Amanda Ellis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2420110/publications.pdf

Version: 2024-02-01

		101543	76900
160	6,346	36	74
papers	citations	h-index	g-index
165	165	165	9623
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Evaluation of a lanthanide nanoparticleâ€based contrast agent for microcomputed tomography of porous channels in subchondral bone. Journal of Orthopaedic Research, 2023, 41, 447-458.	2.3	5
2	Microplastic contamination of an unconfined groundwater aquifer in Victoria, Australia. Science of the Total Environment, 2022, 802, 149727.	8.0	100
3	Biofunctionality with a twist: the importance of molecular organisation, handedness and configuration in synthetic biomaterial design. Chemical Society Reviews, 2022, 51, 28-42.	38.1	11
4	A bright future for engineering piezoelectric 2D crystals. Chemical Society Reviews, 2022, 51, 650-671.	38.1	43
5	Acoustotemplating: rapid synthesis of freestanding quasi-2D MOF/graphene oxide heterostructures for supercapacitor applications. Journal of Materials Chemistry A, 2022, 10, 7058-7072.	10.3	24
6	Assessing exposure of the Australian population to microplastics through bottled water consumption. Science of the Total Environment, 2022, 837, 155329.	8.0	26
7	Non-templated manufacturing of patterned fluoropolymer membranes via immersion precipitation printing. Additive Manufacturing, 2022, 58, 103017.	3.0	1
8	Spatially isolated redox processes enabled by ambipolar charge transport in multi-walled carbon nanotube mats. Materials Horizons, 2021, 8, 1304-1313.	12.2	3
9	3Dâ€Printed Triboelectric Nanogenerators: State of the Art, Applications, and Challenges. Advanced Energy and Sustainability Research, 2021, 2, 2000045.	5.8	32
10	Poly(dimethylsiloxane) for Triboelectricity: From Mechanisms to Practical Strategies. Chemistry of Materials, 2021, 33, 4304-4327.	6.7	40
11	Interfacial piezoelectric polarization locking in printable Ti3C2Tx MXene-fluoropolymer composites. Nature Communications, 2021, 12, 3171.	12.8	57
12	Direct ink writing of dehydrofluorinated Poly(Vinylidene Difluoride) for microfiltration membrane fabrication. Journal of Membrane Science, 2021, 632, 119347.	8.2	10
13	Probing Contact Electrification: A Cohesively Sticky Problem. ACS Applied Materials & Distribution (2021, 13, 44935-44947.	8.0	31
14	Survival of the fittest: Prokaryotic communities within a SWRO desalination plant. Desalination, 2021, 514, 115152.	8.2	6
15	Printed recyclable and self-poled polymer piezoelectric generators through single-walled carbon nanotube templating. Energy and Environmental Science, 2020, 13, 868-883.	30.8	60
16	Advances in graphene-based supercapacitor electrodes. Energy Reports, 2020, 6, 2768-2784.	5.1	100
17	Grapevine waste in sustainable hybrid particleboard production. Waste Management, 2020, 118, 501-509.	7.4	30
18	Personalized, Mechanically Strong, and Biodegradable Coronary Artery Stents via Melt Electrowriting. ACS Macro Letters, 2020, 9, 1732-1739.	4.8	27

#	Article	IF	Citations
19	Surface treatment of Basalt fiber for use in automotive composites. Materials Today Chemistry, 2020, 17, 100334.	3.5	63
20	Measuring Piezoelectric Outputâ€"Fact or Friction?. Advanced Materials, 2020, 32, e2002979.	21.0	58
21	DNA Nanostructures. , 2019, , 1-26.		1
22	Opportunities and Challenges in DNA-Hybrid Nanomaterials. ACS Nano, 2019, 13, 8512-8516.	14.6	19
23	New developments in composites, copolymer technologies and processing techniques for flexible fluoropolymer piezoelectric generators for efficient energy harvesting. Energy and Environmental Science, 2019, 12, 1143-1176.	30.8	187
