Cordelia Selomulya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/241978/publications.pdf

Version: 2024-02-01

268 papers

13,053 citations

28274 55 h-index 101 g-index

270 all docs

270 docs citations

times ranked

270

17898 citing authors

#	Article	IF	CITATIONS
1	A reference-component coordinate system approach to model the mass transfer of a droplet with binary volatiles. Drying Technology, 2023, 41, 202-221.	3.1	3
2	Improvements of plant protein functionalities by Maillard conjugation and Maillard reaction products. Critical Reviews in Food Science and Nutrition, 2022, 62, 7036-7061.	10.3	47
3	Physical Properties of Dairy Powders. , 2022, , 504-520.		3
4	Digestion of curcumin-fortified yogurt in short/long gastric residence times using a near-real dynamic in vitro human stomach. Food Chemistry, 2022, 372, 131327.	8.2	10
5	Dairy encapsulation systems by atomization-based technology. , 2022, , 247-260.		1
6	Impact of sodium alginate on binary whey/pea protein-stabilised emulsions. Journal of Food Engineering, 2022, 321, 110978.	5.2	15
7	Fatty acid distribution and polymorphism in solid lipid particles of milkfat and long chain omega-3 fatty acids. Food Chemistry, 2022, 381, 132245.	8.2	3
8	Minimising non-selective defects in ultrathin reduced graphene oxide membranes with graphene quantum dots for enhanced water and NaCl separation. Chinese Journal of Chemical Engineering, 2022, 41, 278-285.	3. 5	7
9	Understanding the formation of ultrafine maltodextrin particles under simultaneous convective drying and antisolvent vapour precipitation. Advanced Powder Technology, 2022, 33, 103440.	4.1	2
10	Understanding the impact of convective ethanol humidity on the precipitation behaviour of dissolved lactose in a water droplet. Chemical Engineering Science, 2022, 254, 117616.	3.8	0
11	Low-Temperature Synthesis of Hollow \hat{I}^2 -Tricalcium Phosphate Particles for Bone Tissue Engineering Applications. ACS Biomaterials Science and Engineering, 2022, , .	5. 2	2
12	Food rheology applications of large amplitude oscillation shear (LAOS). Trends in Food Science and Technology, 2022, 127, 221-244.	15.1	30
13	Magnesium Citrate Powders from Waste Bitterns via Crystallization and Spray Drying. Industrial & Lamp; Engineering Chemistry Research, 2022, 61, 9950-9961.	3.7	2
14	Comparison of the effects of edge functionalized graphene oxide membranes on monovalent cation selectivity. Journal of Membrane Science, 2021, 620, 118892.	8.2	11
15	Stable cation-controlled reduced graphene oxide membranes for improved NaCl rejection. Journal of Membrane Science, 2021, 621, 118995.	8.2	32
16	Anti-Cancer Effects of Carnosineâ€"A Dipeptide Molecule. Molecules, 2021, 26, 1644.	3.8	16
17	The effect of rennet casein hydration on gel strength and matrix stability of block-type processed cheese. Food Structure, 2021, 28, 100174.	4.5	4
18	Pulmonary myeloid cell uptake of biodegradable nanoparticles conjugated with an anti-fibrotic agent provides a novel strategy for treating chronic allergic airways disease. Biomaterials, 2021, 273, 120796.	11.4	15

#	Article	IF	CITATIONS
19	On improving bioaccessibility and targeted release of curcumin-whey protein complex microparticles in food. Food Chemistry, 2021, 346, 128900.	8.2	24
20	Tumor-Induced Inflammatory Cytokines and the Emerging Diagnostic Devices for Cancer Detection and Prognosis. Frontiers in Oncology, 2021, 11, 692142.	2.8	123
21	The Development of Nanoparticles for the Detection and Imaging of Ovarian Cancers. Biomedicines, 2021, 9, 1554.	3.2	2
22	Vitamin D supplementation increases adipokine concentrations in overweight or obese adults. European Journal of Nutrition, 2020, 59, 195-204.	3.9	19
23	The impact of self-sustained oscillations on particle residence time in a commercial scale spray dryer. Powder Technology, 2020, 360, 1177-1191.	4.2	17
24	Relationship between Desalination Performance of Graphene Oxide Membranes and Edge Functional Groups. ACS Applied Materials & Samp; Interfaces, 2020, 12, 4769-4776.	8.0	19
25	Spray drying strategy for encapsulation of bioactive peptide powders for food applications. Advanced Powder Technology, 2020, 31, 409-415.	4.1	53
26	Complete waste recycling strategies for improving the accessibility of rice protein films. Green Chemistry, 2020, 22, 490-503.	9.0	26
27	Three-Dimensional Hierarchical Porous Nanotubes Derived from Metal-Organic Frameworks for Highly Efficient Overall Water Splitting. IScience, 2020, 23, 100761.	4.1	26
28	Synergistic Effects of Nanomedicine Targeting TNFR2 and DNA Demethylation Inhibitor—An Opportunity for Cancer Treatment. Cells, 2020, 9, 33.	4.1	16
29	Anion Etching for Accessing Rapid and Deep Self-Reconstruction of Precatalysts for Water Oxidation. Matter, 2020, 3, 2124-2137.	10.0	177
30	Functional Recognition by CD8+ T Cells of Epitopes with Amino Acid Variations Outside Known MHC Anchor or T Cell Receptor Recognition Residues. International Journal of Molecular Sciences, 2020, 21, 4700.	4.1	2
31	Pullulan-Coated Iron Oxide Nanoparticles for Blood-Stage Malaria Vaccine Delivery. Vaccines, 2020, 8, 651.	4.4	7
32	A profile of TNFR2+ regulatory T cells and CD103+ dendritic cells in the peripheral blood of patients with asthma. Human Immunology, 2020, 81, 634-643.	2.4	2
33	Dairy and plant proteins as natural food emulsifiers. Trends in Food Science and Technology, 2020, 105, 261-272.	15.1	132
34	Comprehensive Structural and Molecular Comparison of Spike Proteins of SARS-CoV-2, SARS-CoV and MERS-CoV, and Their Interactions with ACE2. Cells, 2020, 9, 2638.	4.1	138
35	Sulfonated Sub-1-nm Metal–Organic Framework Channels with Ultrahigh Proton Selectivity. Journal of the American Chemical Society, 2020, 142, 9827-9833.	13.7	41
36	Unidirectional and Selective Proton Transport in Artificial Heterostructured Nanochannels with Nanoâ€toâ€Subnano Confined Water Clusters. Advanced Materials, 2020, 32, e2001777.	21.0	72

