
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2418398/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pfam: the protein families database. Nucleic Acids Research, 2014, 42, D222-D230.	6.5	5,425
2	The Pfam protein families database: towards a more sustainable future. Nucleic Acids Research, 2016, 44, D279-D285.	6.5	5,391
3	The Pfam protein families database. Nucleic Acids Research, 2012, 40, D290-D301.	6.5	3,306
4	Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Research, 2013, 41, e121-e121.	6.5	1,214
5	The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Research, 2015, 43, D213-D221.	6.5	1,205
6	InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Research, 2012, 40, D306-D312.	6.5	921
7	PredictProtein—an open resource for online prediction of protein structural and functional features. Nucleic Acids Research, 2014, 42, W337-W343.	6.5	589
8	New mini- zincin structures provide a minimal scaffold for members of this metallopeptidase superfamily. BMC Bioinformatics, 2014, 15, 1.	1.2	541
9	Genomic and Transcriptomic Determinants of Therapy Resistance and Immune Landscape Evolution during Anti-EGFR Treatment in Colorectal Cancer. Cancer Cell, 2019, 36, 35-50.e9.	7.7	179
10	Improved Disorder Prediction by Combination of Orthogonal Approaches. PLoS ONE, 2009, 4, e4433.	1.1	170
11	PROFcon: novel prediction of long-range contacts. Bioinformatics, 2005, 21, 2960-2968.	1.8	138
12	Protein disorder—a breakthrough invention of evolution?. Current Opinion in Structural Biology, 2011, 21, 412-418.	2.6	134
13	Crystal structure of a potassium ion transporter, TrkH. Nature, 2011, 471, 336-340.	13.7	120
14	Natively unstructured regions in proteins identified from contact predictions. Bioinformatics, 2007, 23, 2376-2384.	1.8	118
15	Homologue structure of the SLAC1 anion channel for closing stomata in leaves. Nature, 2010, 467, 1074-1080.	13.7	118
16	Clinical <i>BRCA1/2</i> Reversion Analysis Identifies Hotspot Mutations and Predicted Neoantigens Associated with Therapy Resistance. Cancer Discovery, 2020, 10, 1475-1488.	7.7	109
17	Membrane protein prediction methods. Methods, 2007, 41, 460-474.	1.9	104
18	CASP6 assessment of contact prediction. Proteins: Structure, Function and Bioinformatics, 2005, 61, 214-224.	1.5	86

#	Article	IF	CITATIONS
19	Identifying cysteines and histidines in transition-metal-binding sites using support vector machines and neural networks. Proteins: Structure, Function and Bioinformatics, 2006, 65, 305-316.	1.5	86
20	Beyond annotation transfer by homology: novel protein-function prediction methods to assist drug discovery. Drug Discovery Today, 2005, 10, 1475-1482.	3.2	84
21	Protein Folding Rates Estimated from Contact Predictions. Journal of Molecular Biology, 2005, 348, 507-512.	2.0	84
22	The Rough Guide to In Silico Function Prediction, or How To Use Sequence and Structure Information To Predict Protein Function. PLoS Computational Biology, 2008, 4, e1000160.	1.5	83
23	Crystal structure of a phosphorylation-coupled saccharide transporter. Nature, 2011, 473, 50-54.	13.7	77
24	Large-Scale Analysis of Thermostable, Mammalian Proteins Provides Insights into the Intrinsically Disordered Proteome. Journal of Proteome Research, 2009, 8, 211-226.	1.8	76
25	The New York Consortium on Membrane Protein Structure (NYCOMPS): a high-throughput platform for structural genomics of integral membrane proteins. Journal of Structural and Functional Genomics, 2010, 11, 191-199.	1.2	57
26	MetalDetector: a web server for predicting metal-binding sites and disulfide bridges in proteins from sequence. Bioinformatics, 2008, 24, 2094-2095.	1.8	47
27	Structural genomics target selection for the New York consortium on membrane protein structure. Journal of Structural and Functional Genomics, 2009, 10, 255-268.	1.2	46
28	Extreme intratumour heterogeneity and driver evolution in mismatch repair deficient gastro-oesophageal cancer. Nature Communications, 2020, 11, 139.	5.8	44
29	Genome3D: exploiting structure to help users understand their sequences. Nucleic Acids Research, 2015, 43, D382-D386.	6.5	42
30	Characterization of metalloproteins by high-throughput X-ray absorption spectroscopy. Genome Research, 2011, 21, 898-907.	2.4	41
31	AntiFam: a tool to help identify spurious ORFs in protein annotation. Database: the Journal of Biological Databases and Curation, 2012, 2012, bas003-bas003.	1.4	38
32	Structural genomics plucks high-hanging membrane proteins. Current Opinion in Structural Biology, 2012, 22, 326-332.	2.6	38
33	Microenvironmental niche divergence shapes BRCA1-dysregulated ovarian cancer morphological plasticity. Nature Communications, 2018, 9, 3917.	5.8	33
34	InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Research, 2012, 40, 4725-4725.	6.5	31
35	Structural genomics reveals EVE as a new ASCH/PUAâ€related domain. Proteins: Structure, Function and Bioinformatics, 2009, 75, 760-773.	1.5	29
36	A knowledge-based scale for amino acid membrane propensity. Proteins: Structure, Function and Bioinformatics, 2002, 50, 114-121.	1.5	27

