
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2419805/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulation of Molecular Orientations of A–D–A Nonfullerene Acceptors for Organic Photovoltaics: The Role of Endâ€Group π–π Stacking. Advanced Functional Materials, 2022, 32, 2108551.	7.8	20
2	Rational strategy of exciplex-type thermally activated delayed fluorescent (TADF) emitters: Stacking of donor and acceptor units of the intramolecular TADF molecule. Chemical Engineering Journal, 2022, 433, 133546.	6.6	11
3	Mechanism study on organic ternary photovoltaics with 18.3% certified efficiency: from molecule to device. Energy and Environmental Science, 2022, 15, 855-865.	15.6	62
4	Ladder Oxygenation of Group VIII Metal Clusters and the Formation of Metalloxocubes M ₁₃ O ₈ ⁺ . Journal of Physical Chemistry Letters, 2022, 13, 733-739.	2.1	5
5	Impact of n-Doping Mechanisms on the Molecular Packing and Electron Mobilities of Molecular Semiconductors for Organic Thermoelectrics. Organic Materials, 2022, 4, 1-6.	1.0	0
6	Dual-acceptor thermally activated delayed fluorescence emitters: Achieving high efficiency and long lifetime in orange-red OLEDs. Chemical Engineering Journal, 2022, 434, 134728.	6.6	10
7	Exciton Binding Energies in Organic Photovoltaic Materials: A Theoretical Perspective. Journal of Physical Chemistry C, 2022, 126, 14-21.	1.5	16
8	Thermally Stable Organic Fieldâ€Effect Transistors Based on Asymmetric BTBT Derivatives for High Performance Solarâ€Blind Photodetectors. Advanced Science, 2022, 9, e2106085.	5.6	16
9	Modulating Nonâ€Radiative Deactivation via Acceptor Reconstruction to Expand Highâ€Efficient Red Thermally Activated Delayed Fluorescent Emitters. Advanced Optical Materials, 2022, 10, .	3.6	11
10	Case Study of Metal Coordination to the Charge Transport and Thermal Stability of Porphyrin-Based Field-Effect Transistors. , 2022, 4, 548-553.		4
11	Molecular Insight into Efficient Charge Generation in Low-Driving-Force Nonfullerene Organic Solar Cells. Accounts of Chemical Research, 2022, 55, 869-877.	7.6	46
12	Fusing Thienoisoindigo to the Conjugated Ribbons with Strong Absorption in the Second Near-Infrared Window. CCS Chemistry, 2022, 4, 3497-3504.	4.6	11
13	Stable organic light-emitting diodes based on thioxanthone derivative with shortened photoluminescence delayed lifetime. Organic Electronics, 2022, 104, 106490.	1.4	2
14	Nonâ€Equal Ratio Cocrystal Engineering to Improve Charge Transport Characteristics of Organic Semiconductors: A Case Study on Indolo[2,3â€a]carbazole. Angewandte Chemie - International Edition, 2022, 61, .	7.2	7
15	Enhancing Transition Dipole Moments of Heterocyclic Semiconductors via Rational Nitrogenâ€&ubstitution for Sensitive Near Infrared Detection. Advanced Materials, 2022, 34, e2201600.	11.1	19
16	Nonâ€Equal Ratio Cocrystal Engineering to Improve Charge Transport Characteristics of Organic Semiconductors: A Case Study on Indolo[2,3â€a]carbazole. Angewandte Chemie, 2022, 134, .	1.6	3
17	Single photovoltaic material solar cells with enhanced exciton dissociation and extended electron diffusion. Cell Reports Physical Science, 2022, 3, 100895.	2.8	13
18	The Intrinsic Role of the Fusion Mode and Electronâ€Deficient Core in Fusedâ€Ring Electron Acceptors for Organic Photovoltaics. Angewandte Chemie - International Edition, 2022, 61, .	7.2	25

#	Article	IF	CITATIONS
19	The Intrinsic Role of the Fusion Mode and Electronâ€Deficient Core in Fusedâ€Ring Electron Acceptors for Organic Photovoltaics. Angewandte Chemie, 2022, 134, .	1.6	4
20	Cocrystallization Tailoring Multiple Radiative Decay Pathways for Amplified Spontaneous Emission. Angewandte Chemie, 2021, 133, 285-293.	1.6	7
21	Cocrystallization Tailoring Multiple Radiative Decay Pathways for Amplified Spontaneous Emission. Angewandte Chemie - International Edition, 2021, 60, 281-289.	7.2	33
22	A Design Principle for Polar Assemblies with C ₃ ‣ym Bowl‣haped Ï€â€Conjugated Molecules. Angewandte Chemie - International Edition, 2021, 60, 3261-3267.	7.2	12
23	A Design Principle for Polar Assemblies with C 3 ‣ym Bowlâ€5haped π onjugated Molecules. Angewandte Chemie, 2021, 133, 3298-3304.	1.6	3
24	Observing long-range non-fullerene backbone ordering in real-space to improve the charge transport properties of organic solar cells. Journal of Materials Chemistry A, 2021, 9, 16733-16742.	5.2	16
25	Two-Dimensional and Subnanometer-Thin Quasi-Copper-Sulfide Semiconductor Formed upon Copper–Copper Bonding. ACS Nano, 2021, 15, 873-883.	7.3	12
26	Origin of High-Efficiency Near-Infrared Organic Thermally Activated Delayed Fluorescence: The Role of Electronic Polarization. Journal of Physical Chemistry C, 2021, 125, 1249-1255.	1.5	11
27	Achieving 16.68% efficiency ternary as-cast organic solar cells. Science China Chemistry, 2021, 64, 581-589.	4.2	99
28	Importance of molecular rigidity on reducing the energy losses in organic solar cells: implication from geometric relaxations of A–D–A electron acceptors. Materials Chemistry Frontiers, 2021, 5, 3903-3910.	3.2	16
29	Turning-on persistent luminescence out of chromium-doped zinc aluminate nanoparticles by instilling antisite defects under mild conditions. Nanoscale, 2021, 13, 8514-8523.	2.8	10
30	Molecular Origin of Carbon–Oxygenâ€Bridge Isomerization Induced Reverse Aggregation Ability in Acceptor–Donor–Acceptor Electron Acceptors for Organic Solar Cells. Solar Rrl, 2021, 5, 2000780.	3.1	5
31	New Synthetic Approaches to <i>N</i> â€Aryl and Ï€â€Expanded Diketopyrrolopyrroles as New Building Blocks for Organic Optoelectronic Materials. Angewandte Chemie - International Edition, 2021, 60, 10700-10708.	7.2	33
32	Origin of Intramolecular Lowâ€Threshold Amplified Spontaneous Emission. Advanced Optical Materials, 2021, 9, 2001956.	3.6	5
33	New Synthetic Approaches to N â€Aryl and Ï€â€Expanded Diketopyrrolopyrroles as New Building Blocks for Organic Optoelectronic Materials. Angewandte Chemie, 2021, 133, 10795-10803.	1.6	3
34	Innentitelbild: New Synthetic Approaches to <i>N</i> â€Aryl and Ï€â€Expanded Diketopyrrolopyrroles as New Building Blocks for Organic Optoelectronic Materials (Angew. Chem. 19/2021). Angewandte Chemie, 2021, 133, 10526-10526.	1.6	0
35	Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nature Energy, 2021, 6, 605-613.	19.8	1,307
36	Alignment of linear polymeric grains for highly stable N-type thin-film transistors. CheM, 2021, 7, 1258-1270.	5.8	33