#	Article	IF	CITATIONS
37	Antioxidant-Based Medicinal Properties of Stingless Bee Products: Recent Progress and Future Directions. Biomolecules, 2020, 10, 923.	4.0	69
38	Characterisation of thermal and structural behaviour of lipid blends composed of fish oil and milkfat. Food Research International, 2020, 137, 109377.	6.2	4
39	Biodegradable PLGA-b-PEG Nanoparticles Induce T Helper 2 (Th2) Immune Responses and Sustained Antibody Titers via TLR9 Stimulation. Vaccines, 2020, 8, 261.	4.4	9
40	Minimizing Non-selective Nanowrinkles of Reduced Graphene Oxide Laminar Membranes for Enhanced NaCl Rejection. Environmental Science and Technology Letters, 2020, 7, 273-279.	8.7	39
41	A Novel Approach for Non-Invasive Lung Imaging and Targeting Lung Immune Cells. International Journal of Molecular Sciences, 2020, 21, 1613.	4.1	12
42	Computationally inexpensive simulation of agglomeration in spray drying while preserving structure related information using CFD. Powder Technology, 2020, 372, 372-393.	4.2	8
43	Pre-operative sera interleukin-6 in the diagnosis of high-grade serous ovarian cancer. Scientific Reports, 2020, 10, 2213.	3.3	37
44	Mild annealing reduced graphene oxide membrane for nanofiltration. Journal of Membrane Science, 2020, 601, 117900.	8.2	66
45	Poly(amino acids) as a potent self-adjuvanting delivery system for peptide-based nanovaccines. Science Advances, 2020, 6, eaax2285.	10.3	85
46	Scalable Synthesis of Uniform Mesoporous Aluminosilicate Microspheres with Controllable Size and Morphology and High Hydrothermal Stability for Efficient Acid Catalysis. ACS Applied Materials & Samp; Interfaces, 2020, 12, 21922-21935.	8.0	17
47	Formulation and role of polymeric and inorganic nanoparticles in respiratory diseases. , 2020, , 261-280.		2
48	Functionalized nanoparticles in pulmonary disease diagnosis. , 2020, , 303-321.		0
49	Tranexamic acid modulates the cellular immune profile after traumatic brain injury in mice without hyperfibrinolysis. Journal of Thrombosis and Haemostasis, 2019, 17, 2174-2187.	3.8	16
50	Numerical simulation of mono-disperse droplet spray dryer under the influence of nozzle motion. Powder Technology, 2019, 355, 93-105.	4.2	10
51	Keratin-14 (KRT14) Positive Leader Cells Mediate Mesothelial Clearance and Invasion by Ovarian Cancer Cells. Cancers, 2019, 11, 1228.	3.7	39
52	Glycine microparticles loaded with functionalized nanoparticles for pulmonary delivery. International Journal of Pharmaceutics, 2019, 570, 118654.	5.2	15
53	Spray-drying water-based assembly of hierarchical and ordered mesoporous silica microparticles with enhanced pore accessibility for efficient bio-adsorption. Journal of Colloid and Interface Science, 2019, 556, 529-540.	9.4	20
54	Effects of Edge Functional Groups on Water Transport in Graphene Oxide Membranes. ACS Applied Materials & Samp; Interfaces, 2019, 11, 8483-8491.	8.0	36

#	Article	IF	Citations
55	One-dimensional CoS ₂ –MoS ₂ nano-flakes decorated MoO ₂ sub-micro-wires for synergistically enhanced hydrogen evolution. Nanoscale, 2019, 11, 3500-3505.	5.6	31
56	Thermally Reduced Nanoporous Graphene Oxide Membrane for Desalination. Environmental Science & Eamp; Technology, 2019, 53, 8314-8323.	10.0	136
57	A Perspective Review on the Role of Nanomedicine in the Modulation of TNF-TNFR2 Axis in Breast Cancer Immunotherapy. Journal of Oncology, 2019, 2019, 1-13.	1.3	27
58	pH effect on the physico-chemical, microstructural and sensorial properties of processed cheese manufactured with various starches. LWT - Food Science and Technology, 2019, 111, 414-422.	5.2	12
59	Pyrite-type ruthenium disulfide with tunable disorder and defects enables ultra-efficient overall water splitting. Journal of Materials Chemistry A, 2019, 7, 14222-14232.	10.3	50
60	A Synthetic Nanoparticle Based Vaccine Approach Targeting MSP4/5 Is Immunogenic and Induces Moderate Protection Against Murine Blood-Stage Malaria. Frontiers in Immunology, 2019, 10, 331.	4.8	21
61	Identification of regions in a spray dryer susceptible to forced agglomeration by CFD simulations. Powder Technology, 2019, 346, 23-37.	4.2	19
62	A practical CFD modeling approach to estimate outlet boundary conditions of industrial multistage spray dryers: Inert particle flow field investigation. Drying Technology, 2019, 37, 824-838.	3.1	6
63	Lipidomic profiling reveals early-stage metabolic dysfunction in overweight or obese humans. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 335-343.	2.4	30
64	Modification of molecular conformation of spray-dried whey protein microparticles improving digestibility and release characteristics. Food Chemistry, 2019, 280, 255-261.	8.2	26
65	An investigation on the dissolution qualities of foam granulated products. Powder Technology, 2019, 343, 693-704.	4.2	6
66	On the effect of turbulence models on CFD simulations of a counter-current spray drying process. Chemical Engineering Research and Design, 2019, 141, 592-607.	5.6	23
67	Time scale based analysis of in-situ crystal formation in droplet undergoing rapid dehydration. International Journal of Pharmaceutics, 2019, 560, 47-56.	5.2	2
68	Non-Invasive Fluorescent Monitoring of Ovarian Cancer in an Immunocompetent Mouse Model. Cancers, 2019, 11, 32.	3.7	16
69	Effect of 16-weeks vitamin D replacement on calcium-phosphate homeostasis in overweight and obese adults. Journal of Steroid Biochemistry and Molecular Biology, 2019, 186, 169-175.	2.5	12
70	Uniform mesoporous carbon hollow microspheres imparted with surface-enriched gold nanoparticles enable fast flow adsorption and catalytic reduction of nitrophenols. Journal of Colloid and Interface Science, 2019, 537, 112-122.	9.4	15
71	Scalable synthesis of wrinkled mesoporous titania microspheres with uniform large micron sizes for efficient removal of Cr(<scp>vi</scp>). Journal of Materials Chemistry A, 2018, 6, 3954-3966.	10.3	45
72	An accurate account of mass loss during cheese ripening described using the reaction engineering approach (<scp>REA</scp>)â€based model. International Journal of Food Science and Technology, 2018, 53, 1397-1404.	2.7	4

