
Adele M Lehane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2418821/publications.pdf Version: 2024-02-01

ADELE MIEUANE

#	Article	IF	CITATIONS
1	Discovery of spirooxadiazoline oxindoles with dual-stage antimalarial activity. European Journal of Medicinal Chemistry, 2022, 236, 114324.	5.5	9
2	Identifying the major lactate transporter of Toxoplasma gondii tachyzoites. Scientific Reports, 2021, 11, 6787.	3.3	10
3	An Open Drug Discovery Competition: Experimental Validation of Predictive Models in a Series of Novel Antimalarials. Journal of Medicinal Chemistry, 2021, 64, 16450-16463.	6.4	8
4	A 4-cyano-3-methylisoquinoline inhibitor of Plasmodium falciparum growth targets the sodium efflux pump PfATP4. Scientific Reports, 2019, 9, 10292.	3.3	20
5	Characterization of the ATP4 ion pump in Toxoplasma gondii. Journal of Biological Chemistry, 2019, 294, 5720-5734.	3.4	18
6	Cell Swelling Induced by the Antimalarial KAE609 (Cipargamin) and Other PfATP4-Associated Antimalarials. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	33
7	Protein kinase A negatively regulates Ca2+ signalling in Toxoplasma gondii. PLoS Biology, 2018, 16, e2005642.	5.6	65
8	Biochemical characterization and chemical inhibition of PfATP4-associated Na+-ATPase activity in Plasmodium falciparum membranes. Journal of Biological Chemistry, 2018, 293, 13327-13337.	3.4	32
9	Defense Peptides Engineered from Human Platelet Factor 4 Kill Plasmodium by Selective Membrane Disruption. Cell Chemical Biology, 2018, 25, 1140-1150.e5.	5.2	13
10	Diverse antimalarials from whole-cell phenotypic screens disrupt malaria parasite ion and volume homeostasis. Scientific Reports, 2018, 8, 8795.	3.3	36
11	A forward genetic screen identifies a negative regulator of rapid Ca2+-dependent cell egress (MS1) in the intracellular parasite Toxoplasma gondii. Journal of Biological Chemistry, 2017, 292, 7662-7674.	3.4	27
12	Biochemical and Structural Characterization of Selective Allosteric Inhibitors of the <i>Plasmodium falciparum</i> Drug Target, Prolyl-tRNA-synthetase. ACS Infectious Diseases, 2017, 3, 34-44.	3.8	45
13	The Malaria Parasite's Lactate Transporter PfFNT Is the Target of Antiplasmodial Compounds Identified in Whole Cell Phenotypic Screens. PLoS Pathogens, 2017, 13, e1006180.	4.7	37
14	Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathogens, 2016, 12, e1005763.	4.7	244
15	Globally prevalent PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based combination therapies. Nature Communications, 2016, 7, 11553.	12.8	208
16	Verapamil-Sensitive Transport of Quinacrine and Methylene Blue via the <i>Plasmodium falciparum</i> Chloroquine Resistance Transporter Reduces the Parasite's Susceptibility to these Tricyclic Drugs. Journal of Infectious Diseases, 2016, 213, 800-810.	4.0	22
17	Molecular Mechanisms for Drug Hypersensitivity Induced by the Malaria Parasite's Chloroquine Resistance Transporter. PLoS Pathogens, 2016, 12, e1005725.	4.7	29
18	Balancing drug resistance and growth rates via compensatory mutations in the <scp><i>P</i></scp> <i>lasmodium falciparum</i> chloroquine resistance transporter. Molecular Microbiology, 2015, 97, 381-395.	2.5	47

Adele M Lehane

#	Article	IF	CITATIONS
19	A lactate and formate transporter in the intraerythrocytic malaria parasite, Plasmodium falciparum. Nature Communications, 2015, 6, 6721.	12.8	56
20	1H-NMR metabolite profiles of different strains of <i>Plasmodium falciparum</i> . Bioscience Reports, 2014, 34, e00150.	2.4	22
21	(+)-SJ733, a clinical candidate for malaria that acts through ATP4 to induce rapid host-mediated clearance of <i>Plasmodium</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5455-62.	7.1	199
22	Diverse chemotypes disrupt ion homeostasis in the malaria parasite. Molecular Microbiology, 2014, 94, 327-339.	2.5	79
23	Membrane transport in the malaria parasite and its host erythrocyte. Biochemical Journal, 2014, 457, 1-18.	3.7	70
24	Quinine Dimers Are Potent Inhibitors of the <i>Plasmodium falciparum</i> Chloroquine Resistance Transporter and Are Active against Quinoline-Resistant <i>P. falciparum</i> . ACS Chemical Biology, 2014, 9, 722-730.	3.4	34
25	Chlorpheniramine Analogues Reverse Chloroquine Resistance in <i>Plasmodium falciparum</i> by Inhibiting PfCRT. ACS Medicinal Chemistry Letters, 2014, 5, 576-581.	2.8	18
26	Degrees of chloroquine resistance in Plasmodium – Is the redox system involved?. International Journal for Parasitology: Drugs and Drug Resistance, 2012, 2, 47-57.	3.4	37
27	PfCRT and its role in antimalarial drug resistance. Trends in Parasitology, 2012, 28, 504-514.	3.3	223
28	Differential Drug Efflux or Accumulation Does Not Explain Variation in the Chloroquine Response of Plasmodium falciparum Strains Expressing the Same Isoform of Mutant PfCRT. Antimicrobial Agents and Chemotherapy, 2011, 55, 2310-2318.	3.2	14
29	Molecular Markers of Plasmodium Resistance to Antimalarials. , 2011, , 249-280.		5
30	Efflux of a range of antimalarial drugs and â€~chloroquine resistance reversers' from the digestive vacuole in malaria parasites with mutant PfCRT. Molecular Microbiology, 2010, 77, 1039-1051.	2.5	39
31	An Acid-loading Chloride Transport Pathway in the Intraerythrocytic Malaria Parasite, Plasmodium falciparum. Journal of Biological Chemistry, 2010, 285, 18615-18626.	3.4	8
32	A polymorphic drug pump in the malaria parasite. Molecular Microbiology, 2008, 70, 775-779.	2.5	6
33	Common dietary flavonoids inhibit the growth of the intraerythrocytic malaria parasite. BMC Research Notes, 2008, 1, 26.	1.4	122
34	Chloroquine Resistance-Conferring Mutations in <i>pfcrt</i> Give Rise to a Chloroquine-Associated H ⁺ Leak from the Malaria Parasite's Digestive Vacuole. Antimicrobial Agents and Chemotherapy, 2008, 52, 4374-4380.	3.2	46
35	A verapamil-sensitive chloroquine-associated H+ leak from the digestive vacuole in chloroquine-resistant malaria parasites. Journal of Cell Science, 2008, 121, 1624-1632.	2.0	51
36	Feedback Inhibition of Pantothenate Kinase Regulates Pantothenol Uptake by the Malaria Parasite. Journal of Biological Chemistry, 2007, 282, 25395-25405.	3.4	19

#	Article	IF	CITATIONS
37	Bacteriophage-encoded glucosyltransferase Gtril of Shigella flexneri: membrane topology and identification of critical residues. Biochemical Journal, 2005, 389, 137-143.	3.7	27
38	Choline uptake into the malaria parasite is energized by the membrane potential. Biochemical and Biophysical Research Communications, 2004, 320, 311-317.	2.1	50