#	Article	IF	CITATIONS
37	Sub-5 nm single crystalline organic p–n heterojunctions. Nature Communications, 2021, 12, 2774.	5.8	39
38	Organic Solar Cells with 18% Efficiency Enabled by an Alloy Acceptor: A Twoâ€inâ€One Strategy. Advanced Materials, 2021, 33, e2100830.	11.1	323
39	Small Exciton Binding Energies Enabling Direct Charge Photogeneration Towards Lowâ€Drivingâ€Force Organic Solar Cells. Angewandte Chemie, 2021, 133, 15476-15481.	1.6	22
40	Electrical Loss Management by Molecularly Manipulating Dopantâ€free Poly(3â€hexylthiophene) towards 16.93 % CsPbl ₂ Br Solar Cells. Angewandte Chemie, 2021, 133, 16524-16529.	1.6	18
41	Small Exciton Binding Energies Enabling Direct Charge Photogeneration Towards Lowâ€Drivingâ€Force Organic Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 15348-15353.	7.2	121
42	Electrical Loss Management by Molecularly Manipulating Dopantâ€free Poly(3â€hexylthiophene) towards 16.93 % CsPbl ₂ Br Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 16388-16393.	7.2	57
43	Y6 and its derivatives: molecular design and physical mechanism. National Science Review, 2021, 8, nwab121.	4.6	40
44	A Bioinspired Adhesiveâ€Integratedâ€Agent Strategy for Constructing Robust Gasâ€Sensing Arrays. Advanced Materials, 2021, 33, e2106067.	11.1	11
45	Two-Channel Space Charge Transfer-Induced Thermally Activated Delayed Fluorescent Materials for Efficient OLEDs with Low Efficiency Roll-Off. ACS Applied Materials & Interfaces, 2021, 13, 49066-49075.	4.0	17
46	Increasing donor-acceptor spacing for reduced voltage loss in organic solar cells. Nature Communications, 2021, 12, 6679.	5.8	56
47	Hydrogen-Rich 2D Halide Perovskite Scintillators for Fast Neutron Radiography. Journal of the American Chemical Society, 2021, 143, 21302-21311.	6.6	27
48	Heteroatom substitution-induced asymmetric A–D–A type non-fullerene acceptor for efficient organic solar cells. Journal of Energy Chemistry, 2020, 40, 144-150.	7.1	45
49	Electronic polarization in dipolar organic molecular semiconductors: The case study of 1,2,3,4-tetrafluoro-6,7-dimethylnaphthalene crystal. Chinese Chemical Letters, 2020, 31, 797-800.	4.8	4
50	Two-dimensional electronic and charge-transport properties of a monolayer organic crystal: Impacts of the collinear transfer-integral correlations. Organic Electronics, 2020, 78, 105609.	1.4	2
51	Dicyclohepta[<i>ijkl</i> , <i>uvwx</i>]rubicene with Two Pentagons and Two Heptagons as a Stable and Planar Nonâ€benzenoid Nanographene. Angewandte Chemie, 2020, 132, 3557-3561.	1.6	33
52	Dicyclohepta[<i>ijkl</i> , <i>uvwx</i>]rubicene with Two Pentagons and Two Heptagons as a Stable and Planar Nonâ€benzenoid Nanographene. Angewandte Chemie - International Edition, 2020, 59, 3529-3533.	7.2	82
53	Clusteringâ€Triggered Efficient Roomâ€Temperature Phosphorescence from Nonconventional Luminophores. ChemPhysChem, 2020, 21, 36-42.	1.0	39
54	Electron Hopping by Interfacing Semiconducting Graphdiyne Nanosheets and Redox Molecules for Selective Electrocatalysis. Journal of the American Chemical Society, 2020, 142, 2074-2082.	6.6	63

#	Article	IF	CITATIONS
55	Accurate Determination of the Minimum HOMO Offset for Efficient Charge Generation using Organic Semiconducting Alloys. Advanced Energy Materials, 2020, 10, 1903298.	10.2	92
56	Intra-chain and inter-chain synergistic effect gives rise to high electron mobilities for naphthalenediimide based copolymers. Journal of Materials Chemistry C, 2020, 8, 16527-16532.	2.7	10
57	Effective Modulation of Exciton Binding Energies in Polymorphs of a Small-Molecule Acceptor for Organic Photovoltaics. Journal of Physical Chemistry Letters, 2020, 11, 10227-10232.	2.1	25
58	Unraveling the influence of non-fullerene acceptor molecular packing on photovoltaic performance of organic solar cells. Nature Communications, 2020, 11, 6005.	5.8	112
59	Longer and Stronger: Improving Persistent Luminescence in Size-Tuned Zinc Gallate Nanoparticles by Alcohol-Mediated Chromium Doping. ACS Nano, 2020, 14, 12113-12124.	7.3	50
60	Ferrocene as a highly volatile solid additive in non-fullerene organic solar cells with enhanced photovoltaic performance. Energy and Environmental Science, 2020, 13, 5117-5125.	15.6	93
61	Highly Efficient, Red Delayed Fluorescent Emitters with Exothermic Reverse Intersystem Crossing via Hot Excited Triplet States. Journal of Physical Chemistry C, 2020, 124, 20816-20826.	1.5	14
62	Multi-channel exciton dissociation in D18/Y6 complexes for high-efficiency organic photovoltaics. Journal of Materials Chemistry A, 2020, 8, 20408-20413.	5.2	35
63	Concurrent improvement in <i>J</i> _{SC} and <i>V</i> _{OC} in high-efficiency ternary organic solar cells enabled by a red-absorbing small-molecule acceptor with a high LUMO level. Energy and Environmental Science, 2020, 13, 2115-2123.	15.6	164
64	Triplet Acceptors with a Dâ€A Structure and Twisted Conformation for Efficient Organic Solar Cells. Angewandte Chemie - International Edition, 2020, 59, 15043-15049.	7.2	77
65	Triplet Acceptors with a Dâ€A Structure and Twisted Conformation for Efficient Organic Solar Cells. Angewandte Chemie, 2020, 132, 15153-15159.	1.6	11
66	Bioinspired Multifunctional Organic Transistors Based on Natural Chlorophyll/Organic Semiconductors. Advanced Materials, 2020, 32, e2001227.	11.1	133
67	Suppressing triplet decay in quinoidal singlet fission materials: the role of molecular planarity and rigidity. Physical Chemistry Chemical Physics, 2020, 22, 7546-7551.	1.3	4
68	Barrier-Free Charge Separation Enabled by Electronic Polarization in High-Efficiency Non-fullerene Organic Solar Cells. Journal of Physical Chemistry Letters, 2020, 11, 2585-2591.	2.1	47
69	Achieving an Efficient and Stable Morphology in Organic Solar Cells Via Fine-Tuning the Side Chains of Small-Molecule Acceptors. Chemistry of Materials, 2020, 32, 2593-2604.	3.2	91
70	Designing the efficient lithium diffusion and storage channels based on graphdiyne. Carbon, 2020, 162, 579-585.	5.4	26
71	Visualization of Crystallographic Orientation and Twist Angles in Two-Dimensional Crystals with an Optical Microscope. Nano Letters, 2020, 20, 6059-6066.	4.5	6
72	Controllable Synthesis of Graphdiyne Nanoribbons. Angewandte Chemie, 2020, 132, 4938-4943.	1.6	14