#	Article	IF	CITATIONS
73	The emerging role of nanomaterials in immunological sensing — a brief review. Molecular Immunology, 2018, 98, 28-35.	2.2	10
74	On the importance of droplet shrinkage in CFD-modeling of spray drying. Drying Technology, 2018, 36, 1785-1801.	3.1	25
75	The role of the intermediate stage of drying on particle in-situ crystallization in spray dryers. Powder Technology, 2018, 323, 357-366.	4.2	8
76	Amino Acid Functionalized Inorganic Nanoparticles as Cutting-Edge Therapeutic and Diagnostic Agents. Bioconjugate Chemistry, 2018, 29, 657-671.	3.6	60
77	Improvement of rheological and functional properties of milk protein concentrate by hydrodynamic cavitation. Journal of Food Engineering, 2018, 221, 106-113.	5.2	55
78	Autoantibodies against HSF1 and CCDC155 as Biomarkers of Early-Stage, High-Grade Serous Ovarian Cancer. Cancer Epidemiology Biomarkers and Prevention, 2018, 27, 183-192.	2.5	23
79	The Key Role of TNF-TNFR2 Interactions in the Modulation of Allergic Inflammation: A Review. Frontiers in Immunology, 2018, 9, 2572.	4.8	60
80	Design of Peptide-Based Nanovaccines Targeting Leading Antigens From Gynecological Cancers to Induce HLA-A2.1 Restricted CD8+ T Cell Responses. Frontiers in Immunology, 2018, 9, 2968.	4.8	23
81	A review on technological parameters and recent advances in the fortification of processed cheese. Trends in Food Science and Technology, 2018, 81, 193-202.	15.1	49
82	Carnosine Supplementation Improves Serum Resistin Concentrations in Overweight or Obese Otherwise Healthy Adults: A Pilot Randomized Trial. Nutrients, 2018, 10, 1258.	4.1	19
83	Insights into endotoxin-mediated lung inflammation and future treatment strategies. Expert Review of Respiratory Medicine, 2018, 12, 941-955.	2.5	14
84	Development of Peptide Vaccines in Dengue. Current Pharmaceutical Design, 2018, 24, 1157-1173.	1.9	24
85	Sperm Protein 17 Expression by Murine Epithelial Ovarian Cancer Cells and Its Impact on Tumor Progression. Cancers, 2018, 10, 276.	3.7	11
86	Microencapsulation of active ingredients in functional foods: From research stage to commercial food products. Trends in Food Science and Technology, 2018, 78, 167-179.	15.1	161
87	Therapeutic Cancer Vaccines—T Cell Responses and Epigenetic Modulation. Frontiers in Immunology, 2018, 9, 3109.	4.8	26
88	Immunotherapeutic Interleukin-6 or Interleukin-6 Receptor Blockade in Cancer: Challenges and Opportunities. Current Medicinal Chemistry, 2018, 25, 4785-4806.	2.4	80
89	New Trends in Anti-Cancer Therapy: Combining Conventional Chemotherapeutics with Novel Immunomodulators. Current Medicinal Chemistry, 2018, 25, 4758-4784.	2.4	14
90	REZOLVE (ANZGOG-1101): A phase 2 trial of intraperitoneal (IP) bevacizumab (bev) for recurrent ascites in advanced, chemotherapy-resistant, epithelial ovarian cancer (CR-EOC) Journal of Clinical Oncology, 2018, 36, 10097-10097.	1.6	1

