
Sergei Zimov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2420149/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles, 2009, 23, .	1.9	1,938
2	Rise and Fall of the Beringian Steppe Bison. Science, 2004, 306, 1561-1565.	6.0	601
3	Detecting the signature of permafrost thaw in Arctic rivers. Geophysical Research Letters, 2015, 42, 2830-2835.	1.5	261
4	Controls on the composition and lability of dissolved organic matter in Siberia's Kolyma River basin. Journal of Geophysical Research, 2012, 117, .	3.3	247
5	High biolability of ancient permafrost carbon upon thaw. Geophysical Research Letters, 2013, 40, 2689-2693.	1.5	230
6	Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment. Environmental Research Letters, 2016, 11, 034014.	2.2	199
7	Utilization of ancient permafrost carbon in headwaters of Arctic fluvial networks. Nature Communications, 2015, 6, 7856.	5.8	189
8	Snowmelt dominance of dissolved organic carbon in high-latitude watersheds: Implications for characterization and flux of river DOC. Geophysical Research Letters, 2006, 33, n/a-n/a.	1.5	135
9	Development of a Panâ€Arctic Database for River Chemistry. Eos, 2008, 89, 217-218.	0.1	72
10	Evidence for key enzymatic controls on metabolism of Arctic river organic matter. Global Change Biology, 2014, 20, 1089-1100.	4.2	70
11	Carbon Accumulation Patterns During Post-Fire Succession in Cajander Larch (Larix cajanderi) Forests of Siberia. Ecosystems, 2012, 15, 1065-1082.	1.6	61
12	Mercury Export from Arctic Great Rivers. Environmental Science & Technology, 2020, 54, 4140-4148.	4.6	59
13	Plants, microorganisms, and soil temperatures contribute to a decrease in methane fluxes on a drained Arctic floodplain. Global Change Biology, 2017, 23, 2396-2412.	4.2	54
14	Low photolability of yedoma permafrost dissolved organic carbon. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 200-211.	1.3	52
15	Global Methan Emissions From Wetlands, Rice Paddies, and Lakes. Eos, 2009, 90, 37-38.	0.1	49
16	Branched glycerol dialkyl glycerol tetraethers in Arctic lake sediments: Sources and implications for paleothermometry at high latitudes. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1738-1754.	1.3	46
17	Impacts of increased soil burn severity on larch forest regeneration on permafrost soils of far northeastern Siberia. Forest Ecology and Management, 2018, 417, 144-153.	1.4	41
18	Pleistocene Arctic megafaunal ecological engineering as a natural climate solution?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190122.	1.8	40

Sergei Zimov

#	Article	IF	CITATIONS
19	The large mean body size of mammalian herbivores explains the productivity paradox during the Last Glacial Maximum. Nature Ecology and Evolution, 2018, 2, 640-649.	3.4	37
20	Vegetation Indices Do Not Capture Forest Cover Variation in Upland Siberian Larch Forests. Remote Sensing, 2018, 10, 1686.	1.8	37
21	Longâ€Term Drainage Reduces CO ₂ Uptake and CH ₄ Emissions in a Siberian Permafrost Ecosystem. Global Biogeochemical Cycles, 2017, 31, 1704-1717.	1.9	36
22	Shifted energy fluxes, increased Bowen ratios, and reduced thaw depths linked with drainage-induced changes in permafrost ecosystem structure. Cryosphere, 2017, 11, 2975-2996.	1.5	34
23	Two decades of active layer thickness monitoring in northeastern Asia. Polar Geography, 2021, 44, 186-202.	0.8	32
24	Panâ€Arctic Riverine Dissolved Organic Matter: Synchronous Molecular Stability, Shifting Sources and Subsidies. Global Biogeochemical Cycles, 2021, 35, e2020GB006871.	1.9	31
25	Long-term drainage reduces CO ₂ uptake and increases CO ₂ emission on a Siberian floodplain due to shifts in vegetation community and soil thermal characteristics. Biogeosciences, 2016, 13, 4219-4235.	1.3	28
26	Protection of Permafrost Soils from Thawing by Increasing Herbivore Density. Scientific Reports, 2020, 10, 4170.	1.6	28
27	Drainage enhances modern soil carbon contribution but reduces old soil carbon contribution to ecosystem respiration in tundra ecosystems. Global Change Biology, 2019, 25, 1315-1325.	4.2	27
28	Negative feedback processes following drainage slow down permafrost degradation. Global Change Biology, 2019, 25, 3254-3266.	4.2	26
29	Thawing Yedoma permafrost is a neglected nitrous oxide source. Nature Communications, 2021, 12, 7107.	5.8	24
30	Evaluating Post-Fire Vegetation Recovery in Cajander Larch Forests in Northeastern Siberia Using UAV Derived Vegetation Indices. Remote Sensing, 2020, 12, 2970.	1.8	23
31	Report from the International Permafrost Association: carbon pools in permafrost regions. Permafrost and Periglacial Processes, 2009, 20, 229-234.	1.5	22
32	Variability in above- and belowground carbon stocks in a Siberian larch watershed. Biogeosciences, 2017, 14, 4279-4294.	1.3	21
33	Detectability of Arctic methane sources at six sites performing continuous atmospheric measurements. Atmospheric Chemistry and Physics, 2017, 17, 8371-8394.	1.9	20
34	Interannual and Seasonal Patterns of Carbon Dioxide, Water, and Energy Fluxes From Ecotonal and Thermokarstâ€Impacted Ecosystems on Carbonâ€Rich Permafrost Soils in Northeastern Siberia. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 2651-2668.	1.3	19
35	Simulating soil organic carbon in yedoma deposits during the Last Glacial Maximum in a land surface model. Geophysical Research Letters, 2016, 43, 5133-5142.	1.5	18
36	Thawing permafrost and methane emission in Siberia: Synthesis of observations, reanalysis, and predictive modeling. Ambio, 2021, 50, 2050-2059.	2.8	18

Sergei Zimov

#	Article	IF	CITATIONS
37	¹⁴ C Variation of Dissolved Lignin in Arctic River Systems. ACS Earth and Space Chemistry, 2017, 1, 334-344.	1.2	17
38	Impacts of a decadal drainage disturbance on surface–atmosphere fluxes of carbon dioxide in a permafrost ecosystem. Biogeosciences, 2016, 13, 5315-5332.	1.3	15
39	Role of Megafauna and Frozen Soil in the Atmospheric CH4 Dynamics. PLoS ONE, 2014, 9, e93331.	1.1	12
40	Implications of Ancient Ice. Science, 2009, 323, 714-715.	6.0	8
41	Grazing enhances carbon cycling but reduces methane emission during peak growing season in the Siberian Pleistocene Park tundra site. Biogeosciences, 2022, 19, 1611-1633.	1.3	7
42	Accurate measurements of atmospheric carbon dioxide and methane mole fractions at the Siberian coastal site Ambarchik. Atmospheric Measurement Techniques, 2019, 12, 5717-5740.	1.2	4
43	A Field Course in the Siberian Arctic: 30 Days, 20 People, 3 Continents, 1 Barge. Eos, 2009, 90, 222-223.	0.1	2