#	Article	IF	CITATIONS
73	Controllable Synthesis of Graphdiyne Nanoribbons. Angewandte Chemie - International Edition, 2020, 59, 4908-4913.	7.2	71
74	Monolayer Twoâ€dimensional Molecular Crystals for an Ultrasensitive OFETâ€based Chemical Sensor. Angewandte Chemie, 2020, 132, 4410-4414.	1.6	10
75	Monolayer Twoâ€dimensional Molecular Crystals for an Ultrasensitive OFETâ€based Chemical Sensor. Angewandte Chemie - International Edition, 2020, 59, 4380-4384.	7.2	90
76	Doping mechanisms of N-DMBI-H for organic thermoelectrics: hydrogen removal <i>vs.</i> hydride transfer. Journal of Materials Chemistry A, 2020, 8, 8323-8328.	5.2	66
77	Reducing the Singletâ^'Triplet Energy Gap by Endâ€Group Ï€â^'Ï€ Stacking Toward Highâ€Efficiency Organic Photovoltaics. Advanced Materials, 2020, 32, e2000975.	11.1	77
78	Highâ€Performance Fluorinated Fusedâ€Ring Electron Acceptor with 3D Stacking and Exciton/Charge Transport. Advanced Materials, 2020, 32, e2000645.	11.1	122
79	Experimental Evidence for "Hot Exciton―Thermally Activated Delayed Fluorescence Emitters. Advanced Optical Materials, 2019, 7, 1801190.	3.6	56
80	Highâ€Yield and Damageâ€free Exfoliation of Layered Graphdiyne in Aqueous Phase. Angewandte Chemie, 2019, 131, 756-760.	1.6	10
81	Electronic, optical, and charge transport properties of A-π-A electron acceptors for organic solar cells: Impact of anti-aromatic π structures. Chinese Chemical Letters, 2019, 30, 211-216.	4.8	7
82	Achieving Small Exciton Binding Energies in Small Molecule Acceptors for Organic Solar Cells: Effect of Molecular Packing. Journal of Physical Chemistry Letters, 2019, 10, 4888-4894.	2.1	60
83	Superexchange Induced Charge Transport in Organic Donor–Acceptor Cocrystals and Copolymers: A Theoretical Perspective. Chemistry of Materials, 2019, 31, 6424-6434.	3.2	39
84	Thermal-Driven Phase Separation of Double-Cable Polymers Enables Efficient Single-Component Organic Solar Cells. Joule, 2019, 3, 1765-1781.	11.7	124
85	Synthesis and Supramolecular Assembly of a Terrylene Diimide Derivative Decorated With Long Branched Alkyl Chains. Frontiers in Chemistry, 2019, 7, 473.	1.8	4
86	Impact of polymorphism on the optoelectronic properties of a low-bandgap semiconducting polymer. Nature Communications, 2019, 10, 2867.	5.8	89
87	Identification of FeN ₄ as an Efficient Active Site for Electrochemical N ₂ Reduction. ACS Catalysis, 2019, 9, 7311-7317.	5.5	220
88	Selenium‣ubstituted Diketopyrrolopyrrole Polymer for Highâ€Performance pâ€Type Organic Thermoelectric Materials. Angewandte Chemie - International Edition, 2019, 58, 18994-18999.	7.2	136
89	Selenium‣ubstituted Diketopyrrolopyrrole Polymer for Highâ€Performance pâ€Type Organic Thermoelectric Materials. Angewandte Chemie, 2019, 131, 19170-19175.	1.6	18
90	Angular-Fused Dithianaphthylquinone Derivative: Selective Synthesis, Thermally Activated Delayed Fluorescence Property, and Application in Organic Light-Emitting Diode. Organic Letters, 2019, 21, 8832-8836.	2.4	11

#	Article	IF	CITATIONS
91	Rational Tuning of Molecular Interaction and Energy Level Alignment Enables Highâ€Performance Organic Photovoltaics. Advanced Materials, 2019, 31, e1904215.	11.1	162
92	Interfacial Passivation for Perovskite Solar Cells: The Effects of the Functional Group in Phenethylammonium Iodide. ACS Energy Letters, 2019, 4, 2913-2921.	8.8	176
93	Phthalimide-based "D–N–A―emitters with thermally activated delayed fluorescence and isomer-dependent room-temperature phosphorescence properties. Chemical Communications, 2019, 55, 12172-12175.	2.2	21
94	Cyclohexyl-Substituted Anthracene Derivatives for High Thermal Stability Organic Semiconductors. Frontiers in Chemistry, 2019, 7, 11.	1.8	17
95	Origin of Photocurrent and Voltage Losses in Organic Solar Cells. Advanced Theory and Simulations, 2019, 2, 1900067.	1.3	46
96	Nature of the Lowest Singlet and Triplet Excited States of Organic Thermally Activated Delayed Fluorescence Emitters: A Self-Consistent Quantum Mechanics/Embedded Charge Study. Chemistry of Materials, 2019, 31, 6665-6671.	3.2	46
97	Solution-processed white organic light-emitting diodes with bi-component emitting layer based on symmetry blue spiro-sulfone derivative. Organic Electronics, 2019, 71, 24-30.	1.4	19
98	Local Excitation/Charge-Transfer Hybridization Simultaneously Promotes Charge Generation and Reduces Nonradiative Voltage Loss in Nonfullerene Organic Solar Cells. Journal of Physical Chemistry Letters, 2019, 10, 2911-2918.	2.1	73
99	Electronic and optical properties of ï€-bridged perylenediimide derivatives: the role of ï€-bridges. Journal of Materials Chemistry A, 2019, 7, 12532-12537.	5.2	9
100	Preparation and structure study of phosphorus-doped porous graphdiyne and its efficient lithium storage application. 2D Materials, 2019, 6, 035020.	2.0	52
101	Air‧table nâ€Type Thermoelectric Materials Enabled by Organic Diradicaloids. Angewandte Chemie, 2019, 131, 5012-5016.	1.6	64
102	Substitution Conformation Balances the Oscillator Strength and Singlet–Triplet Energy Gap for Highly Efficient D–A–D Thermally Activated Delayed Fluorescence Emitters. Advanced Optical Materials, 2019, 7, 1801767.	3.6	29
103	Intermolecular Interaction-Induced Thermally Activated Delayed Fluorescence Based on a Thiochromone Derivative. Journal of Physical Chemistry Letters, 2019, 10, 1888-1893.	2.1	23
104	Sulfur vs. tellurium: the heteroatom effects on the nonfullerene acceptors. Science China Chemistry, 2019, 62, 897-903.	4.2	10
105	Airâ€Stable nâ€Type Thermoelectric Materials Enabled by Organic Diradicaloids. Angewandte Chemie - International Edition, 2019, 58, 4958-4962.	7.2	92
106	Organic Semiconducting Alloys with Tunable Energy Levels. Journal of the American Chemical Society, 2019, 141, 6561-6568.	6.6	65
107	Titelbild: Seleniumâ€Substituted Diketopyrrolopyrrole Polymer for Highâ€Performance pâ€Type Organic Thermoelectric Materials (Angew. Chem. 52/2019). Angewandte Chemie, 2019, 131, 18893-18893.	1.6	1
108	Conformational and aggregation properties of PffBT4T polymers: atomistic insight into the impact of alkyl-chain branching positions. Journal of Materials Chemistry C, 2019, 7, 14198-14204.	2.7	15