#	Article	IF	CITATIONS
91	Effect of a small natural dietary compound on lung pathology in airway inflammation. , 2018, , .		O
92	Enhancing the stability of protein-polysaccharides emulsions via Maillard reaction for better oil encapsulation in spray-dried powders by pH adjustment. Food Hydrocolloids, 2017, 69, 121-131.	10.7	57
93	A continuumâ€approach modeling of surface composition and ternary component distribution inside low fat milk emulsions during single droplet drying. AICHE Journal, 2017, 63, 2535-2545.	3.6	5
94	The Economics of Malaria Vaccine Development. Trends in Parasitology, 2017, 33, 154-156.	3.3	3
95	Engineered Hydrogen-Bonded Glycopolymer Capsules and Their Interactions with Antigen Presenting Cells. ACS Applied Materials & Samp; Interfaces, 2017, 9, 6444-6452.	8.0	15
96	Spray drying of mixed amino acids: The effect of crystallization inhibition and humidity treatment on the particle formation. Chemical Engineering Science, 2017, 167, 161-171.	3.8	7
97	Chemical kinetic modeling and parameter sensitivity analysis for the carbonation of Ca2+ and Mg2+ under ambient conditions. Hydrometallurgy, 2017, 167, 141-152.	4.3	5
98	Amorphous TiO ₂ Shells: A Vital Elastic Buffering Layer on Silicon Nanoparticles for Highâ€Performance and Safe Lithium Storage. Advanced Materials, 2017, 29, 1700523.	21.0	342
99	Reduction of surface fat formation on spray-dried milk powders through emulsion stabilization with large enan. Food Hydrocolloids, 2017, 70, 163-180.	10.7	23
100	Formation process of coreâ€shell microparticles by solute migration during drying of homogenous composite droplets. AICHE Journal, 2017, 63, 3297-3310.	3.6	14
101	Sex and Gender Differences in the Outcomes of Vaccination over the Life Course. Annual Review of Cell and Developmental Biology, 2017, 33, 577-599.	9.4	355
102	Unique hybrid Ni ₂ P/MoO ₂ @MoS ₂ nanomaterials as bifunctional non-noble-metal electro-catalysts for water splitting. Nanoscale, 2017, 9, 17349-17356.	5.6	49
103	Immunological effects among workers who handle engineered nanoparticles. Occupational and Environmental Medicine, 2017, 74, 868-876.	2.8	18
104	Effect of vitamin D supplementation on inflammation and nuclear factor kappa-B activity in overweight/obese adults: a randomized placebo-controlled trial. Scientific Reports, 2017, 7, 15154.	3.3	33
105	Exacerbation of Ventilation-Induced Lung Injury and Inflammation in Preterm Lambs by High-Dose Nanoparticles. Scientific Reports, 2017, 7, 14704.	3.3	5
106	Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting. Nano Today, 2017, 15, 26-55.	11.9	560
107	Sex-differential heterologous (non-specific) effects of vaccines: an emerging public health issue that needs to be understood and exploited. Expert Review of Vaccines, 2017, 16, 5-13.	4.4	24
108	Magnetic Nanovectors for the Development of DNA Blood-Stage Malaria Vaccines. Nanomaterials, 2017, 7, 30.	4.1	17

#	Article	IF	CITATIONS
109	Vaccination with Altered Peptide Ligands of a Plasmodium berghei Circumsporozoite Protein CD8 T-Cell Epitope: A Model to Generate T Cells Resistant to Immune Interference by Polymorphic Epitopes. Frontiers in Immunology, 2017, 8, 115.	4.8	1
110	Negative Correlation between Circulating CD4+FOXP3+CD127â^' Regulatory T Cells and Subsequent Antibody Responses to Infant Measles Vaccine but Not Diphtheriaâ€"Tetanusâ€"Pertussis Vaccine Implies a Regulatory Role. Frontiers in Immunology, 2017, 8, 921.	4.8	13
111	Minimal Sex-Differential Modulation of Reactivity to Pathogens and Toll-Like Receptor Ligands following Infant Bacillus Calmette–Guérin Russia Vaccination. Frontiers in Immunology, 2017, 8, 1092.	4.8	9
112	Interleukin 6 Present in Inflammatory Ascites from Advanced Epithelial Ovarian Cancer Patients Promotes Tumor Necrosis Factor Receptor 2-Expressing Regulatory T Cells. Frontiers in Immunology, 2017, 8, 1482.	4.8	53
113	Synthetic Nanoparticles That Promote Tumor Necrosis Factor Receptor 2 Expressing Regulatory T Cells in the Lung and Resistance to Allergic Airways Inflammation. Frontiers in Immunology, 2017, 8, 1812.	4.8	13
114	Implantable and Biodegradable Macroporous Iron Oxide Frameworks for Efficient Regeneration and Repair of Infracted Heart. Theranostics, 2017, 7, 1966-1975.	10.0	17
115	Design of nanoparticle structures for cancer immunotherapy. , 2017, , 307-328.		1
116	Manipulating the microbiota to improve human health throughout life. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2017, 111, 379-381.	1.8	3
117	Component Segregation During Spray Drying of Milk Powder. , 2017, , 589-599.		1
118	Single Droplet Drying. , 2016, , .		0
119	A Model to Study the Impact of Polymorphism Driven Liver-Stage Immune Evasion by Malaria Parasites, to Help Design Effective Cross-Reactive Vaccines. Frontiers in Microbiology, 2016, 7, 303.	3.5	13
120	A soft tubular model reactor based on the bionics of a small intestine – Starch hydrolysis. Chemical Engineering Research and Design, 2016, 112, 146-154.	5.6	18
121	Direct Superassemblies of Freestanding Metal–Carbon Frameworks Featuring Reversible Crystalline-Phase Transformation for Electrochemical Sodium Storage. Journal of the American Chemical Society, 2016, 138, 16533-16541.	13.7	120
122	Behavior of Fe ^{2+/3+} Cation and Its Interference with the Precipitation of Mg ²⁺ Cation upon Mineral Carbonation of Yallourn Fly Ash Leachate under Ambient Conditions. Energy & Ener	5.1	12
123	Physical and Oxidative Stabilities of O/W Emulsions Formed with Rice Dreg Protein Hydrolysate: Effect of Xanthan Gum Rheology. Food and Bioprocess Technology, 2016, 9, 1380-1390.	4.7	29
124	Enterococcus hirae and Barnesiella intestinihominis Facilitate Cyclophosphamide-Induced Therapeutic Immunomodulatory Effects. Immunity, 2016, 45, 931-943.	14.3	645
125	Sex-Differential Non-Vaccine-Specific Immunological Effects of Diphtheria-Tetanus-Pertussis and Measles Vaccination. Clinical Infectious Diseases, 2016, 63, ciw492.	5. 8	31
126	The influence of the chemical surface composition on the drying process of milk droplets. Advanced Powder Technology, 2016, 27, 2324-2334.	4.1	21