24	Oxacillin Coupled G-Quadruplexes as a Novel Biofilm-Specific Antibiotic for <i>Staphylococcus aureus</i> Biofilms. ACS Applied Bio Materials, 2019, 2, 3002-3008.	4.6	4
25	Cross-linking of dehydrofluorinated PVDF membranes with thiol modified polyhedral oligomeric silsesquioxane (POSS) and pure water flux analysis. Journal of Membrane Science, 2019, 581, 362-372.	8.2	20
26	Morphological changes of sintered polydopamine coatings. Surface Topography: Metrology and Properties, 2019, 7, 015016.	1.6	6
27	3D printing of poly(vinylidene fluoride-trifluoroethylene): a poling-free technique to manufacture flexible and transparent piezoelectric generators. MRS Communications, 2019, 9, 159-164.	1.8	30
28	Comparison of partial replacement of fishmeal with soybean meal and EnzoMeal on growth performance of Asian seabass Lates calcarifer. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2019, 216, 29-37.	2.6	13
29	Antimony-carbon nanocomposites for potassium-ion batteries: Insight into the failure mechanism in electrodes and possible avenues to improve cyclic stability. Journal of Power Sources, 2019, 413, 476-484.	7.8	49
30	Highly dispersed and disordered nickel–iron layered hydroxides and sulphides: robust and high-activity water oxidation catalysts. Sustainable Energy and Fuels, 2018, 2, 1561-1573.	4.9	29
31	High-throughput physicochemical analysis of thermoresponsive polymers. Polymer Chemistry, 2018, 9, 1934-1937.	3.9	0
32	Selective adsorption of globulin on nanofiber meshes for immunoadsorption therapy. New Journal of Chemistry, 2018, 42, 2916-2922.	2.8	4
33	Polysulfides made from re-purposed waste are sustainable materials for removing iron from water. RSC Advances, 2018, 8, 1232-1236.	3.6	74
34	Synthesis of a deoxyguanosine monophosphate rich propyl methacrylate oligomer. New Journal of Chemistry, 2018, 42, 8815-8822.	2.8	0
35	Diatoms response to salinity changes: investigations using single pulse and cross polarisation magic angle spinning ²⁹ Si NMR spectra. Analyst, The, 2018, 143, 4930-4935.	3.5	4
36	Replacement of fishmeal with commercial soybean meal and EnzoMeal in juvenile barramundi <i>Lates calcarifer</i> . Aquaculture Research, 2018, 49, 3258-3269.	1.8	6

#	Article	lF	Citations
37	Increased solubility of plant core pulp cellulose for regenerated hydrogels through electron beam irradiation. Cellulose, 2018, 25, 4993-5006.	4.9	12
38	Cell Configurations and Electrode Materials for Nonaqueous Sodiumâ€lon Capacitors: The Current State of the Field. Advanced Sustainable Systems, 2018, 2, 1800006.	5.3	25
39	Single nucleotide polymorphism discrimination with and without an ethidium bromide intercalator. Analytica Chimica Acta, 2017, 954, 121-128.	5.4	4
40	Adsorption and Desorption of Singleâ€Stranded DNA from Singleâ€Walled Carbon Nanotubes. Chemistry - an Asian Journal, 2017, 12, 1625-1634.	3.3	10
41	Laying Waste to Mercury: Inexpensive Sorbents Made from Sulfur and Recycled Cooking Oils. Chemistry - A European Journal, 2017, 23, 16219-16230.	3.3	185
42	Optimisation of DNA hybridisation and toehold strand displacement from magnetic bead surfaces. International Journal of Nanotechnology, 2017, 14, 75.	0.2	2
43	Highly porous regenerated cellulose hydrogel and aerogel prepared from hydrothermal synthesized cellulose carbamate. PLoS ONE, 2017, 12, e0173743.	2.5	36
44	Hi-fidelity discrimination of isomiRs using G-quadruplex gatekeepers. PLoS ONE, 2017, 12, e0188163.	2.5	2
45	The impact of diatoms on the biofouling of seawater reverse osmosis membranes in a model cross-flow system. Desalination, 2016, 392, 8-13.	8.2	6
46	Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate-free silver nanowire/single walled carbon nanotube transparent electrodes using graphene oxide. Thin Solid Films, 2016, 616, 515-520.	1.8	4