#	Article	IF	CITATIONS
109	Highâ€Performance Ambipolar Polymers Based on Electronâ€Withdrawing Group Substituted Bayâ€Annulated Indigo. Advanced Functional Materials, 2019, 29, 1804839.	7.8	29
110	Direct Synthesis of Crystalline Graphdiyne Analogue Based on Supramolecular Interactions. Journal of the American Chemical Society, 2019, 141, 48-52.	6.6	60
111	Improving the Electron Mobility of ITIC by Endâ€Group Modulation: The Role of Fluorination and Ï€â€Extension. Solar Rrl, 2019, 3, 1800251.	3.1	32
112	Impact of alkyl chain branching positions on molecular packing and electron transport of dimeric perylenediimide derivatives. Journal of Energy Chemistry, 2019, 35, 138-143.	7.1	18
113	High‥ield and Damageâ€free Exfoliation of Layered Graphdiyne in Aqueous Phase. Angewandte Chemie - International Edition, 2019, 58, 746-750.	7.2	79
114	Isomeryâ€Dependent Miscibility Enables Highâ€Performance Allâ€Smallâ€Molecule Solar Cells. Small, 2019, 15, 1804271.	5.2	50
115	Highly efficient white light-emitting diodes with a bi-component emitting layer based on blue and yellow thermally activated delayed fluorescence emitters. Journal of Materials Chemistry C, 2018, 6, 2951-2956.	2.7	26
116	Regulation of excitation transitions by molecular design endowing full-color-tunable emissions with unexpected high quantum yields for bioimaging application. Science China Chemistry, 2018, 61, 418-426.	4.2	2
117	A nonfullerene acceptor utilizing a novel asymmetric multifused-ring core unit for highly efficient organic solar cells. Journal of Materials Chemistry C, 2018, 6, 4873-4877.	2.7	73
118	Charge Mobility Enhancement for Conjugated DPP-Selenophene Polymer by Simply Replacing One Bulky Branching Alkyl Chain with Linear One at Each DPP Unit. Chemistry of Materials, 2018, 30, 3090-3100.	3.2	107
119	Innenrücktitelbild: Synthesis and Electronic Structure of Boronâ€Graphdiyne with an spâ€Hybridized Carbon Skeleton and Its Application in Sodium Storage (Angew. Chem. 15/2018). Angewandte Chemie, 2018, 130, 4169-4169.	1.6	7
120	Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution. Nature Communications, 2018, 9, 1460.	5.8	781
121	Synthesis and Electronic Structure of Boronâ€Graphdiyne with an spâ€Hybridized Carbon Skeleton and Its Application in Sodium Storage. Angewandte Chemie, 2018, 130, 4032-4037.	1.6	47
122	Highly efficient blue organic light-emitting diodes from pyrimidine-based thermally activated delayed fluorescence emitters. Journal of Materials Chemistry C, 2018, 6, 2351-2359.	2.7	58
123	From Molecular Packing Structures to Electronic Processes: Theoretical Simulations for Organic Solar Cells. Advanced Energy Materials, 2018, 8, 1702743.	10.2	93
124	Copolymers of Bis-Diketopyrrolopyrrole and Benzothiadiazole Derivatives for High-Performance Ambipolar Field-Effect Transistors on Flexible Substrates. ACS Applied Materials & Interfaces, 2018, 10, 25858-25865.	4.0	27
125	Decay of the Lowest Triplet State in Singlet-Fission Molecular Materials: A Case Study on Quinoidal Bithiophenes. Journal of Physical Chemistry C, 2018, 122, 3748-3755.	1.5	6
126	Synthesis and Electronic Structure of Boronâ€Graphdiyne with an spâ€Hybridized Carbon Skeleton and Its Application in Sodium Storage. Angewandte Chemie - International Edition, 2018, 57, 3968-3973.	7.2	166

#	Article	IF	CITATIONS
127	MOlecular MAterials Property Prediction Package (MOMAP) 1.0: a software package for predicting the luminescent properties and mobility of organic functional materials. Molecular Physics, 2018, 116, 1078-1090.	0.8	222
128	Molecular Dual-Rotators with Large Consecutive Emission Chromism for Visualized and High-Pressure Sensing. ACS Omega, 2018, 3, 717-723.	1.6	1
129	Novel π-Conjugated Polymer Based on an Extended Thienoquinoid. Chemistry of Materials, 2018, 30, 319-323.	3.2	17
130	Tuning transport performance in two-dimensional metal-organic framework semiconductors: Role of the metal <i>d</i> band. Applied Physics Letters, 2018, 112, .	1.5	53
131	Impact of Phonon Dispersion on Nonlocal Electron–Phonon Couplings in Organic Semiconductors: The Naphthalene Crystal as a Case Study. Journal of Physical Chemistry C, 2018, 122, 44-49.	1.5	18
132	Tunable Electron Donating and Accepting Properties Achieved by Modulating the Steric Hindrance of Side Chains in A-D-A Small-Molecule Photovoltaic Materials. Chemistry of Materials, 2018, 30, 619-628.	3.2	49
133	N-doped graphdiyne for high-performance electrochemical electrodes. Nano Energy, 2018, 44, 144-154.	8.2	182
134	Origin of High Efficiencies for Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes: Atomistic Insight into Molecular Orientation and Torsional Disorder. Journal of Physical Chemistry C, 2018, 122, 27191-27197.	1.5	48
135	Suppressing charge recombination in small-molecule ternary organic solar cells by modulating donor–acceptor interfacial arrangements. Physical Chemistry Chemical Physics, 2018, 20, 24570-24576.	1.3	13
136	Highly Conducting Neutral Coordination Polymer with Infinite Two-Dimensional Silver–Sulfur Networks. Journal of the American Chemical Society, 2018, 140, 15153-15156.	6.6	97
137	Exciton Binding Energies of Nonfullerene Small Molecule Acceptors: Implication for Exciton Dissociation Driving Forces in Organic Solar Cells. Journal of Physical Chemistry C, 2018, 122, 22309-22316.	1.5	93
138	Atomistic Insight Into Donor/Acceptor Interfaces in Highâ€Efficiency Nonfullerene Organic Solar Cells. Solar Rrl, 2018, 2, 1800190.	3.1	47
139	Effect of donor length on electronic structures and charge transport polarity for DTDPP-based D–A copolymers: a computational study based on a super-exchange model. Journal of Materials Chemistry A, 2018, 6, 11985-11993.	5.2	19
140	Optimized Fibril Network Morphology by Precise Sideâ€Chain Engineering to Achieve Highâ€Performance Bulkâ€Heterojunction Organic Solar Cells. Advanced Materials, 2018, 30, e1707353.	11.1	271
141	Boosting the electron mobilities of dimeric perylenediimides by simultaneously enhancing intermolecular and intramolecular electronic interactions. Journal of Materials Chemistry A, 2018, 6, 14224-14230.	5.2	21
142	Bottom-up growth of n-type monolayer molecular crystals on polymeric substrate for optoelectronic device applications. Nature Communications, 2018, 9, 2933.	5.8	118
143	Fluoride graphdiyne as a free-standing electrode displaying ultra-stable and extraordinary high Li storage performance. Energy and Environmental Science, 2018, 11, 2893-2903.	15.6	146
144	Spectroscopic Study of Charge Transport at Organic Solid–Water Interface. Chemistry of Materials, 2018, 30, 5422-5428.	3.2	7