#	Article	IF	CITATIONS
127	In-situ crystallization of particles in a counter-current spray dryer. Advanced Powder Technology, 2016, 27, 2299-2307.	4.1	15
128	The global challenge and future strategies for keeping the world's aging population healthy by vaccination. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2016, 110, 427-431.	1.8	4
129	Alteration of early dendritic cell activation by cancer cell lines predisposes immunosuppression, which cannot be reversed by TLR4 stimulation. Acta Biochimica Et Biophysica Sinica, 2016, 48, 1101-1111.	2.0	2
130	In situ observation on particle formation process via single droplet drying apparatus: Effects of precursor composition on particle morphology. Drying Technology, 2016, 34, 1700-1708.	3.1	13
131	Mineral carbonation of Victorian brown coal fly ash using regenerative ammonium chloride – Process simulation and techno-economic analysis. Applied Energy, 2016, 175, 54-68.	10.1	34
132	On Spray Drying of Uniform Mesoporous Silica Microparticles. Materials Today: Proceedings, 2016, 3, 646-651.	1.8	6
133	The impact of atomization on the surface composition of spray-dried milk droplets. Colloids and Surfaces B: Biointerfaces, 2016, 140, 460-471.	5.0	40
134	Low dose cyclophosphamide: Mechanisms of T cell modulation. Cancer Treatment Reviews, 2016, 42, 3-9.	7.7	117
135	Micro-encapsulation and stabilization of DHA containing fish oil in protein-based emulsion through mono-disperse droplet spray dryer. Journal of Food Engineering, 2016, 175, 74-84.	5.2	82
136	Incorporation of well-dispersed sub-5-nm graphitic pencil nanodots into ordered mesoporous frameworks. Nature Chemistry, 2016, 8, 171-178.	13.6	153
137	Polymorphism in liver-stage malaria vaccine candidate proteins: immune evasion and implications for vaccine design. Expert Review of Vaccines, 2016, 15, 389-399.	4.4	15
138	On enhancing the solubility of curcumin by microencapsulation in whey protein isolate via spray drying. Journal of Food Engineering, 2016, 169, 189-195.	5.2	138
139	Effects of composition and relative humidity on the functional and storage properties of spray dried model milk emulsions. Journal of Food Engineering, 2016, 169, 196-204.	5.2	19
140	Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nature Communications, 2015, 6, 8686.	12.8	430
141	The Use of Synthetic Carriers in Malaria Vaccine Design. Vaccines, 2015, 3, 894-929.	4.4	22
142	A Nanoparticle Based Sp17 Peptide Vaccine Exposes New Immuno-Dominant and Species Cross-reactive B Cell Epitopes. Vaccines, 2015, 3, 875-893.	4.4	9
143	Dendritic Cell-Mediated Phagocytosis but Not Immune Activation Is Enhanced by Plasmin. PLoS ONE, 2015, 10, e0131216.	2.5	44
144	Paclitaxel and Its Evolving Role in the Management of Ovarian Cancer. BioMed Research International, 2015, 2015, 1-21.	1.9	227

#	Article	IF	CITATIONS
145	Mapping the Shrinkage Behavior of Skim Milk Droplets During Convective Drying. Drying Technology, 2015, 33, 1101-1113.	3.1	9
146	Investigating the Effect of the Mg ²⁺ /Ca ²⁺ Molar Ratio on the Carbonate Speciation during the Mild Mineral Carbonation Process at Atmospheric Pressure. Energy & Samp; Fuels, 29, 7483-7496.	5.1	27
147	On the formation of "coral-like―spherical α-glycine crystalline particles. Powder Technology, 2015, 279, 310-316.	4.2	10
148	The effect of deamidation on the structural, functional, and rheological properties of glutelin prepared from Akebia trifoliata var. australis seed. Food Chemistry, 2015, 178, 96-105.	8.2	39
149	On the improvement of pore accessibility through post-synthesis hydrothermal treatments of spray dried SBA-15 microspheres. Chemical Engineering Science, 2015, 127, 276-284.	3.8	12
150	Branched Artificial Nanofinger Arrays by Mesoporous Interfacial Atomic Rearrangement. Journal of the American Chemical Society, 2015, 137, 4260-4266.	13.7	30
151	The compositional effects of high solids model emulsions on drying behaviour and particle formation processes. Journal of Food Engineering, 2015, 157, 33-40.	5.2	16
152	New faces of porous Prussian blue: interfacial assembly of integrated hetero-structures for sensing applications. Chemical Society Reviews, 2015, 44, 7997-8018.	38.1	240
153	On the spray drying of uniform functional microparticles. Particuology, 2015, 22, 1-12.	3.6	58
154	Montanide, Poly I:C and nanoparticle based vaccines promote differential suppressor and effector cell expansion: a study of induction of CD8 T cells to a minimal Plasmodium berghei epitope. Frontiers in Microbiology, 2015, 6, 29.	3.5	33
155	Heterologous and sex differential effects of administering vitamin A supplementation with vaccines. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2015, 109, 36-45.	1.8	12
156	Nanoparticles modify dendritic cell homeostasis and induce non-specific effects on immunity to malaria. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2015, 109, 70-76.	1.8	11
157	Sub-5 nm porous nanocrystals: interfacial site-directed growth on graphene for efficient biocatalysis. Chemical Science, 2015, 6, 4029-4034.	7.4	18
158	Mesoporous silica nanoparticles for glutathione-triggered long-range and stable release of hydrogen sulfide. Journal of Materials Chemistry B, 2015, 3, 4451-4457.	5.8	29
159	Chemical and morphological changes of weathered Victorian brown coal fly ash and its leaching characteristic upon the leaching in ammonia chloride and hydrochloric acid. Hydrometallurgy, 2015, 157, 22-32.	4.3	18
160	The mechanisms of the protective effects of reconstituted skim milk during convective droplet drying of lactic acid bacteria. Food Research International, 2015, 76, 478-488.	6.2	38
161	Mapping T and B cell epitopes in sperm protein 17 to support the development of an ovarian cancer vaccine. Vaccine, 2015, 33, 5950-5959.	3.8	9
162	Interfacial assembly of mesoporous nanopyramids as ultrasensitive cellular interfaces featuring efficient direct electrochemistry. NPG Asia Materials, 2015, 7, e204-e204.	7.9	14

