Ellen M Sletten

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2418228/publications.pdf

Version: 2024-02-01

65 papers

7,783 citations

185998
28
h-index

60 g-index

73 all docs

73 docs citations

73 times ranked 8673 citing authors

#	Article	IF	Citations
1	Bioorthogonal Chemistry: Fishing for Selectivity in a Sea of Functionality. Angewandte Chemie - International Edition, 2009, 48, 6974-6998.	7.2	2,604
2	From Mechanism to Mouse: A Tale of Two Bioorthogonal Reactions. Accounts of Chemical Research, 2011, 44, 666-676.	7.6	893
3	Rapid Cu-Free Click Chemistry with Readily Synthesized Biarylazacyclooctynones. Journal of the American Chemical Society, 2010, 132, 3688-3690.	6.6	591
4	Copper-free click chemistry in living animals. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1821-1826.	3.3	560
5	Dynamically reconfigurable complex emulsions via tunable interfacial tensions. Nature, 2015, 518, 520-524.	13.7	325
6	Flavylium Polymethine Fluorophores for Near―and Shortwave Infrared Imaging. Angewandte Chemie - International Edition, 2017, 56, 13126-13129.	7.2	301
7	A Hydrophilic Azacyclooctyne for Cu-Free Click Chemistry. Organic Letters, 2008, 10, 3097-3099.	2.4	241
8	Reactivity of Biarylazacyclooctynones in Copper-Free Click Chemistry. Journal of the American Chemical Society, 2012, 134, 9199-9208.	6.6	229
9	A Pictet-Spengler ligation for protein chemical modification. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 46-51.	3.3	183
10	Shortwave infrared polymethine fluorophores matched to excitation lasers enable non-invasive, multicolour in vivo imaging in real time. Nature Chemistry, 2020, 12, 1123-1130.	6.6	172
11	Shortwave Infrared Imaging with J-Aggregates Stabilized in Hollow Mesoporous Silica Nanoparticles. Journal of the American Chemical Society, 2019, 141, 12475-12480.	6.6	128
12	Fluorophore Targeting to Cellular Proteins via Enzyme-Mediated Azide Ligation and Strain-Promoted Cycloaddition. Journal of the American Chemical Society, 2012, 134, 3720-3728.	6.6	114
13	Difluorobenzocyclooctyne: Synthesis, Reactivity, and Stabilization by \hat{l}^2 -Cyclodextrin. Journal of the American Chemical Society, 2010, 132, 11799-11805.	6.6	106
14	Bright Chromenylium Polymethine Dyes Enable Fast, Four-Color <i>In Vivo</i> In Imaging with Shortwave Infrared Detection. Journal of the American Chemical Society, 2021, 143, 6836-6846.	6.6	98
15	Perfluorocarbon nanoemulsion promotes the delivery of reducing equivalents for electricity-driven microbial CO2 reduction. Nature Catalysis, 2019, 2, 407-414.	16.1	93
16	A Strategy for the Selective Imaging of Glycans Using Caged Metabolic Precursors. Journal of the American Chemical Society, 2010, 132, 9516-9518.	6.6	83
17	A Bioorthogonal Quadricyclane Ligation. Journal of the American Chemical Society, 2011, 133, 17570-17573.	6.6	66
18	Fluorofluorophores: Fluorescent Fluorous Chemical Tools Spanning the Visible Spectrum. Journal of the American Chemical Society, 2014, 136, 13574-13577.	6.6	65