47	A DNA Circuit for IsomiR Detection. ChemBioChem, 2016, 17, 2172-2178.	2.6	1
48	Biocompatible anti-microbial coatings for urinary catheters. RSC Advances, 2016, 6, 53303-53309.	3.6	15
49	Optimization and Doping of Reduced Graphene Oxide–Silicon Solar Cells. Journal of Physical Chemistry C, 2016, 120, 15648-15656.	3.1	29
50	Synthetic stimuli-responsive â€~smart' fibers. Current Opinion in Biotechnology, 2016, 39, 113-119.	6.6	6
51	Bacterial production of transparent exopolymer particles during static and laboratory-based cross-flow experiments. Environmental Science: Water Research and Technology, 2016, 2, 376-382.	2.4	3
52	Pathway to high throughput, low cost indium-free transparent electrodes. Journal of Materials Chemistry A, 2015, 3, 13892-13899.	10.3	15
53	Evaluation of transparent exopolymer particles and microbial communities found post-UV light, multimedia and cartridge filtration pre-treatment in a SWRO plant. Desalination and Water Treatment, 2015, 56, 1427-1439.	1.0	5
54	Nonâ€ŧoxic luminescent carbon dot/poly(dimethylacrylamide) nanocomposite reagent for latent fingermark detection synthesized via surface initiated reversible addition fragmentation chain transfer polymerization. Polymer International, 2015, 64, 884-891.	3.1	28

#	Article	IF	Citations
55	Direct detection of histamine in fish flesh using microchip electrophoresis with capacitively coupled contactless conductivity detection. Analytical Methods, 2015, 7, 1802-1808.	2.7	17
56	Analysis of raw and pre-treated seawater for potential biofouling precursors. Desalination, 2015, 373, 71-78.	8.2	2
57	Seasonal changes in phytoplankton on the north-eastern shelf of Kangaroo Island (South Australia) in 2012 and 2013. Oceanologia, 2015, 57, 251-262.	2.2	25
58	A versatile approach to grafting biofouling resistant coatings from polymeric membrane surfaces using an adhesive macroinitiator. RSC Advances, 2015, 5, 63017-63024.	3.6	15
59	Valence band structure of PDMS surface and a blend with MWCNTs: A UPS and MIES study of an insulating polymer. Applied Surface Science, 2015, 353, 693-699.	6.1	10
60	Planar silver nanowire, carbon nanotube and PEDOT:PSS nanocomposite transparent electrodes. Science and Technology of Advanced Materials, 2015, 16, 025002.	6.1	24
61	Solution processed graphene–silicon Schottky junction solar cells. RSC Advances, 2015, 5, 38851-38858.	3.6	15
62	Protected DNA strand displacement for enhanced single nucleotide discrimination in double-stranded DNA. Scientific Reports, 2015, 5, 8721.	3.3	24
63	High purity synthesis of a polyhedral oligomeric silsesquioxane modified with an antibacterial. Inorganic Chemistry Communication, 2015, 60, 41-43.	3.9	10
64	Approaches for the detection of harmful algal blooms using oligonucleotide interactions. Analytical and Bioanalytical Chemistry, 2015, 407, 95-116.	3.7	13
65	Comparison of hydroxyl radical yields between photo- and electro-catalyzed water treatments. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 1649-1654.	5.3	17
66	Recent developments in nucleic acid identification using solid-phase enzymatic assays. Mikrochimica Acta, 2014, 181, 1633-1646.	5.0	14
67	Electrochemically prepared nanoporous gold as a SERS substrate with high enhancement. RSC Advances, 2014, 4, 19502-19506.	3.6	11
68	Sequence selective capture, release and analysis of DNA using a magnetic microbead-assisted toehold-mediated DNA strand displacement reaction. Analyst, The, 2014, 139, 3548-3551.	3.5	4
69	Surface initiated polydopamine grafted poly([2-(methacryoyloxy)ethyl]trimethylammonium chloride) coatings to produce reverse osmosis desalination membranes with anti-biofouling properties. Journal of Membrane Science, 2014, 468, 216-223.	8.2	53