#	Article	IF	CITATIONS
163	Surface formation phenomena of DHA-containing emulsion during convective droplet drying. Journal of Food Engineering, 2015, 150, 50-61.	5.2	8
164	Bio-inspired porous antenna-like nanocube/nanowire heterostructure as ultra-sensitive cellular interfaces. NPG Asia Materials, 2014, 6, e117-e117.	7.9	33
165	Rice Dreg Protein as an Alternative to Soy Protein Isolate: Comparison of Nutritional Properties. International Journal of Food Properties, 2014, 17, 1791-1804.	3.0	24
166	Plasmodium falciparum induces Foxp3hi CD4 T cells independent of surface PfEMP1 expression via small soluble parasite components. Frontiers in Microbiology, 2014, 5, 200.	3 . 5	16
167	Exploring the drying behaviour and particle formation of high solids milk protein concentrate. Journal of Food Engineering, 2014, 143, 186-194.	5. 2	22
168	Extraordinary induction heating effect near the first order Curie transition. Applied Physics Letters, 2014, 105, .	3.3	19
169	The effects of engineered nanoparticles on pulmonary immune homeostasis. Drug Metabolism Reviews, 2014, 46, 176-190.	3.6	41
170	Formation of monodisperse mesoporous silica microparticles via spray-drying. Journal of Colloid and Interface Science, 2014, 418, 225-233.	9.4	35
171	Towards spray drying of high solids dairy liquid: Effects of feed solid content on particle structure and functionality. Journal of Food Engineering, 2014, 123, 130-135.	5.2	55
172	Particle size dependence of heating power in MgFe2O4 nanoparticles for hyperthermia therapy application. Journal of Applied Physics, $2014,115,.$	2.5	32
173	Droplet drying behaviour of docosahexaenoic acid (DHA)-containing emulsion. Chemical Engineering Science, 2014, 106, 181-189.	3.8	21
174	Mechanisms Underpinning the Mobilization of Iron and Magnesium Cations from Victorian Brown Coal Fly Ash. Energy & Energ	5.1	14
175	Effects of ionic and nonionic surfactants on milk shell wettability during co-spray-drying of whole milk particles. Journal of Dairy Science, 2014, 97, 5303-5314.	3.4	21
176	Formation of uniform large SBA-15 microspheres via spray drying. Journal of Materials Chemistry A, 2014, 2, 19500-19508.	10.3	36
177	Indirect Carbonation of Victorian Brown Coal Fly Ash for CO ₂ Sequestration: Multiple-Cycle Leaching-Carbonation and Magnesium Leaching Kinetic Modeling. Energy & Sump; Fuels, 2014, 28, 6481-6493.	5.1	55
178	Variability in CRP, regulatory T cells and effector T cells over time in gynaecological cancer patients: a study of potential oscillatory behaviour and correlations. Journal of Translational Medicine, 2014, 12, 179.	4.4	14
179	Dairy Milk Particles Made with a Mono-Disperse Droplet Spray Dryer (MDDSD) Investigated for the Effect of Fat. Drying Technology, 2014, 32, 528-542.	3.1	15
180	Antioxidant activities of Se-SPI produced from soybean as accumulation and biotransformation reactor of natural selenium. Food Chemistry, 2014, 146, 531-537.	8.2	31

#	Article	IF	Citations
181	Design of magnetic polyplexes taken up efficiently by dendritic cell for enhanced DNA vaccine delivery. Gene Therapy, 2014, 21, 212-218.	4.5	40
182	Oriented Mesoporous Nanopyramids as Versatile Plasmon-Enhanced Interfaces. Journal of the American Chemical Society, 2014, 136, 6822-6825.	13.7	62
183	Superparamagnetic Nanoparticle Delivery of DNA Vaccine. Methods in Molecular Biology, 2014, 1143, 181-194.	0.9	10
184	The REZOLVE phase II trial to evaluate the safety and potential palliative benefit of intraperitoneal bevacizumab in patients with symptomatic ascites due to advanced, chemotherapy-resistant ovarian cancer Journal of Clinical Oncology, 2014, 32, TPS5627-TPS5627.	1.6	1
185	Capturing the effect of initial concentrations on the drying kinetics of high solids milk using reaction engineering approach. Dairy Science and Technology, 2013, 93, 415-430.	2.2	11
186	Effects of Spray Drying and Freeze Drying on the Properties of Protein Isolate from Rice Dreg Protein. Food and Bioprocess Technology, 2013, 6, 1759-1769.	4.7	108
187	Inactivation of Lactococcus lactis ssp. cremoris cells in a droplet during convective drying. Biochemical Engineering Journal, 2013, 79, 46-56.	3.6	24
188	On designing particulate carriers for encapsulation and controlled release applications. Powder Technology, 2013, 236, 188-196.	4.2	15
189	Controlling the Size of Taurine Crystals in the Cooling Crystallization Process. Industrial & Company Company Company Controlling Chemistry Research, 2013, 52, 13449-13458.	3.7	13
190	Design of polymeric microparticles for pH-responsive and time-sustained drug release. Biochemical Engineering Journal, 2013, 81, 177-186.	3.6	18
191	New \${m T}_{m c}\$-Tuned Manganese Ferrite-Based Magnetic Implant for Hyperthermia Therapy Application. IEEE Transactions on Magnetics, 2013, 49, 3460-3463.	2.1	16
192	An Investigation in Microencapsulating Astaxanthin Using a Monodisperse Droplet Spray Dryer. Drying Technology, 2013, 31, 1562-1569.	3.1	8
193	Characterisation of local immune responses induced by a novel nano-particle based carrier-adjuvant in sheep. Veterinary Immunology and Immunopathology, 2013, 155, 21-29.	1.2	13
194	A General "Surface‣ocking―Approach toward Fast Assembly and Processing of Largeâ€Sized, Ordered, Mesoporous Carbon Microspheres. Angewandte Chemie - International Edition, 2013, 52, 13764-13768.	13.8	79
195	Differential Uptake of Nanoparticles and Microparticles by Pulmonary APC Subsets Induces Discrete Immunological Imprints. Journal of Immunology, 2013, 191, 5278-5290.	0.8	83
196	In Situ Observation of Taurine Crystallization via Single Droplet Drying. Drying Technology, 2013, 31, 1553-1561.	3.1	6
197	On designing stable magnetic vectors as carriers for malaria DNA vaccine. Colloids and Surfaces B: Biointerfaces, 2013, 102, 492-503.	5.0	22
198	Methods of effective conjugation of antigens to nanoparticles as non-inflammatory vaccine carriers. Methods, 2013, 60, 232-241.	3.8	42

