Shuikuan Bei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2418548/publications.pdf

Version: 2024-02-01

		933447	888059	
18	548	10	17	
papers	citations	h-index	g-index	
18 all docs	18 docs citations	18 times ranked	469 citing authors	

#	Article	IF	CITATIONS
1	Field application of pure polyethylene microplastic has no significant short-term effect on soil biological quality and function. Soil Biology and Biochemistry, 2022, 165, 108496.	8.8	45
2	Nitrogen availability mediates the priming effect of soil organic matter by preferentially altering the straw carbon-assimilating microbial community. Science of the Total Environment, 2022, 815, 152882.	8.0	24
3	Soil biota is decisive for overyielding in intercropping under low phosphorus conditions. Journal of Applied Ecology, 2022, 59, 1804-1814.	4.0	5
4	Temperature-dependent changes in active nitrifying communities in response to field fertilization legacy. Biology and Fertility of Soils, 2021, 57, 1-14.	4.3	6
5	Dynamics of ammonia oxidizers in response to different fertilization inputs in intensively managed agricultural soils. Applied Soil Ecology, 2021, 157, 103729.	4.3	9
6	Soil microbial legacy drives crop diversity advantage: Linking ecological plant–soil feedback with agricultural intercropping. Journal of Applied Ecology, 2021, 58, 496-506.	4.0	50
7	Arbuscular mycorrhizal fungi enhanced coix responses to phosphorous forms but not for faba bean in intercropping systems, under controlled environment. Agronomy Journal, 2021, 113, 2578-2590.	1.8	3
8	Impact of reduced light intensity on wheat yield and quality: Implications for agroforestry systems. Agroforestry Systems, 2021, 95, 1689-1701.	2.0	5
9	Enrichment of <scp><i>nosZ</i></scp> â€type denitrifiers by arbuscular mycorrhizal fungi mitigates <scp>N₂O</scp> emissions from soybean stubbles. Environmental Microbiology, 2021, 23, 6587-6602.	3.8	13
10	Contrasting impacts of manure and inorganic fertilizer applications for nine years on soil organic carbon and its labile fractions in bulk soil and soil aggregates. Catena, 2020, 194, 104739.	5.0	80
11	Effect of Different Fertilization Practices on Soil Microbial Community in a Wheat–Maize Rotation System. Sustainability, 2019, 11, 4088.	3.2	13
12	Rhizoplane Bacteria and Plant Species Co-determine Phosphorus-Mediated Microbial Legacy Effect. Frontiers in Microbiology, 2019, 10, 2856.	3.5	17
13	Organic fertilizer, but not heavy liming, enhances banana biomass, increases soil organic carbon and modifies soil microbiota. Applied Soil Ecology, 2019, 136, 67-79.	4.3	72
14	Response of the soil microbial community to different fertilizer inputs in a wheat-maize rotation on a calcareous soil. Agriculture, Ecosystems and Environment, 2018, 260, 58-69.	5.3	125
15	Growth and Distribution of Maize Roots in Response to Nitrogen Accumulation in Soil Profiles after Long-Term Fertilization Management on a Calcareous Soil. Sustainability, 2018, 10, 4315.	3.2	7
16	Arbuscular mycorrhizal fungi contribute to overyielding by enhancing crop biomass while suppressing weed biomass in intercropping systems. Plant and Soil, 2016, 406, 173-185.	3.7	38
17	Enhancement of faba bean competitive ability by arbuscular mycorrhizal fungi is highly correlated with dynamic nutrient acquisition by competing wheat. Scientific Reports, 2015, 5, 8122.	3.3	36
18	Manure fertilization enhanced microbial immigration in the wheat rhizosphere. Journal of Soils and Sediments, 0 , , 1 .	3.0	0