70	Graphene masks as passivation layers in the electrochemical etching of silicon. Journal of Materials Science, 2014, 49, 7819-7823.	3.7	1
71	Environmental variability and phytoplankton dynamics in a South Australian inverse estuary. Continental Shelf Research, 2014, 91, 134-144.	1.8	22
72	Copper removal using bio-inspired polydopamine coated natural zeolites. Journal of Hazardous Materials, 2014, 273, 174-182.	12.4	160

#	Article	IF	Citations
73	Enhanced adsorption of mercury ions on thiol derivatized single wall carbon nanotubes. Journal of Hazardous Materials, 2013, 261, 534-541.	12.4	158
74	29Si{1H} CP-MAS NMR comparison and ATR-FTIR spectroscopic analysis of the diatoms Chaetoceros muelleri and Thalassiosira pseudonana grown at different salinities. Analytical and Bioanalytical Chemistry, 2013, 405, 3359-3365.	3.7	13
75	Amelogenin locus typing using toehold-assisted fluorescent DNA melting analysis. Forensic Science International: Genetics Supplement Series, 2013, 4, e119-e120.	0.3	0
76	Rapid separation of synthetic oligonucleotides on polymer modified capillary surfaces using short-end injection capillary electrophoresis in free solution. Analyst, The, 2013, 138, 6954.	3.5	1
77	Diatom adaptability to environmental change: a case study of two <i>Cocconeis</i> species from high-salinity areas. Diatom Research, 2013, 28, 29-35.	1.2	33
78	Structural Determination of Thermally and Hydrazine Treated Graphene Oxide Using Electron Spectroscopic Analysis. Journal of Physical Chemistry C, 2013, 117, 21312-21319.	3.1	20
79	On-chip capacitively coupled contactless conductivity detection using "injected―metal electrodes. Analyst, The, 2013, 138, 4275.	3.5	24
80	Ag2SO4 decorated with fluorescent Agn nanoclusters. Applied Surface Science, 2013, 270, 77-81.	6.1	7
81	Beta-cyclodextrin decorated nanostructured SERS substrates facilitate selective detection of endocrine disruptorchemicals. Biosensors and Bioelectronics, 2013, 42, 632-639.	10.1	43
82	Alginate–graphene oxide hybrid gel beads: An efficient copper adsorbent material. Journal of Colloid and Interface Science, 2013, 397, 32-38.	9.4	185
83	Singleâ€Walled Carbon Nanotube/Polyaniline/nâ€Silicon Solar Cells: Fabrication, Characterization, and Performance Measurements. ChemSusChem, 2013, 6, 320-327.	6.8	37
84	CdS/polymer nanocomposites synthesized via surface initiated RAFT polymerization for the fluorescent detection of latent fingermarks. Forensic Science International, 2013, 228, 105-114.	2.2	34
85	Toehold-Mediated Nonenzymatic DNA Strand Displacement As a Platform for DNA Genotyping. Journal of the American Chemical Society, 2013, 135, 5612-5619.	13.7	64
86	Benzene carboxylic acid derivatized graphene oxide nanosheets on natural zeolites as effective adsorbents for cationic dye removal. Journal of Hazardous Materials, 2013, 260, 330-338.	12.4	125
87	Highly conductive interwoven carbon nanotube and silver nanowire transparent electrodes. Science and Technology of Advanced Materials, 2013, 14, 035004.	6.1	40
88	Optimization of physical parameters of 'injected' metal electrodes for capacitively coupled contactless conductivity detection on poly(dimethylsiloxane) microchips. Proceedings of SPIE, 2013, , .	0.8	0
89	Microfluidic devices using thiol-ene polymers. , 2013, , .		1
90	Detection of harmful algal bloom causing microalgae using covalently immobilised capture oligonucleotide probes on glass and poly(dimethylsiloxane) surfaces. Proceedings of SPIE, 2013, , .	0.8	0

