James E Crowe Jr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2417927/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The SARS-CoV-2 monoclonal antibody combination, AZD7442, is protective in nonhuman primates and has an extended half-life in humans. Science Translational Medicine, 2022, 14, eabl8124.	5.8	143
2	B cell overexpression of FCRL5 and PD-1 is associated with low antibody titers in HCV infection. PLoS Pathogens, 2022, 18, e1010179.	2.1	6
3	Standardized two-step testing of antibody activity in COVID-19 convalescent plasma. IScience, 2022, 25, 103602.	1.9	6
4	An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nature Medicine, 2022, 28, 490-495.	15.2	577
5	Human Antibodies for Viral Infections. Annual Review of Immunology, 2022, 40, 349-386.	9.5	23
6	A combination of two human neutralizing antibodies prevents SARS-CoV-2 infection in cynomolgus macaques. Med, 2022, 3, 188-203.e4.	2.2	11
7	Even old foes can learn sweet new tricks. Cell Host and Microbe, 2022, 30, 151-153.	5.1	0
8	Rapid discovery of diverse neutralizing SARS-CoV-2 antibodies from large-scale synthetic phage libraries. MAbs, 2022, 14, 2002236.	2.6	14
9	Bispecific antiviral neutralizing antibodies are twice as nice. Nature Immunology, 2022, 23, 346-347.	7.0	3
10	Neutralizing antibodies protect mice against Venezuelan equine encephalitis virus aerosol challenge. Journal of Experimental Medicine, 2022, 219, .	4.2	7
11	Efficient discovery of SARS-CoV-2-neutralizing antibodies via B cell receptor sequencing and ligand blocking. Nature Biotechnology, 2022, 40, 1270-1275.	9.4	27
12	Atomic structure of the predominant GII.4 human norovirus capsid reveals novel stability and plasticity. Nature Communications, 2022, 13, 1241.	5.8	19
13	Isolation of a Potently Neutralizing and Protective Human Monoclonal Antibody Targeting Yellow Fever Virus. MBio, 2022, 13, e0051222.	1.8	7
14	An antibody targeting the N-terminal domain of SARS-CoV-2 disrupts the spike trimer. Journal of Clinical Investigation, 2022, 132, .	3.9	14
15	Structural mapping of antibody landscapes to human betacoronavirus spike proteins. Science Advances, 2022, 8, eabn2911.	4.7	28
16	The human antibody sequence space and structural design of the V, J regions, and CDRH3 with Rosetta. MAbs, 2022, 14, 2068212.	2.6	0
17	Real-time cell analysis: A high-throughput approach for testing SARS-CoV-2 antibody neutralization and escape. STAR Protocols, 2022, 3, 101387.	0.5	8
18	Human Monoclonal Antibodies to Escherichia coli Outer Membrane Protein A Porin Domain Cause Aggregation but Do Not Alter <i>In Vivo</i> Bacterial Burdens in a Murine Sepsis Model. Infection and Immunity, 2022, , e0017622.	1.0	0

#	Article	IF	CITATIONS
19	Repeated exposure to heterologous hepatitis C viruses associates with enhanced neutralizing antibody breadth and potency. Journal of Clinical Investigation, 2022, 132, .	3.9	5
20	Epitope-focused immunogen design based on the ebolavirus glycoprotein HR2-MPER region. PLoS Pathogens, 2022, 18, e1010518.	2.1	5
21	Sites of vulnerability in HCV E1E2 identified by comprehensive functional screening. Cell Reports, 2022, 39, 110859.	2.9	13
22	Single-cell profiling of the antigen-specific response to BNT162b2 SARS-CoV-2 RNA vaccine. Nature Communications, 2022, 13, .	5.8	28
23	Computational identification of HCV neutralizing antibodies with a common HCDR3 disulfide bond motif in the antibody repertoires of infected individuals. Nature Communications, 2022, 13, .	5.8	4
24	A bivalent SARS-CoV-2 monoclonal antibody combination does not affect the immunogenicity of a vector-based COVID-19 vaccine in macaques. Science Translational Medicine, 2022, 14, .	5.8	3
25	Resilience of S309 and AZD7442 monoclonal antibody treatments against infection by SARS-CoV-2 Omicron lineage strains. Nature Communications, 2022, 13, .	5.8	93
26	Angiotensin-converting Enzyme 2–containing Small Extracellular Vesicles and Exomeres Bind the Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein. Gastroenterology, 2021, 160, 958-961.e3.	0.6	42
27	Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition. Cell Host and Microbe, 2021, 29, 44-57.e9.	5.1	937
28	ClonoMatch: a tool for identifying homologous immunoglobulin and T-cell receptor sequences in large databases. Bioinformatics, 2021, 36, 5695-5697.	1.8	3
29	Antibody affinity versus dengue morphology influences neutralization. PLoS Pathogens, 2021, 17, e1009331.	2.1	8
30	Modeling Immunity with Rosetta: Methods for Antibody and Antigen Design. Biochemistry, 2021, 60, 825-846.	1.2	24
31	Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nature Medicine, 2021, 27, 717-726.	15.2	838
32	Comparison of Subgenomic and Total RNA in SARS-CoV-2-Challenged Rhesus Macaques. Journal of Virology, 2021, 95, .	1.5	87
33	#91: Human Antibodies Neutralize Enterovirus D68 and Protect Against Infection and Paralytic Disease. Journal of the Pediatric Infectious Diseases Society, 2021, 10, S12-S12.	0.6	0
34	Potent neutralization of Rift Valley fever virus by human monoclonal antibodies through fusion inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	19
35	Convergence of a common solution for broad ebolavirus neutralization by glycan cap-directed human antibodies. Cell Reports, 2021, 35, 108984.	2.9	22
36	Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein. Cell, 2021, 184, 2316-2331.e15.	13.5	321