#	Article	IF	Citations
199	On the formation of uniform alginate-silica microcomposites with ordered hierarchical structures. Journal of Food Engineering, 2013, 119, 299-307.	5.2	9
200	On the efficacy of malaria DNA vaccination with magnetic gene vectors. Journal of Controlled Release, 2013, 168, 10-17.	9.9	18
201	Shrinkage behaviour of skim milk droplets during air drying. Journal of Food Engineering, 2013, 116, 37-44.	5.2	42
202	Nanoparticles, Immunomodulation and Vaccine Delivery. Frontiers in Nanobiomedical Research, 2013, , 449-475.	0.1	7
203	The signalling imprints of nanoparticle uptake by bone marrow derived dendritic cells. Methods, 2013, 60, 275-283.	3.8	20
204	Food powder rehydration., 2013,, 379-408.		10
205	Inert 50-nm Polystyrene Nanoparticles That Modify Pulmonary Dendritic Cell Function and Inhibit Allergic Airway Inflammation. Journal of Immunology, 2012, 188, 1431-1441.	0.8	51
206	The use of plasma treatment for simultaneous carbonization and reduction of iron oxide/polypyrrole core/shell nanoparticles. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	8
207	Enhancing the oxidative stability of food emulsions with rice dreg protein hydrolysate. Food Research International, 2012, 48, 876-884.	6.2	46
208	Phase reduction of coated maghemite (\hat{l}^3 -Fe ₂ O ₃) nanoparticles under microwave-induced plasma heating for rapid heat treatment. Journal of Materials Chemistry, 2012, 22, 617-625.	6.7	36
209	Spray drying of monodispersed microencapsulates: implications of formulation and process parameters on microstructural properties and controlled release functionality. Journal of Microencapsulation, 2012, 29, 677-684.	2.8	14
210	Characteristics of Ni/YSZ ceramic anode prepared using carbon microspheres as a pore former. International Journal of Hydrogen Energy, 2012, 37, 15311-15319.	7.1	58
211	Electrochemical characteristics and performance of anode-supported SOFCs fabricated using carbon microspheres as a pore-former. International Journal of Hydrogen Energy, 2012, 37, 19045-19054.	7.1	20
212	Comparison of functional and structural properties of native and industrial process-modified proteins from long-grain indica rice. Journal of Cereal Science, 2012, 56, 568-575.	3.7	73
213	Modeling the Influence of Carbon Spheres on the Porosity of <scp>SOFC</scp> Anode Materials. Journal of the American Ceramic Society, 2012, 95, 1261-1268.	3.8	9
214	A monodisperse spray dryer for milk powder: Modelling the formation of insoluble material. Chemical Engineering Science, 2012, 71, 75-84.	3.8	41
215	Assembly of magnetic microcomposites from low pH precursors using a novel micro-fluidic-jet-spray-dryer. Chemical Engineering Research and Design, 2012, 90, 150-157.	5.6	7
216	Enzymatic hydrolysis of rice dreg protein: Effects of enzyme type on the functional properties and antioxidant activities of recovered proteins. Food Chemistry, 2012, 134, 1360-1367.	8.2	180

#	Article	IF	Citations
217	Functionality of milk protein concentrate: Effect of spray drying temperature. Biochemical Engineering Journal, 2012, 62, 101-105.	3.6	94
218	Rheological behaviour of NiO/YSZ slurries for drying-free casting. Powder Technology, 2012, 223, 116-122.	4.2	4
219	Particle drying and crystallization characteristics in a low velocity concurrent pilot scale spray drying tower. Powder Technology, 2012, 223, 39-45.	4.2	18
220	Drying kinetics of skim milk with 50wt.% initial solids. Journal of Food Engineering, 2012, 109, 701-711.	5.2	33
221	A single step assembly of uniform microparticles for controlled release applications. Soft Matter, 2011, 7, 3323.	2.7	41
222	On spray drying of uniform silica-based microencapsulates for controlled release. Soft Matter, 2011, 7, 11416.	2.7	29
223	Facile Spray-Drying Assembly of Uniform Microencapsulates with Tunable Core–Shell Structures and Controlled Release Properties. Langmuir, 2011, 27, 12910-12915.	3.5	60
224	Superparamagnetic Nanoparticles for Effective Delivery of Malaria DNA Vaccine. Langmuir, 2011, 27, 3703-3712.	3.5	94
225	On quantifying the dissolution behaviour of milk protein concentrate. Food Hydrocolloids, 2011, 25, 503-510.	10.7	71
226	Microfluidic spray drying as a versatile assembly route of functional particles. Chemical Engineering Science, 2011, 66, 5531-5531.	3.8	16
227	Synthesis and electromagnetic interference shielding properties of iron oxide/polypyrrole nanocomposites. Polymer Engineering and Science, 2011, 51, 247-253.	3.1	67
228	Assembly of uniform photoluminescent microcomposites using a novel microâ€fluidicâ€jetâ€sprayâ€dryer. AICHE Journal, 2011, 57, 2726-2737.	3.6	64
229	Numerical probing of a low velocity concurrent pilot scale spray drying tower for mono-disperse particle production $\hat{a} \in ``Unusual characteristics and possible improvements. Chemical Engineering and Processing: Process Intensification, 2011, 50, 417-427.$	3.6	19
230	A new empirical viscosity model for ceramic suspensions. Chemical Engineering Science, 2011, 66, 2798-2806.	3.8	52
231	N,N′-Carbonyldiimidazole-mediated functionalization of superparamagnetic nanoparticles as vaccine carrier. Colloids and Surfaces B: Biointerfaces, 2011, 83, 83-90.	5.0	31
232	Differential Cellular Recognition of Antigens During Acute Plasmodium falciparum and Plasmodium vivax Malaria. Journal of Infectious Diseases, 2011, 203, 1192-1199.	4.0	7
233	Uniform Chitosan Microparticles Prepared by a Novel Spray-Drying Technique. International Journal of Chemical Engineering, 2011, 2011, 1-7.	2.4	39
234	Characterization of milk protein concentrate solubility using focused beam reflectance measurement. Dairy Science and Technology, 2010, 90, 253-270.	2.2	28