#	Article	IF	Citations
91	Effect of Electrolyte and Anode on Dissolved Oxygen Yield in Electrocatalytic Processing of Wastewater. Environmental Engineering Science, 2012, 29, 654-659.	1.6	0
92	Polymerization-Amplified Optical DNA Detection on Porous Silicon Templates. ACS Macro Letters, 2012, 1, 919-921.	4.8	26
93	Aptamer sensor for cocaine using minor groove binder based energy transfer. Analytica Chimica Acta, 2012, 719, 76-81.	5.4	36
94	Functionalization of vertically aligned carbon nanotubes with polystyrene via surface initiated reversible addition fragmentation chain transfer polymerization. Applied Surface Science, 2012, 258, 2836-2843.	6.1	21
95	Molecular Structure of 3-Aminopropyltriethoxysilane Layers Formed on Silanol-Terminated Silicon Surfaces. Journal of Physical Chemistry C, 2012, 116, 6289-6297.	3.1	345
96	Electrochemical fabrication of nanoporous gold. Journal of Materials Chemistry, 2012, 22, 2952-2957.	6.7	24
97	Highâ€performance capillary electrophoretic separation of doubleâ€stranded oligonucleotides using a poly†(ethylpyrrolidine methacrylateâ€ <i>co</i> à€methyl methacrylate)â€coated capillary. Electrophoresis, 2012, 33, 1205-1214.	2.4	13
98	DNA capture-probe based separation of double-stranded polymerase chain reaction amplification products in poly(dimethylsiloxane) microfluidic channels. Biomicrofluidics, 2012, 6, 026503.	2.4	5
99	Electrochemical synthesis of silver oxide nanowires, microplatelets and application as SERS substrate precursors. Electrochimica Acta, 2012, 59, 346-353.	5.2	27
100	Surface modification for PDMSâ€based microfluidic devices. Electrophoresis, 2012, 33, 89-104.	2.4	263
101	High-order graphene oxide nanoarchitectures. Nanoscale, 2011, 3, 3076.	5.6	5
102	Surface modification of poly(dimethylsiloxane) (PDMS) microchannels with DNA capture-probes for potential use in microfluidic DNA analysis systems. Proceedings of SPIE, 2011, , .	0.8	3
103	Stimulus-Responsiveness and Drug Release from Porous Silicon Films ATRP-Grafted with Poly(<i>N</i> -isopropylacrylamide). Langmuir, 2011, 27, 7843-7853.	3.5	108
104	Electrochemistry of polystyrene intercalated vertically aligned single- and double-walled carbon nanotubes on gold electrodes. Electrochemistry Communications, 2011, 13, 1190-1193.	4.7	9
105	Comparison of double-walled with single-walled carbon nanotube electrodes by electrochemistry. Carbon, 2011, 49, 2639-2647.	10.3	27
106	Electrochemically prepared porous silver and its application in surface-enhanced Raman scattering. Journal of Electroanalytical Chemistry, 2011, 659, 151-160.	3.8	26
107	Nanotechnology as a New Tool for Fingermark Detection: A Review. Current Nanoscience, 2011, 7, 153-159.	1.2	33
108	Single walled carbon nanotube network electrodes for dye solar cells. Solar Energy Materials and Solar Cells, 2010, 94, 1665-1672.	6.2	34

#	Article	IF	Citations
109	Variation in performance of surfactant loading and resulting nitrate removal among four selected natural zeolites. Journal of Hazardous Materials, 2010, 183, 616-621.	12.4	91
110	Carbon nanotubes initiate the explosion of porous silicon. Materials Letters, 2010, 64, 2517-2519.	2.6	19
111	Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis, 2010, 31, 2-16.	2.4	692
112	Carbon Nanotubes Anchored to Silicon for Device Fabrication. Advanced Materials, 2010, 22, 557-571.	21.0	27
113	Copper cation transport and scaling of ionic exchange membranes using electrodialysis under electroconvection conditions. Journal of Membrane Science, 2010, 361, 56-62.	8.2	34
114	MORPHOLOGICAL FLEXIBILITY OF COCCONEIS PLACENTULA (BACILLARIOPHYCEAE) NANOSTRUCTURE TO CHANGING SALINITY LEVELS1. Journal of Phycology, 2010, 46, 715-719.	2.3	25