#	Article	IF	CITATIONS
145	Rationalizing Smallâ€Molecule Donor Design toward Highâ€Performance Organic Solar Cells: Perspective from Molecular Architectures. Advanced Theory and Simulations, 2018, 1, 1800091.	1.3	29
146	Effect of functional group position change of pyridinesulfonic acid as interface-modified layer on perovskite solar cell. Applied Surface Science, 2018, 462, 517-525.	3.1	18
147	Design of antibacterial peptide-like conjugated molecule with broad spectrum antimicrobial ability. Science China Chemistry, 2018, 61, 113-117.	4.2	21
148	A novel angularly fused bistetracene: facile synthesis, crystal packing and single-crystal field effect transistors. Journal of Materials Chemistry C, 2017, 5, 1308-1312.	2.7	27
149	Evaluating Electronic Couplings for Excited State Charge Transfer Based on Maximum Occupation Method Î'SCF Quasi-Adiabatic States. Journal of Chemical Theory and Computation, 2017, 13, 843-851.	2.3	17
150	Charge transport in organic donor–acceptor mixed-stack crystals: the role of nonlocal electron–phonon couplings. Physical Chemistry Chemical Physics, 2017, 19, 4418-4425.	1.3	42
151	Synthesis, Physical Properties and Memory Device Application of a Twelveâ€Ring Fused Twistheteroacene. Chemistry - an Asian Journal, 2017, 12, 638-642.	1.7	15
152	Low temperature, atmospheric pressure for synthesis of a new carbon Ene-yne and application in Li storage. Nano Energy, 2017, 33, 343-349.	8.2	92
153	Thermally populated "bright―states for wide-range and high temperature sensing in air. Chemical Communications, 2017, 53, 5702-5705.	2.2	54
154	Super-exchange-induced high performance charge transport in donor–acceptor copolymers. Journal of Materials Chemistry C, 2017, 5, 3247-3253.	2.7	42
155	Importance of side-chain anchoring atoms on electron donor/fullerene interfaces for high-performance organic solar cells. Journal of Materials Chemistry A, 2017, 5, 9316-9321.	5.2	34
156	Shape-Controlled Metal-Free Catalysts: Facet-Sensitive Catalytic Activity Induced by the Arrangement Pattern of Noncovalent Supramolecular Chains. ACS Nano, 2017, 11, 4866-4876.	7.3	31
157	Terminal π–π stacking determines three-dimensional molecular packing and isotropic charge transport in an A–Ĩ€â€"A electron acceptor for non-fullerene organic solar cells. Journal of Materials Chemistry C, 2017, 5, 4852-4857.	2.7	192
158	Critical Role of Molecular Symmetry for Charge Transport Properties: A Paradigm Learned from Quinoidal Bithieno[3,4- <i>b</i>]thiophenes. Chemistry of Materials, 2017, 29, 4999-5008.	3.2	24
159	Role of the Dark 2A _g State in Donor–Acceptor Copolymers as a Pathway for Singlet Fission: A DMRG Study. Journal of Physical Chemistry Letters, 2017, 8, 2175-2181.	2.1	30
160	Aromaticâ€Imideâ€Based Thermally Activated Delayed Fluorescence Materials for Highly Efficient Organic Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2017, 56, 8818-8822.	7.2	118
161	Theoretical Study of Conversion and Decay Processes of Excited Triplet and Singlet States in a Thermally Activated Delayed Fluorescence Molecule. Journal of Physical Chemistry C, 2017, 121, 13448-13456.	1.5	134
162	Aromaticâ€Imideâ€Based Thermally Activated Delayed Fluorescence Materials for Highly Efficient Organic Lightâ€Emitting Diodes. Angewandte Chemie, 2017, 129, 8944-8948.	1.6	20

#	Article	IF	CITATIONS
163	Achieving Highly Efficient Nonfullerene Organic Solar Cells with Improved Intermolecular Interaction and Openâ€Circuit Voltage. Advanced Materials, 2017, 29, 1700254.	11.1	363
164	Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries. Nature Communications, 2017, 8, 1172.	5.8	357
165	Triplet decay-induced negative temperature dependence of the transient photoluminescence decay of thermally activated delayed fluorescence emitter. Journal of Materials Chemistry C, 2017, 5, 12077-12084.	2.7	48
166	Insertion of double bond ï€-bridges of A–D–A acceptors for high performance near-infrared polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 22588-22597.	5.2	61
167	Energetic fluctuations in amorphous semiconducting polymers: Impact on charge-carrier mobility. Journal of Chemical Physics, 2017, 147, 134904.	1.2	21
168	An Amidineâ€Type nâ€Dopant for Solutionâ€Processed Fieldâ€Effect Transistors and Perovskite Solar Cells. Advanced Functional Materials, 2017, 27, 1703254.	7.8	40
169	Isoindigoâ€Based Polymers with Small Effective Masses for Highâ€Mobility Ambipolar Fieldâ€Effect Transistors. Advanced Materials, 2017, 29, 1702115.	11.1	115
170	Deepâ€Red to Nearâ€Infrared Thermally Activated Delayed Fluorescence in Organic Solid Films and Electroluminescent Devices. Angewandte Chemie - International Edition, 2017, 56, 11525-11529.	7.2	293
171	Synthesis of Chlorine‣ubstituted Graphdiyne and Applications for Lithiumâ€Ion Storage. Angewandte Chemie - International Edition, 2017, 56, 10740-10745.	7.2	206
172	Synthesis of Chlorine‣ubstituted Graphdiyne and Applications for Lithiumâ€lon Storage. Angewandte Chemie, 2017, 129, 10880-10885.	1.6	52
173	Deepâ€Red to Nearâ€Infrared Thermally Activated Delayed Fluorescence in Organic Solid Films and Electroluminescent Devices. Angewandte Chemie, 2017, 129, 11683-11687.	1.6	47
174	Nitrogen-Doped Porous Graphdiyne: A Highly Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2017, 9, 29744-29752.	4.0	166
175	Impact of Linear Alkyl Length on the Assembly of Twisted Perylene Bisimides: From Molecular Arrangement to Nanostructures. Chemistry - an Asian Journal, 2017, 12, 2827-2833.	1.7	8
176	Role of halogenâ√halogen interactions in the 2D crystallization of n-semiconductors at the liquid–solid interface. Physical Chemistry Chemical Physics, 2017, 19, 31540-31544.	1.3	14
177	Ultrafast Excited-State Energy Transfer in DTDCTB Dimers Embedded in a Crystal Environment: Quantum Dynamics with the Multilayer Multiconfigurational Time-Dependent Hartree Method. Journal of Physical Chemistry C, 2017, 121, 27263-27273.	1.5	8
178	The Impact of Interlayer Electronic Coupling on Charge Transport in Organic Semiconductors: A Case Study on Titanylphthalocyanine Single Crystals. Angewandte Chemie, 2016, 128, 5292-5295.	1.6	7
179	High mobility multibit nonvolatile memory elements based organic field effect transistors with large hysteresis. Organic Electronics, 2016, 35, 53-58.	1.4	9
180	The nature of excited states in dipolar donor/fullerene complexes for organic solar cells: evolution with the donor stack size. Physical Chemistry Chemical Physics, 2016, 18, 15955-15963.	1.3	25

