Sophie Lotersztajn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2420208/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inflammation in alcohol-associated liver disease progression. Zeitschrift Fur Gastroenterologie, 2022, 60, 58-66.	0.5	2
2	Targeting cell-intrinsic metabolism for antifibrotic therapy. Journal of Hepatology, 2021, 74, 1442-1454.	3.7	24
3	A defect in endothelial autophagy occurs in patients with non-alcoholic steatohepatitis and promotes inflammation and fibrosis. Journal of Hepatology, 2020, 72, 528-538.	3.7	113
4	Monoacylglycerol Lipase Inhibition Protects From Liver Injury in Mouse Models of Sclerosing Cholangitis. Hepatology, 2020, 71, 1750-1765.	7.3	18
5	LC3-associated phagocytosis in myeloid cells, a fireman that restrains inflammation and liver fibrosis, via immunoreceptor inhibitory signaling. Autophagy, 2020, 16, 1526-1528.	9.1	13
6	Glutamate Signaling in Alcoholâ€associated Fatty Liver: "Pas de Deux― Hepatology, 2020, 72, 350-352.	7.3	6
7	LC3-associated phagocytosis protects against inflammation and liver fibrosis via immunoreceptor inhibitory signaling. Science Translational Medicine, 2020, 12, .	12.4	48
8	Characterization of Blood Immune Cells in Patients With Decompensated Cirrhosis Including ACLF. Frontiers in Immunology, 2020, 11, 619039.	4.8	39
9	Mucosal-associated invariant T cells and disease. Nature Reviews Immunology, 2019, 19, 643-657.	22.7	197
10	Autophagy in liver diseases: Time for translation?. Journal of Hepatology, 2019, 70, 985-998.	3.7	252
11	Lack of monoacylglycerol lipase prevents hepatic steatosis by favoring lipid storage in adipose tissue and intestinal malabsorption. Journal of Lipid Research, 2019, 60, 1284-1292.	4.2	27
12	In vitro distinction between proinflammatory and antiinflammatory macrophages with gadoliniumâ€liposomes and ultrasmall superparamagnetic iron oxide particles at 3.0T. Journal of Magnetic Resonance Imaging, 2019, 49, 1166-1173.	3.4	4
13	Inhibition of monoacylglycerol lipase, an anti-inflammatory and antifibrogenic strategy in the liver. Gut, 2019, 68, 522-532.	12.1	59
14	Interleukinsâ€17 and 27 promote liver regeneration by sequentially inducing progenitor cell expansion and differentiation. Hepatology Communications, 2018, 2, 329-343.	4.3	19
15	Mucosal-associated invariant T cells are a profibrogenic immune cell population in the liver. Nature Communications, 2018, 9, 2146.	12.8	152
16	Type I interferon signaling in systemic immune cells from patients with alcoholic cirrhosis and its association with outcome. Journal of Hepatology, 2017, 66, 930-941.	3.7	26
17	Autophagy in chronic liver diseases: the two faces of Janus. American Journal of Physiology - Cell Physiology, 2017, 312, C263-C273.	4.6	62
18	Chronic Exposure to Low Doses of Dioxin Promotes Liver Fibrosis Development in the C57BL/6J Diet-Induced Obesity Mouse Model. Environmental Health Perspectives, 2017, 125, 428-436.	6.0	98