115	Poly(dimethylsiloxane) Surface Modification by Plasma Treatment for DNA Hybridization Applications. Journal of Nanoscience and Nanotechnology, 2010, 10, 7266-7270.	0.9	11
116	Plasma-Enhanced Synthesis of Bioactive Polymeric Coatings from Monoterpene Alcohols: A Combined Experimental and Theoretical Study. Biomacromolecules, 2010, 11, 2016-2026.	5.4	63
117	Chemically Grafted Carbon Nanotube Surface Coverage Gradients. Langmuir, 2010, 26, 18468-18475.	3.5	13
118	Simple surface modification of poly(dimethylsiloxane) for DNA hybridization. Biomicrofluidics, 2010, 4, 046504.	2.4	7
119	Fabrication of self-supporting porous silicon membranes and tuning transport properties by surface functionalization. Nanoscale, 2010, 2, 1756.	5.6	51
120	Single walled carbon nanotube array as working electrode for dye solar cells., 2010,,.		0
121	Water transport through nanoporous materials: Porous silicon and single walled carbon nanotubes. , 2010, , .		1
122	UV Light Stability of α-Cyclodextrin/Resveratrol Host - Guest Complexes and Isomer Stability at Varying pH. Australian Journal of Chemistry, 2009, 62, 921.	0.9	25
123	Electrocatalytic characterization and dye degradation of Nano-TiO2 electrode films fabricated by CVD. Science of the Total Environment, 2009, 407, 5914-5920.	8.0	29
124	Formation of an \hat{l} ±-cyclodextrin/16-mercaptohexadecanoic acid complex and its deposition on gold surfaces. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2009, 63, 267-272.	1.6	4
125	Electroless plated gold as a support for carbon nanotube electrodes. Electrochimica Acta, 2009, 54, 3191-3198.	5.2	19
126	The electrochemical phenomena and kinetics of EDTA–copper wastewater reclamation by electrodeposition and ultrasound. Separation and Purification Technology, 2009, 68, 216-221.	7.9	37

#	Article	IF	CITATIONS
127	Phenanthrene removal in unsaturated soils treated by electrokinetics with different surfactants—Triton X-100 and rhamnolipid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 348, 157-163.	4.7	33
128	Cadmium sulfide quantum dot/chitosan nanocomposites for latent fingermark detection. Forensic Science International, 2009, 187, 97-102.	2.2	75
129	Fabrication and electrochemical behavior of vertically-aligned carbon nanotube electrodes covalently attached to p-type silicon via a thioester linkage. Materials Letters, 2009, 63, 757-760.	2.6	13
130	Solution chemistry approach to fabricate vertically aligned carbon nanotubes on gold wires: towards vertically integrated electronics. Nanotechnology, 2008, 19, 445301.	2.6	17
131	Preparation and characterization of multiwalled carbon nanotube (MWCNT)/polymer nanostructured materials. Proceedings of SPIE, 2008, , .	0.8	1
132	One-step surface modification of poly(dimethylsiloxane) by undecylenic acid., 2008,,.		2
133	Preparation and characterisation of vertically aligned single-walled carbon nanotube arrays on porous silicon., 2008,,.		1
134	Water-soluble Carbon Nanotube Chain-transfer Agents (CNT-CTAs). Chemistry Letters, 2007, 36, 1172-1173.	1.3	17
135	Microfabrication of PDMS microchannels using SU-8/PMMA moldings and their sealing to polystyrene substrates. Smart Materials and Structures, 2007, 16, 367-371.	3.5	43
136	HF/Microwave Impedance of Carbon Nanotube Films. , 2006, , .		0
136	HF/Microwave Impedance of Carbon Nanotube Films., 2006, , . Dynamic electrical properties of polymer-carbon nanotube composites: Enhancement through covalent bonding. Journal of Materials Research, 2006, 21, 1071-1077.	2.6	O 53
	Dynamic electrical properties of polymer-carbon nanotube composites: Enhancement through	2.6	