#	Article	IF	Citations
235	The influence of La-doping on the activity and stability of Cu/ZnO catalyst for the low-temperature water–gas shift reaction. Journal of Catalysis, 2010, 273, 73-81.	6.2	84
236	Functionalization Strategies for Protease Immobilization on Magnetic Nanoparticles. Advanced Functional Materials, 2010, 20, 1767-1777.	14.9	133
237	Facile Functionalization and Phase Reduction Route of Magnetic Iron Oxide Nanoparticles for Conjugation of Matrix Metalloproteinase. Advanced Engineering Materials, 2010, 12, B210.	3.5	9
238	Pyrophoricity and stability of copper and platinum based water-gas shift catalysts during oxidative shut-down/start-up operation. Chemical Engineering Science, 2010, 65, 6461-6470.	3.8	27
239	Delivery of DNA vaccines: an overview on the use of biodegradable polymeric and magnetic nanoparticles. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2010, 2, 205-218.	6.1	67
240	Evolution of Morphology and Magnetic Properties in Silica/Maghemite Nanocomposites. Journal of Physical Chemistry C, 2009, 113, 12040-12047.	3.1	37
241	Malaria vaccines: into a mirror, darkly?. Trends in Parasitology, 2008, 24, 532-536.	3.3	8
242	Promising particle-based vaccines in cancer therapy. Expert Review of Vaccines, 2008, 7, 1103-1119.	4.4	61
243	Micro X-ray Tomographic Imaging Of Porous Media. AIP Conference Proceedings, 2007, , .	0.4	0
244	Poly-l-lysine-coated nanoparticles: A potent delivery system to enhance DNA vaccine efficacy. Vaccine, 2007, 25, 1316-1327.	3.8	122
245	On Measurement of Food Powder Reconstitution Properties. Drying Technology, 2007, 26, 3-14.	3.1	95
246	Insight into microstructural and magnetic properties of flame-made \hat{l}^3 -Fe2O3 nanoparticles. Journal of Materials Chemistry, 2007, 17, 4876.	6.7	99
247	Mannan-mediated gene delivery for cancer immunotherapy. Immunology, 2007, 120, 325-335.	4.4	52
248	Type 1 and 2 Immunity Following Vaccination Is Influenced by Nanoparticle Size:Â Formulation of a Model Vaccine for Respiratory Syncytial Virus. Molecular Pharmaceutics, 2007, 4, 73-84.	4.6	258
249	In-process measurement of particulate systems. , 2007, , 255-269.		0
250	Flame-Sprayed Superparamagnetic Bare and Silica-Coated Maghemite Nanoparticles:  Synthesis, Characterization, and Protein Adsorptionâ^'Desorption. Chemistry of Materials, 2006, 18, 6403-6413.	6.7	123
251	Pathogen recognition and development of particulate vaccines: Does size matter?. Methods, 2006, 40, 1-9.	3.8	509
252	Systemic immune responses in sheep, induced by a novel nano-bead adjuvant. Vaccine, 2006, 24, 1124-1131.	3.8	64

#	Article	IF	CITATIONS
253	Micro-properties of coal aggregates: Implications on hyperbaric filtration performance for coal dewatering. International Journal of Mineral Processing, 2006, 80, 189-197.	2.6	10
254	An integrated methodology to evaluate permeability from measured microstructures. AICHE Journal, 2006, 52, 3394-3400.	3 . 6	20
255	XMT enabled prediction of structure and permeability of flocculated structures and sediments. Journal of Zhejiang University: Science A, 2005, 6, 1367-1373.	2.4	1
256	Densification of iron(III) sludge in neutralization. International Journal of Mineral Processing, 2005, 76, 149-162.	2.6	17
257	Direct Prediction of Structure and Permeability of Flocculated Structures and Sediments Using 3D Tomographic Imaging. Chemical Engineering Research and Design, 2005, 83, 844-852.	5 . 6	27
258	On Different Approaches to Estimate the Mass Fractal Dimension of Coal Aggregates. Particle and Particle Systems Characterization, 2005, 22, 299-309.	2.3	55
259	Vaccines that facilitate antigen entry into dendritic cells. Immunology and Cell Biology, 2004, 82, 506-516.	2.3	181
260	Aggregate properties in relation to aggregation conditions under various applied shear environments. International Journal of Mineral Processing, 2004, 73, 295-307.	2.6	32
261	Size-Dependent Immunogenicity: Therapeutic and Protective Properties of Nano-Vaccines against Tumors. Journal of Immunology, 2004, 173, 3148-3154.	0.8	603
262	Understanding the role of restructuring in flocculation: The application of a population balance model. Chemical Engineering Science, 2003, 58, 327-338.	3.8	121
263	Aggregation Mechanisms of Latex of Different Particle Sizes in a Controlled Shear Environment. Langmuir, 2002, 18, 1974-1984.	3.5	103
264	Evidence of Shear Rate Dependence on Restructuring and Breakup of Latex Aggregates. Journal of Colloid and Interface Science, 2001, 236, 67-77.	9.4	161
265	The immunology of malaria infection. Current Opinion in Immunology, 2000, 12, 437-441.	5 . 5	113
266	Mechanisms of Cr(VI) removal from water by various types of activated carbons. , 1999, 74, 111-122.		115
267	Reductive Leaching of Iron and Magnesium out of Magnesioferrite from Victorian Brown Coal Fly Ash. Energy & Energy & Ene	5.1	3
268	Implementation of P-Controller in Computational Fluid Dynamics (CFD) Simulation of a Pilot Scale Outlet Temperature Controlled Spray Dryer., 0,,.		1