#	Article	IF	CITATIONS
37	Carbon dating cancer: defining the chronology of metastatic progression in colorectal cancer. Annals of Oncology, 2017, 28, 1243-1249.	0.6	25
38	Movement of the C-Helix during the Gating of Cyclic Nucleotide-Gated Channels. Biophysical Journal, 2002, 83, 3283-3295.	0.2	22
39	The challenge of increasing Pfam coverage of the human proteome. Database: the Journal of Biological Databases and Curation, 2013, 2013, bat023.	1.4	22
40	Computational proteomics pitfalls and challenges: HavanaBioinfo 2012 Workshop report. Journal of Proteomics, 2013, 87, 134-138.	1.2	19
41	An estimated 5% of new protein structures solved today represent a new Pfam family. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 2186-2193.	2.5	12
42	Identification of single nucleotide variants using position-specific error estimation in deep sequencing data. BMC Medical Genomics, 2019, 12, 115.	0.7	10
43	Structure-based analysis of CysZ-mediated cellular uptake of sulfate. ELife, 2018, 7, .	2.8	10
44	Prediction and Analysis of Intrinsically Disordered Proteins. Methods in Molecular Biology, 2015, 1261, 35-59.	0.4	9
45	Molecular modeling studies on CNG channel from bovine retinal rod: A structural model of the cyclic nucleotide-binding domain. Proteins: Structure, Function and Bioinformatics, 2003, 52, 332-338.	1.5	8
46	LUD, a new protein domain associated with lactate utilization. BMC Bioinformatics, 2013, 14, 341.	1.2	8
47	Structure and sequence analyses of Bacteroides proteins BVU_4064 and BF1687 reveal presence of two novel predominantly-beta domains, predicted to be involved in lipid and cell surface interactions. BMC Bioinformatics, 2015, 16, 7.	1.2	8
48	Neural Networks Predict Protein Structure and Function. Methods in Molecular Biology, 2008, 458, 198-225.	0.4	8
49	The Immunogenic Potential of Recurrent Cancer Drug Resistance Mutations: An In Silico Study. Frontiers in Immunology, 2020, 11, 524968.	2.2	7
50	The complexity, challenges and benefits of comparing two transporter classification systems in TCDB and Pfam. Briefings in Bioinformatics, 2015, 16, 865-872.	3.2	6
51	NMR Structure of Lipoprotein YxeF from Bacillus subtilis Reveals a Calycin Fold and Distant Homology with the Lipocalin Blc from Escherichia coli. PLoS ONE, 2012, 7, e37404.	1.1	6
52	The SHOCT Domain: A Widespread Domain Under-Represented in Model Organisms. PLoS ONE, 2013, 8, e57848.	1.1	6
53	The challenge of increasing Pfam coverage of the human proteome. Database: the Journal of Biological Databases and Curation, 2013, 2013, .	1.4	5
54	Crystal structures of three representatives of a new <scp>P</scp> fam family PF14869 (DUF4488) suggest they function in sugar binding/uptake. Protein Science, 2014, 23, 1380-1391.	3.1	3

#	Article	IF	CITATIONS
55	Density Peak clustering of protein sequences associated to a Pfam clan reveals clear similarities and interesting differences with respect to manual family annotation. BMC Bioinformatics, 2021, 22, 121.	1.2	1
56	Metal Binding in Proteins: Machine Learning Complements X-Ray Absorption Spectroscopy. Lecture Notes in Computer Science, 2012, , 854-857.	1.0	1
57	Solution NMR structures of proteins VPA0419 from <i>Vibrio parahaemolyticus</i> and yiiS from <i>Shigella flexneri</i> provide structural coverage for protein domain family PFAM 04175. Proteins: Structure, Function and Bioinformatics, 2010, 78, 779-784.	1.5	Ο
58	Homology-Based Annotation of Large Protein Datasets. Methods in Molecular Biology, 2016, 1415, 153-176.	0.4	0