SOPHIE LOTERSZTAJN

#	Article	IF	CITATIONS
19	Statins Modulate Cyclooxygenaseâ€⊋ and Microsomal Prostaglandin E Synthaseâ€1 in Human Hepatic Myofibroblasts. Journal of Cellular Biochemistry, 2016, 117, 1176-1186.	2.6	9
20	Targeting cannabinoid receptors in hepatocellular carcinoma?. Gut, 2016, 65, 1582-1583.	12.1	5
21	The Cannabinoid Receptor 2 Protects Against Alcoholic Liver Disease Via a Macrophage Autophagy-Dependent Pathway. Scientific Reports, 2016, 6, 28806.	3.3	75
22	Macrophage autophagy protects against liver fibrosis in mice. Autophagy, 2015, 11, 1280-1292.	9.1	210
23	Autophagy: A Multifaceted Partner in Liver Fibrosis. BioMed Research International, 2014, 2014, 1-7.	1.9	77
24	M2 Kupffer cells promote M1 Kupffer cell apoptosis: A protective mechanism against alcoholic and nonalcoholic fatty liver disease. Hepatology, 2014, 59, 130-142.	7.3	450
25	Cannabinoid receptor 2 counteracts interleukin-17-induced immune and fibrogenic responses in mouse liver. Hepatology, 2014, 59, 296-306.	7.3	93
26	When Autophagy Chaperones Liver Metabolism. Cell Metabolism, 2014, 20, 392-393.	16.2	1
27	M2 Kupffer Cells Promote Hepatocyte Senescence. American Journal of Pathology, 2014, 184, 1763-1772.	3.8	51
28	Reply. Hepatology, 2014, 59, 353-354.	7.3	0
29	Cannabinoid signaling and liver therapeutics. Journal of Hepatology, 2013, 59, 891-896.	3.7	119
30	Cellular Mechanisms of Tissue Fibrosis. 5. Novel insights into liver fibrosis. American Journal of Physiology - Cell Physiology, 2013, 305, C789-C799.	4.6	191
31	Pathophysiology of NASH: Perspectives for a Targeted Treatment. Current Pharmaceutical Design, 2013, 19, 5250-5269.	1.9	140
32	The liver X receptor in hepatic stellate cells: A novel antifibrogenic target?. Journal of Hepatology, 2011, 55, 1452-1454.	3.7	10
33	Cannabinoid CB2 receptors protect against alcoholic liver disease by regulating Kupffer cell polarization in mice. Hepatology, 2011, 54, 1217-1226.	7.3	214
34	Hyperactivation of anandamide synthesis and regulation of cell-cycle progression via cannabinoid type 1 (CB ₁) receptors in the regenerating liver. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6323-6328.	7.1	90
35	Beneficial paracrine effects of cannabinoid receptor 2 on liver injury and regeneration. Hepatology, 2010, 52, 1046-1059.	7.3	93
36	Endocannabinoids in the pathophysiology of obesity – The liver. Drug Discovery Today Disease Mechanisms, 2010, 7, e185-e190.	0.8	0

#	Article	IF	CITATIONS
37	Cannabinoid CB2 Receptor Potentiates Obesity-Associated Inflammation, Insulin Resistance and Hepatic Steatosis. PLoS ONE, 2009, 4, e5844.	2.5	189
38	The cannabinoid receptor type 2 promotes cardiac myocyte and fibroblast survival and protects against ischemia/reperfusionâ€induced cardiomyopathy. FASEB Journal, 2009, 23, 2120-2130.	0.5	116
39	Elevated Expression of Osteopontin May Be Related to Adipose Tissue Macrophage Accumulation and Liver Steatosis in Morbid Obesity. Diabetes, 2009, 58, 125-133.	0.6	127
40	Daily Cannabis Use: A Novel Risk Factor of Steatosis Severity in Patients With Chronic Hepatitis C. Gastroenterology, 2008, 134, 432-439.	1.3	174
41	Cannabinoid receptors as new targets of antifibrosing strategies during chronic liver diseases. Expert Opinion on Therapeutic Targets, 2007, 11, 403-409.	3.4	56
42	The sphingosine 1â€phosphate receptor S1P 2 triggers hepatic wound healing. FASEB Journal, 2007, 21, 2005-2013.	0.5	77
43	CB1 cannabinoid receptor antagonism: a new strategy for the treatment of liver fibrosis. Nature Medicine, 2006, 12, 671-676.	30.7	476
44	Daily cannabis smoking as a risk factor for progression of fibrosis in chronic hepatitis C. Hepatology, 2005, 42, 63-71.	7.3	269
45	Antifibrogenic role of the cannabinoid receptor CB2 in the liver. Gastroenterology, 2005, 128, 742-755.	1.3	420
46	HEPATIC FIBROSIS: Molecular Mechanisms and Drug Targets. Annual Review of Pharmacology and Toxicology, 2005, 45, 605-628.	9.4	288
47	Molecular mechanisms regulating the antifibrogenic protein heme-oxygenase-1 in human hepatic myofibroblasts. Journal of Hepatology, 2004, 41, 407-413.	3.7	23
48	Heme oxygenase-1 is an antifibrogenic protein in human hepatic myofibroblasts. Gastroenterology, 2003, 125, 460-469.	1.3	72
49	Platelet-derived Growth Factor-BB and Thrombin Generate Positive and Negative Signals for Human Hepatic Stellate Cell Proliferation. Journal of Biological Chemistry, 1998, 273, 27300-27305.	3.4	94