137	Dynamic electrical properties of polymer-carbon nanotube composites: Enhancement through covalent bonding. Journal of Materials Research, 2006, 21, 1071-1077. Magnetic properties of multiwalled carbon nanotubes as a function of acid treatment. Journal of		53
137	Dynamic electrical properties of polymer-carbon nanotube composites: Enhancement through covalent bonding. Journal of Materials Research, 2006, 21, 1071-1077. Magnetic properties of multiwalled carbon nanotubes as a function of acid treatment. Journal of Magnetism and Magnetic Materials, 2006, 302, 378-381. Nanosized Pt-Co Catalysts for the Preferential CO Oxidation. Journal of Nanoscience and	2.3	53 26
137 138 139	Dynamic electrical properties of polymer-carbon nanotube composites: Enhancement through covalent bonding. Journal of Materials Research, 2006, 21, 1071-1077. Magnetic properties of multiwalled carbon nanotubes as a function of acid treatment. Journal of Magnetism and Magnetic Materials, 2006, 302, 378-381. Nanosized Pt-Co Catalysts for the Preferential CO Oxidation. Journal of Nanoscience and Nanotechnology, 2006, 6, 3567-3571. Second-order overtone and combination modes in the LOLA region of acid treated double-walled	2.3	53 26 8
137 138 139	Dynamic electrical properties of polymer-carbon nanotube composites: Enhancement through covalent bonding. Journal of Materials Research, 2006, 21, 1071-1077. Magnetic properties of multiwalled carbon nanotubes as a function of acid treatment. Journal of Magnetism and Magnetic Materials, 2006, 302, 378-381. Nanosized Pt-Co Catalysts for the Preferential CO Oxidation. Journal of Nanoscience and Nanotechnology, 2006, 6, 3567-3571. Second-order overtone and combination modes in the LOLA region of acid treated double-walled carbon nanotubes. Journal of Chemical Physics, 2006, 125, 121103. Electron Spin Resonance and Raman Scattering Spectroscopy of Multi-Walled Carbon Nanotubes: A	2.3 0.9 3.0	53 26 8 13
137 138 139 140	Dynamic electrical properties of polymer-carbon nanotube composites: Enhancement through covalent bonding. Journal of Materials Research, 2006, 21, 1071-1077. Magnetic properties of multiwalled carbon nanotubes as a function of acid treatment. Journal of Magnetism and Magnetic Materials, 2006, 302, 378-381. Nanosized Pt-Co Catalysts for the Preferential CO Oxidation. Journal of Nanoscience and Nanotechnology, 2006, 6, 3567-3571. Second-order overtone and combination modes in the LOLA region of acid treated double-walled carbon nanotubes. Journal of Chemical Physics, 2006, 125, 121103. Electron Spin Resonance and Raman Scattering Spectroscopy of Multi-Walled Carbon Nanotubes: A Function of Acid Treatment. Journal of Nanoscience and Nanotechnology, 2006, 6, 135-140. Phase transitions in octanethiol-capped Ag nanocluster microfilm assemblies. Thermochimica Acta,	2.3 0.9 3.0	53 26 8 13

#	Article	IF	Citations
145	Functionalization of carbon nanotubes using phenosafranin. Journal of Chemical Physics, 2004, 120, 4886-4889.	3.0	40
146	Templateless Room-Temperature Assembly of Nanowire Networks from Nanoparticles. Langmuir, 2004, 20, 5583-5587.	3.5	98
147	Structural and Spectral Features of Selenium Nanospheres Produced by Se-Respiring Bacteria. Applied and Environmental Microbiology, 2004, 70, 52-60.	3.1	421
148	Hydrophobic Anchoring of Monolayer-Protected Gold Nanoclusters to Carbon Nanotubes. Nano Letters, 2003, 3, 279-282.	9.1	211