#	Article	IF	CITATIONS
19	Fluorous photosensitizers enhance photodynamic therapy with perfluorocarbon nanoemulsions. Chemical Communications, 2017, 53, 13043-13046.	2.2	64
20	Fluorescent Cyanine Dye J-Aggregates in the Fluorous Phase. Journal of the American Chemical Society, 2018, 140, 2727-2730.	6.6	63
21	Establishing design principles for emissive organic SWIR chromophores from energy gap laws. CheM, 2021, 7, 3359-3376.	5.8	48
22	Flavylium Polymethine Fluorophores for Near―and Shortwave Infrared Imaging. Angewandte Chemie, 2017, 129, 13306-13309.	1.6	47
23	Fluorous Soluble Cyanine Dyes for Visualizing Perfluorocarbons in Living Systems. Journal of the American Chemical Society, 2020, 142, 16072-16081.	6.6	47
24	A Flexible Stereospecific Synthesis of Polyhydroxylated Pyrrolizidines from Commercially Available Pyranosides. Journal of Organic Chemistry, 2006, 71, 1335-1343.	1.7	46
25	Perfluorocarbons in Chemical Biology. ChemBioChem, 2020, 21, 3451-3462.	1.3	41
26	Controlling nanoemulsion surface chemistry with poly(2-oxazoline) amphiphiles. Chemical Science, 2019, 10, 3994-4003.	3.7	32
27	A Homologation Approach to the Synthesis of Difluorinated Cycloalkynes. Organic Letters, 2014, 16, 1634-1637.	2.4	28
28	Carborane Guests for Cucurbit[7]uril Facilitate Strong Binding and On-Demand Removal. Journal of the American Chemical Society, 2020, 142, 20513-20518.	6.6	28
29	Photophysical Properties of Indocyanine Green in the Shortwave Infrared Region. ChemPhotoChem, 2021, 5, 727-734.	1.5	28
30	Spatiotemporal Control of Biology: Synthetic Photochemistry Toolbox with Far-Red and Near-Infrared Light. ACS Chemical Biology, 2022, 17, 3255-3269.	1.6	28
31	Functionalized Poly(3-hexylthiophene)s via Lithium–Bromine Exchange. Macromolecules, 2015, 48, 229-235.	2.2	25
32	Photophysical Tuning of Shortwave Infrared Flavylium Heptamethine Dyes via Substituent Placement. Organic Letters, 2020, 22, 6150-6154.	2.4	24
33	Systematic Study of Perfluorocarbon Nanoemulsions Stabilized by Polymer Amphiphiles. ACS Applied Materials & Description of Perfluorocarbon Nanoemulsions Stabilized by Polymer Amphiphiles. ACS Applied Materials & Description of Perfluorocarbon Nanoemulsions Stabilized by Polymer Amphiphiles. ACS Applied Materials & Description of Perfluorocarbon Nanoemulsions Stabilized by Polymer Amphiphiles. ACS Applied Materials & Description of Perfluorocarbon Nanoemulsions Stabilized by Polymer Amphiphiles. ACS Applied Materials & Description of Perfluorocarbon Nanoemulsions Stabilized by Polymer Amphiphiles. ACS Applied Materials & Description of Perfluorocarbon Nanoemulsions Stabilized by Polymer Amphiphiles. ACS Applied Materials & Description of Perfluorocarbon Nanoemulsions Stabilized by Polymer Amphiphiles. ACS Applied Materials & Description of Perfluorocarbon Nanoemulsions Stabilized by Polymer Amphiphiles. ACS Applied Materials & Description of Perfluorocarbon of Perfluorocarbon Nanoemulsions Stabilized by Polymer Amphiphiles. ACS Applied Nanoemulsion of Perfluorocarbon of Perfluorocarbon Nanoemulsion of Perfluorocarbon	4.0	23
34	Arene-Perfluoroarene Interactions in Solution. Journal of Organic Chemistry, 2021, 86, 8425-8436.	1.7	23
35	Perfluorocarbon nanomaterials for photodynamic therapy. Current Opinion in Colloid and Interface Science, 2021, 54, 101454.	3.4	23
36	Enabling the Synthesis of Perfluoroalkyl Bicyclobutanes <i>via</i> 1,3 \hat{I}^3 -Silyl Elimination. Organic Letters, 2011, 13, 1646-1649.	2.4	22