YUAN-PING YI

#	Article	IF	CITATIONS
181	Revealing the influence of the solvent evaporation rate and thermal annealing on the molecular packing and charge transport of DPP(TBFu) ₂ . Journal of Materials Chemistry C, 2016, 4, 4654-4661.	2.7	31
182	Inner Space Perturbation Theory in Matrix Product States: Replacing Expensive Iterative Diagonalization. Journal of Chemical Theory and Computation, 2016, 12, 4871-4878.	2.3	18
183	Ternary Organic Solar Cells Based on Two Compatible Nonfullerene Acceptors with Power Conversion Efficiency >10%. Advanced Materials, 2016, 28, 10008-10015.	11.1	254
184	Determine the Role of Alkyl Chains and Hydrogen Bonds in the Assembling Process of Fused Thiophene Indacene Derivatives by Scanning Tunneling Microscopy and Theoretical Calculation. Journal of Physical Chemistry C, 2016, 120, 21699-21703.	1.5	3
185	Bismuth Interfacial Doping of Organic Small Molecules for High Performance nâ€ŧype Thermoelectric Materials. Angewandte Chemie - International Edition, 2016, 55, 10672-10675.	7.2	77
186	Remarkable enhancement of charge carrier mobility of conjugated polymer field-effect transistors upon incorporating an ionic additive. Science Advances, 2016, 2, e1600076.	4.7	139
187	Self-catalyzed growth of Cu@graphdiyne core–shell nanowires array for high efficient hydrogen evolution cathode. Nano Energy, 2016, 30, 858-866.	8.2	149
188	Induction of Strong Longâ€Lived Roomâ€Temperature Phosphorescence of <i>N</i> â€Phenylâ€2â€naphthylamin Molecules by Confinement in a Crystalline Dibromobiphenyl Matrix. Angewandte Chemie - International Edition, 2016, 55, 15589-15593.	ie 7.2	265
189	Bismuth Interfacial Doping of Organic Small Molecules for High Performance nâ€ŧype Thermoelectric Materials. Angewandte Chemie, 2016, 128, 10830-10833.	1.6	10
190	Flexible nâ€Type Highâ€Performance Thermoelectric Thin Films of Poly(nickelâ€ethylenetetrathiolate) Prepared by an Electrochemical Method. Advanced Materials, 2016, 28, 3351-3358.	11.1	206
191	The Impact of Interlayer Electronic Coupling on Charge Transport in Organic Semiconductors: A Case Study on Titanylphthalocyanine Single Crystals. Angewandte Chemie - International Edition, 2016, 55, 5206-5209.	7.2	51
192	Effect of the mismatch structure on crystal packing, physical properties and third-order nonlinearity of unsymmetrical twistacenes. Dyes and Pigments, 2016, 134, 9-18.	2.0	20
193	Multiscale description of molecular packing and electronic processes in small-molecule organic solar cells. Chinese Chemical Letters, 2016, 27, 1453-1463.	4.8	16
194	Understanding the efficiency drooping of the deep blue organometallic phosphors: a computational study of radiative and non-radiative decay rates for triplets. Journal of Materials Chemistry C, 2016, 4, 6829-6838.	2.7	82
195	Organic Cocrystal Photovoltaic Behavior: A Model System to Study Charge Recombination of C ₆₀ and C ₇₀ at the Molecular Level. Advanced Electronic Materials, 2016, 2, 1500423.	2.6	42
196	Twistacene functionalized anthracenes with high-efficiency blue fluorescence. Dyes and Pigments, 2016, 125, 356-361.	2.0	11
197	Novel colorimetric and fluorescent off–on enantiomers with high selectivity for Fe3+ imaging in living cells. Sensors and Actuators B: Chemical, 2016, 224, 592-599.	4.0	38
198	High Conductive Two-Dimensional Covalent Organic Framework for Lithium Storage with Large Capacity. ACS Applied Materials & Interfaces, 2016, 8, 5366-5375.	4.0	255

#	Article	IF	CITATIONS
199	Recovery of Au(III) by radiation synthesized aminomethyl pyridine functionalized adsorbents based on cellulose. Chemical Engineering Journal, 2016, 283, 504-513.	6.6	137
200	Field-Effect Transistors: A Cofacially Stacked Electron-Deficient Small Molecule with a High Electron Mobility of over 10 cm2Vâ~'1sâ~'1in Air (Adv. Mater. 48/2015). Advanced Materials, 2015, 27, 8120-8120.	11.1	2
201	Light-Emitting Diodes: Highly Efficient Orange and Red Phosphorescent Organic Light-Emitting Diodes with Low Roll-Off of Efficiency using a Novel Thermally Activated Delayed Fluorescence Material as Host (Adv. Mater. 27/2015). Advanced Materials, 2015, 27, 4104-4104.	11.1	1
202	"Hâ€â€like Organic Nanowire Heterojunctions Constructed from Cooperative Molecular Assembly for Photonic Applications. Advanced Science, 2015, 2, 1500130.	5.6	32
203	Influences of Conjugation Extent on the Aggregationâ€Induced Emission Quantum Efficiency in Silole Derivatives: A Computational Study. Chemistry - an Asian Journal, 2015, 10, 2154-2161.	1.7	40
204	Highly Efficient Orange and Red Phosphorescent Organic Lightâ€Emitting Diodes with Low Rollâ€Off of Efficiency using a Novel Thermally Activated Delayed Fluorescence Material as Host. Advanced Materials, 2015, 27, 4041-4047.	11.1	127
205	A Cofacially Stacked Electronâ€Deficient Small Molecule with a High Electron Mobility of over 10 cm ² V ^{â^'1} s ^{â^'1} in Air. Advanced Materials, 2015, 27, 8051-8055.	11.1	97
206	Deposition Growth and Morphologies of C ₆₀ on DTDCTB Surfaces: An Atomistic Insight into the Integrated Impact of Surface Stability, Landscape, and Molecular Orientation. Advanced Materials Interfaces, 2015, 2, 1500329.	1.9	23
207	Unusual Aggregationâ€Induced Emission of a Coumarin Derivative as a Result of the Restriction of an Intramolecular Twisting Motion. Angewandte Chemie - International Edition, 2015, 54, 14492-14497.	7.2	207
208	Synthesis, Single Crystal, and Physical Properties of Asymmetrical Thiophene/Selenopheneâ€Fused Twistacenes. Chemistry - an Asian Journal, 2015, 10, 2677-2682.	1.7	29
209	Ambipolar charge-transport properties in 4,10-dihalogenated anthanthrone crystals: a theoretical study. Journal of Materials Chemistry C, 2015, 3, 1913-1921.	2.7	8
210	From Dark TICT State to Emissive <i>quasi</i> -TICT State: The AIE Mechanism of <i>N</i> -(3-(benzo[<i>d</i>]oxazol-2-yl)phenyl)-4- <i>tert</i> -butylbenzamide. Journal of Physical Chemistry C, 2015, 119, 2133-2141.	1.5	58
211	Understanding the Charge Transport and Polarities in Organic Donor–Acceptor Mixedâ€Stack Crystals: Molecular Insights from the Superâ€Exchange Couplings. Advanced Materials, 2015, 27, 1443-1449.	11.1	97
212	Precisely Tailoring the Stoichiometric Stacking of Peryleneâ€TCNQ Coâ€Crystals towards Different Nano and Microstructures with Varied Optoelectronic Performances. Small, 2015, 11, 2150-2156.	5.2	79
213	A two-dimensional ï€â€"d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour. Nature Communications, 2015, 6, 7408.	5.8	609
214	A cross-dipole stacking molecule of an anthracene derivative: integrating optical and electrical properties. Journal of Materials Chemistry C, 2015, 3, 3068-3071.	2.7	35
215	Linkedâ€Acceptor Type Conjugated Polymer for High Performance Organic Photovoltaics with an Openâ€Circuit Voltage Exceeding 1 V. Advanced Science, 2015, 2, 1500021.	5.6	20
216	Graphdiyne Oxides as Excellent Substrate for Electroless Deposition of Pd Clusters with High Catalytic Activity. Journal of the American Chemical Society, 2015, 137, 5260-5263.	6.6	341

