i><scp>ARGONAUTE</scp>7</i> promoter. Plant Direct, 2019, 3, e00102.	1.9	4
32	<scp>ORA47</scp> is a transcriptional regulator of a general stress response hub. Plant Journal, 2022, 110, 562-571.	5.7	4
33	A Modified Yeast-one Hybrid System for Heteromeric Protein Complex-DNA Interaction Studies. Journal of Visualized Experiments, 2017, , .	0.3	2