3

#	Article	IF	CITATIONS
37	Tunneling Nanoelectromechanical Switches Based on Compressible Molecular Thin Films. ACS Nano, 2015, 9, 7886-7894.	7.3	22
38	A General Approach to Biocompatible Branched Fluorous Tags for Increased Solubility in Perfluorocarbon Solvents. Organic Letters, 2018, 20, 6850-6854.	2.4	22
39	Expanding the Scope of Palladium-Catalyzed B–N Cross-Coupling Chemistry in Carboranes. Organometallics, 2020, 39, 4380-4386.	1.1	18
40	Modular and Processable Fluoropolymers Prepared via a Safe, Mild, Iodo–Ene Polymerization. ACS Central Science, 2019, 5, 982-991.	5.3	17
41	Thermodynamic Control over Molecular Aggregate Assembly Enables Tunable Excitonic Properties across the Visible and Near-Infrared. Journal of Physical Chemistry Letters, 2020, 11, 8026-8033.	2.1	17
42	Silicon incorporation in polymethine dyes. Chemical Communications, 2020, 56, 6110-6113.	2.2	17
43	Bridging the gap between H- and J-aggregates: Classification and supramolecular tunability for excitonic band structures in two-dimensional molecular aggregates. Chemical Physics Reviews, 2022, 3, .	2.6	17
44	Readily accessible multifunctional fluorous emulsions. Chemical Science, 2016, 7, 5091-5097.	3.7	15
45	Redoxâ€Responsive Gene Delivery from Perfluorocarbon Nanoemulsions through Cleavable Poly(2â€oxazoline) Surfactants. Angewandte Chemie - International Edition, 2021, 60, 17362-17367.	7.2	15
46	Extending optical chemical tools and technologies to mice by shifting to the shortwave infrared region. Current Opinion in Chemical Biology, 2022, 68, 102131.	2.8	12
47	Cell-surface Labeling via Bioorthogonal Host–Guest Chemistry. ACS Chemical Biology, 2021, 16, 2124-2129.	1.6	11
48	Recent advances in the preparation of semifluorinated polymers. Polymer Chemistry, 2021, 12, 6515-6526.	1.9	10
49	Printing Precise Materials with Visible Light. ACS Central Science, 2020, 6, 1482-1484.	5.3	7
50	Vinyl lodide Containing Polymers Directly Prepared via an lodo-yne Polymerization. ACS Macro Letters, 2020, 9, 410-415.	2.3	7
51	Perfluorocarbon nanoemulsions create a beneficial O2 microenvironment in N2-fixing biological inorganic hybrid. Chem Catalysis, 2021, 1, 704-720.	2.9	6
52	Site-specific incorporation of quadricyclane into a protein and photocleavage of the quadricyclane ligation adduct. Bioorganic and Medicinal Chemistry, 2018, 26, 5280-5290.	1.4	5
53	A Reduction-Sensitive Fluorous Fluorogenic Coumarin. Synlett, 2020, 31, 450-454.	1.0	5
54	Redoxâ∈Responsive Gene Delivery from Perfluorocarbon Nanoemulsions through Cleavable Poly(2â€oxazoline) Surfactants. Angewandte Chemie, 2021, 133, 17502-17507.	1.6	5

#	Article	IF	CITATIONS
55	Experimental Perspectives on Direct Visualization of Endosomal Rupture. ChemBioChem, 2021, 22, 3277-3282.	1.3	4
56	Simple Synthesis of Fluorinated Ene-Ynes via In Situ Generation of Allenes. Synthesis, 2021, 53, 4297-4307.	1.2	2
57	Counterion Pairing Effects on a Flavylium Heptamethine Dye ^{â€} . Photochemistry and Photobiology, 2022, 98, 303-310.	1.3	2
58	A Stable Phosphinonitrene. Synfacts, 2012, 8, 1314-1314.	0.0	1
59	35 challenges in materials science being tackled by Pls under 35(ish) in 2021. Matter, 2021, 4, 3804-3810.	5.0	1
60	Efficient, Non-Toxic Polylactide Synthesis. Synfacts, 2012, 8, 1193-1193.	0.0	0
61	Controlled Oxidation of Poly(alkylene H-phosphonate)s. Synfacts, 2012, 8, 1086-1086.	0.0	0
62	Neodymium Does Double Duty. Synfacts, 2012, 8, 1081-1081.	0.0	0
63	Mechanical Stress Yields HCl. Synfacts, 2012, 8, 1205-1205.	0.0	0
64	Tunneling nanoelectromechanical switches., 2015,,.		0
65	Electromechanically actuating molecules. , 2015, , .		O