149	Chemistry of Sodium Lactate Formation under Simulated Alumina Refinery Conditions. Industrial & Lactate Formation and Simulated Alumina Refinery Conditions. Industrial & Lactate Formation and Simulated Alumina Refinery Conditions. Industrial & Lactate Formation and Simulated Alumina Refinery Conditions. Industrial & Lactate Formation and Simulated Alumina Refinery Conditions. Industrial & Lactate Formation and Simulated Alumina Refinery Conditions. Industrial & Lactate Formation and Simulated Alumina Refinery Conditions. Industrial & Lactate Formation and Simulated Alumina Refinery Conditions. Industrial & Lactate Formation and Simulated Alumina Refinery Conditions. Industrial & Lactate Formation and Simulated Alumina Refinery Conditions. Industrial & Lactate Formation and Simulated Alumina Refinery Conditions. Industrial & Lactate Formation and Simulated Alumina Refinery Conditions. Industrial & Lactate Formation and Simulated Alumina Refinery Conditions. Industrial & Lactate Formation and Simulated Alumina Refinery Conditions. Industrial & Lactate Formation and Simulated Alumina Refinery Conditions. Industrial & Lactate Formation and Simulated Alumina Refinery Conditions. Industrial & Lactate Formation and Simulated Alumina Refinery Conditions. Industrial & Lactate Formation and Simulated Alumina Refinery Condition and Simula	3.7	4
150	Self-assembled subnanolayers as interfacial adhesion enhancers and diffusion barriers for integrated circuits. Applied Physics Letters, 2003, 83, 383-385.	3.3	107
151	Near-Zero-Thickness Self-Assembled Molecular Layers for Future Device Structures: Interfacial Adhesion and Diffusion Barrier Properties. Materials Science Forum, 2003, 426-432, 3487-3492.	0.3	3
152	MACROMOLECULES IN THE BAYER PROCESS. Reviews in Chemical Engineering, 2003, 19, .	4.4	19
153	Polyelectrolyte nanolayers as diffusion barriers for Cu metallization. Applied Physics Letters, 2003, 83, 3302-3304.	3.3	30
154	Phase Transitions in Octanethiol-Capped Ag, Au and CdS Nanocluster Assemblies. Materials Research Society Symposia Proceedings, 2002, 739, 641.	0.1	0
155	Bayer Poisons: Degradation of Klason Lignin in Sodium Hydroxide at 145 °C. Industrial & Degradation of Klason Lignin in Sodium Hydroxide at 145 °C. Industrial & Degradation of Klason Lignin in Sodium Hydroxide at 145 °C. Industrial & Degradation of Klason Lignin in Sodium Hydroxide at 145 °C. Industrial & Degradation of Klason Lignin in Sodium Hydroxide at 145 °C. Industrial & Degradation of Klason Lignin in Sodium Hydroxide at 145 °C. Industrial & Degradation of Klason Lignin in Sodium Hydroxide at 145 °C. Industrial & Degradation of Klason Lignin in Sodium Hydroxide at 145 °C. Industrial & Degradation of Klason Lignin in Sodium Hydroxide at 145 °C. Industrial & Degradation of Klason Lignin in Sodium Hydroxide at 145 °C. Industrial & Degradation of Klason Lignin in Sodium Hydroxide at 145 °C. Industrial & Degradation of Klason Lignin in Sodium Hydroxide at 145 °C. Industrial & Degradation of Klason Lignin in Sodium Hydroxide at 145 °C. Industrial & Degradation of Klason Lignin in Sodium Hydroxide at 145 °C. Industrial & Degradation Industr	3.7	13
156	Carbon Exchange in Hot Alkaline Degradation of Glucose. Journal of Organic Chemistry, 2002, 67, 8469-8474.	3.2	49
157	Bayer Poisons:  Degradation of Angiosperm and Gymnosperm Water-Soluble Extracts in Sodium Hydroxide at 145 °C. Industrial & Engineering Chemistry Research, 2002, 41, 2842-2852.	3.7	14
158	Structure of Molecular Weight Fractions of Bayer Humic Substances. 1. Low-Temperature Products. Industrial & Engineering Chemistry Research, 1999, 38, 4663-4674.	3.7	35
159	Active Learning in Bayesian Neural Networks for Bandgap Predictions of Novel Van der Waals Heterostructures. Advanced Intelligent Systems, 0, , 2100080.	6.1	7
160	Toxicity of thiolated silica nanoparticles modified with sulfobetaine methacrylate for potential use in chemotherapy drug conjugation. Journal of Applied Pharmaceutical Science, 0, , .	1.0	0