#	Article	IF	CITATIONS
217	The position effect of an ethynyl spacer on the carrier mobility of anthracene derivatives. Journal of Materials Chemistry C, 2015, 3, 5368-5371.	2.7	14
218	Hot Charge-Transfer States Determine Exciton Dissociation in the DTDCTB/C ₆₀ Complex for Organic Solar Cells: A Theoretical Insight. Journal of Physical Chemistry C, 2015, 119, 11320-11326.	1.5	46
219	A fast-response, fluorescent â€~turn-on' chemosensor for selective detection of Cr ³⁺ . RSC Advances, 2015, 5, 70302-70308.	1.7	23
220	Developing Quinoidal Fluorophores with Unusually Strong Red/Near-Infrared Emission. Journal of the American Chemical Society, 2015, 137, 11294-11302.	6.6	47
221	Solvent Effects on the Optical Spectra and Excited-State Decay of Triphenylamine-thiadiazole with Hybridized Local Excitation and Intramolecular Charge Transfer. Journal of Physical Chemistry A, 2015, 119, 5233-5240.	1.1	73
222	Tuning the Crystal Polymorphs of Alkyl Thienoacene via Solution Selfâ€Assembly Toward Airâ€Stable and Highâ€Performance Organic Fieldâ€Effect Transistors. Advanced Materials, 2015, 27, 825-830.	11.1	106
223	Fine-Tuning of Crystal Packing and Charge Transport Properties of BDOPV Derivatives through Fluorine Substitution. Journal of the American Chemical Society, 2015, 137, 15947-15956.	6.6	224
224	Optical conductivity and optical effective mass in a high-mobility organic semiconductor: Implications for the nature of charge transport. Physical Review B, 2014, 90, .	1.1	15
225	Theoretical description of the geometric and electronic structures of organic-organic interfaces in organic solar cells: a brief review. Science China Chemistry, 2014, 57, 1330-1339.	4.2	6
226	Charge Transport: Understanding Lattice Strain-Controlled Charge Transport in Organic Semiconductors: A Computational Study (Adv. Funct. Mater. 35/2014). Advanced Functional Materials, 2014, 24, 5530-5530.	7.8	0
227	Rationalization of the Selectivity in the Optimization of Processing Conditions for High-Performance Polymer Solar Cells Based on the Polymer Self-Assembly Ability. Journal of Physical Chemistry C, 2014, 118, 29473-29481.	1.5	7
228	Impact of Electron Delocalization on the Nature of the Charge-Transfer States in Model Pentacene/C ₆₀ Interfaces: A Density Functional Theory Study. Journal of Physical Chemistry C, 2014, 118, 27648-27656.	1.5	80
229	Nonadiabatic Molecular Dynamics Modeling of the Intrachain Charge Transport in Conjugated Diketopyrrolo-pyrrole Polymers. Journal of Physical Chemistry C, 2014, 118, 6631-6640.	1.5	30
230	Electron-phonon couplings and carrier mobility in graphynes sheet calculated using the Wannier-interpolation approach. Journal of Chemical Physics, 2014, 141, 034704.	1.2	82
231	Adlayer Structure of Shape-Persistent Macrocycle Molecules: Fabrication and Tuning Investigated with Scanning Tunneling Microscopy. Journal of Physical Chemistry C, 2014, 118, 6767-6772.	1.5	18
232	Diaceno[<i>a</i> , <i>e</i>]pentalenes from Homoannulations of <i>o</i> -Alkynylaryliodides Utilizing a Unique Pd(OAc) ₂ / <i>n</i> -Bu ₄ NOAc Catalytic Combination. Organic Letters, 2014, 16, 4924-4927.	2.4	48
233	Nitrogen-doped graphdiyne as a metal-free catalyst for high-performance oxygen reduction reactions. Nanoscale, 2014, 6, 11336-11343.	2.8	229
234	Understanding Lattice Strainâ€Controlled Charge Transport in Organic Semiconductors: A Computational Study. Advanced Functional Materials, 2014, 24, 5531-5540.	7.8	36

#	Article	IF	CITATIONS
235	Electronic Properties of Mixed-Stack Organic Charge-Transfer Crystals. Journal of Physical Chemistry C, 2014, 118, 14150-14156.	1.5	79
236	Solution-processed small molecules based on indacenodithiophene for high performance thin-film transistors and organic solar cells. Organic Electronics, 2014, 15, 1155-1165.	1.4	22
237	Novel Thermally Activated Delayed Fluorescence Materials–Thioxanthone Derivatives and Their Applications for Highly Efficient OLEDs. Advanced Materials, 2014, 26, 5198-5204.	11.1	488
238	A facile strategy to enhance absorption coefficient and photovoltaic performance of two-dimensional benzo[1,2-b:4,5-bâ€2]dithiophene and thieno[3,4-c]pyrrole-4,6-dione polymers via subtle chemical structure variations. Organic Electronics, 2013, 14, 2652-2661.	1.4	35
239	Intrinsic charge transport in single crystals of organic molecular semiconductors: A theoretical perspective. MRS Bulletin, 2013, 38, 57-64.	1.7	53
240	Solution-Processable Organic Molecule Photovoltaic Materials with Bithienyl-benzodithiophene Central Unit and Indenedione End Groups. Chemistry of Materials, 2013, 25, 2274-2281.	3.2	180
241	Electronic and Charge-Transport Properties of the Au ₃ (CH ₃ Nâ•COCH ₃) ₃ Crystal: A Density Functional Theory Study. Journal of Physical Chemistry Letters, 2013, 4, 2186-2189.	2.1	15
242	Thiepinâ€Fused Heteroacenes: Simple Synthesis, Unusual Structure, and Semiconductors with Less Anisotropic Behavior. Chemistry - A European Journal, 2013, 19, 14573-14580.	1.7	14
243	Charge-Transport Parameters of Acenedithiophene Crystals: Realization of One-, Two-, or Three-Dimensional Transport Channels through Alkyl and Phenyl Derivatizations. Journal of Physical Chemistry C, 2012, 116, 5215-5224.	1.5	25
244	Prediction of Remarkable Ambipolar Charge-Transport Characteristics in Organic Mixed-Stack Charge-Transfer Crystals. Journal of the American Chemical Society, 2012, 134, 2340-2347.	6.6	245
245	Symmetry effects on nonlocal electron-phonon coupling in organic semiconductors. Physical Review B, 2012, 85, .	1.1	48
246	Nonlocal electron-phonon coupling in the pentacene crystal: Beyond the Γ-point approximation. Journal of Chemical Physics, 2012, 137, 164303.	1.2	48
247	The Impact of Molecular Orientation on the Photovoltaic Properties of a Phthalocyanine/Fullerene Heterojunction. Advanced Functional Materials, 2012, 22, 2987-2995.	7.8	298
248	Controlled Conjugated Backbone Twisting for an Increased Open-Circuit Voltage while Having a High Short-Circuit Current in Poly(hexylthiophene) Derivatives. Journal of the American Chemical Society, 2012, 134, 5222-5232.	6.6	187
249	Charge Transfer in Molecular Complexes with 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F ₄ -TCNQ): A Density Functional Theory Study. Chemistry of Materials, 2011, 23, 5149-5159.	3.2	102
250	A comparative theoretical study of exciton-dissociation and charge-recombination processes in oligothiophene/fullerene and oligothiophene/perylenediimide complexes for organic solar cells. Journal of Materials Chemistry, 2011, 21, 1479.	6.7	112
251	An improved dynamic Monte Carlo model coupled with Poisson equation to simulate the performance of organic photovoltaic devices. Journal of Chemical Physics, 2011, 134, 124102.	1.2	62
252	Synthesis and third-order optical nonlinearities of nickel complexes of 8-hydroxyquinoline derivatives. Optics Communications, 2010, 283, 2228-2233.	1.0	13

#	Article	IF	CITATIONS
253	Charge-Transport Properties of the Tetraphenylbis(indolo[1,2- <i>a</i>])quinoline and 5,7-Diphenylindolo[1,2- <i>a</i>]quinoline Crystals. Journal of Physical Chemistry C, 2010, 114, 20401-20409.	1.5	30
254	Exciton-Dissociation and Charge-Recombination Processes in Pentacene/C ₆₀ Solar Cells: Theoretical Insight into the Impact of Interface Geometry. Journal of the American Chemical Society, 2009, 131, 15777-15783.	6.6	275
255	Theoretical Designs of Molecular Photonics Materials. Macromolecular Theory and Simulations, 2008, 17, 12-22.	0.6	14
256	Theoretically Rational Designs of Transport Organic Semiconductors Based on Heteroacenes. Chinese Journal of Chemistry, 2008, 26, 1005-1010.	2.6	2
257	Local approach to coupled cluster evaluation of polarizabilities for long conjugated molecules. Journal of Computational Chemistry, 2008, 29, 1650-1655.	1.5	14
258	Multiphoton Absorption in Expanded Porphyrins. Acta Physico-chimica Sinica, 2008, 24, 565-570.	0.6	3
259	Improving the efficiency of solution processable organic photovoltaic devices by a star-shaped molecular geometry. Journal of Materials Chemistry, 2008, 18, 4085.	6.7	160
260	EXCITON BINDING ENERGY OF ELECTRONIC POLYMERS: A FIRST PRINCIPLES STUDY. Journal of Theoretical and Computational Chemistry, 2008, 07, 517-530.	1.8	23
261	Theoretical study of inelastic X-ray scattering spectra for organic materials: Molecular excitation coupled with molecular exciton descriptions. Synthetic Metals, 2007, 157, 670-677.	2.1	0
262	Two-Photon Absorption Properties of Iron(II) and Ruthenium(II) Trischelate Complexes of 2,2â€~:4,4â€~ â€~:4â€~,4â€~ â€~â€~-Quaterpyridinium Ligands. Journal of Physical Chemistry A, 2007, 11	1, 47 2-47	8. ⁴⁴
263	Toward Quantitative Prediction of Molecular Fluorescence Quantum Efficiency:  Role of Duschinsky Rotation. Journal of the American Chemical Society, 2007, 129, 9333-9339.	6.6	414
264	Excited state radiationless decay process with Duschinsky rotation effect: Formalism and implementation. Journal of Chemical Physics, 2007, 126, 114302.	1.2	213
265	High two-photon cross-sections in bis(diarylaminostyryl) chromophores with electron-rich heterocycle and bis(heterocycle)vinylene bridges. Chemical Communications, 2007, , 1372-1374.	2.2	52
266	Helical Molecular Duplex Strands:Â Multiple Hydrogen-Bond-Mediated Assembly of Self-Complementary Oligomeric Hydrazide Derivatives. Journal of Organic Chemistry, 2007, 72, 4936-4946.	1.7	56
267	Structure to Property Relationships for Multiphoton Absorption in Covalently Linked Porphyrin Dimers:  A Correction Vector INDO/MRDCI Study. Journal of Physical Chemistry A, 2007, 111, 8509-8518.	1.1	20
268	Effects of Donor/Acceptor Strengths on the Multiphoton Absorption:  An EOM-CCSD Correction Vector Study. Journal of Physical Chemistry A, 2007, 111, 9291-9298.	1.1	15
269	Quantum Chemical Investigations on Electron Transport Characteristics of Porphyrin and Metal-porphyrin. Chemical Research in Chinese Universities, 2007, 23, 87-91.	1.3	1
270	Two-Photon Absorption in Quadrupolar Bis(acceptor)-Terminated Chromophores with Electron-Rich Bis(heterocycle)vinylene Bridges. Chemistry of Materials, 2007, 19, 432-442.	3.2	66

#	Article	IF	CITATIONS
271	Extended Squaraine Dyes with Large Two-Photon Absorption Cross-Sections. Journal of the American Chemical Society, 2006, 128, 14444-14445.	6.6	205
272	Balanced Carrier Transports of Electrons and Holes in Silole-Based CompoundsA Theoretical Study. Journal of Physical Chemistry A, 2006, 110, 7138-7143.	1.1	159
273	The correction vector method for three-photon absorption: The effects of ï€ conjugation in extended rylenebis(dicarboximide)s. Journal of Chemical Physics, 2006, 125, 164505.	1.2	12
274	Structure-property relationships for three-photon absorption in stilbene-based dipolar and quadrupolar chromophores. Journal of Chemical Physics, 2006, 125, 044101.	1.2	19
275	COUPLED-CLUSTER EQUATION OF MOTION STUDY FOR THE ELECTRONIC AND OPTICAL PROPERTIES OF CONJUGATED SYSTEMS. Journal of Theoretical and Computational Chemistry, 2005, 04, 603-622.	1.8	4
276	Three-photon absorption in anthracene-porphyrin-anthracene triads: A quantum-chemical study. Journal of Chemical Physics, 2004, 121, 11060.	1.2	15