#	Article	IF	CITATIONS
37	Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions for optimal therapeutic protection. Cell, 2021, 184, 1804-1820.e16.	13.5	297
38	Broad and potently neutralizing monoclonal antibodies isolated from human survivors of New World hantavirus infection. Cell Reports, 2021, 35, 109086.	2.9	18
39	Cross-reactive coronavirus antibodies with diverse epitope specificities and Fc effector functions. Cell Reports Medicine, 2021, 2, 100313.	3.3	56
40	<scp>RosettaCM</scp> for antibodies with very long <scp>HCDR3s</scp> and low template availability. Proteins: Structure, Function and Bioinformatics, 2021, 89, 1458-1472.	1.5	3
41	#16: Enterovirus D68 Visualized in the Anterior Horn of the Spinal Cord of a Pediatric Patient with Flaccid Paralysis. Journal of the Pediatric Infectious Diseases Society, 2021, 10, S8-S8.	0.6	0
42	In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains. Nature, 2021, 596, 103-108.	13.7	222
43	Broadly cross-reactive human antibodies that inhibit genogroup I and II noroviruses. Nature Communications, 2021, 12, 4320.	5.8	21
44	Ebola vaccine–induced protection in nonhuman primates correlates with antibody specificity and Fc-mediated effects. Science Translational Medicine, 2021, 13, .	5.8	22
45	Proteo-Genomic Analysis Identifies Two Major Sites of Vulnerability on Ebolavirus Glycoprotein for Neutralizing Antibodies in Convalescent Human Plasma. Frontiers in Immunology, 2021, 12, 706757.	2.2	4
46	Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell. Cell Reports, 2021, 36, 109364.	2.9	109
47	Convergent antibody responses to the SARS-CoV-2 spike protein in convalescent and vaccinated individuals. Cell Reports, 2021, 36, 109604.	2.9	67
48	Pan-protective anti-alphavirus human antibodies target a conserved E1 protein epitope. Cell, 2021, 184, 4414-4429.e19.	13.5	41
49	Human antibody recognition of H7N9 influenza virus HA following natural infection. JCI Insight, 2021, 6, .	2.3	1
50	Therapeutic alphavirus cross-reactive E1 human antibodies inhibit viral egress. Cell, 2021, 184, 4430-4446.e22.	13.5	25
51	Canonical features of human antibodies recognizing the influenza hemagglutinin trimer interface. Journal of Clinical Investigation, 2021, 131, .	3.9	20
52	A potently neutralizing SARS-CoV-2 antibody inhibits variants of concern by utilizing unique binding residues in a highly conserved epitope. Immunity, 2021, 54, 2399-2416.e6.	6.6	79
53	Cooperativity mediated by rationally selected combinations of human monoclonal antibodies targeting the henipavirus receptor binding protein. Cell Reports, 2021, 36, 109628.	2.9	23
54	Simultaneous Exposure to Intracellular and Extracellular Photosensitizers for the Treatment of Staphylococcus aureus Infections. Antimicrobial Agents and Chemotherapy, 2021, 65, e0091921.	1.4	4

#	Article	IF	CITATIONS
55	Potent neutralization of SARS-CoV-2 variants of concern by an antibody with an uncommon genetic signature and structural mode of spike recognition. Cell Reports, 2021, 37, 109784.	2.9	20
56	Genetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktail. Nature Microbiology, 2021, 6, 1233-1244.	5.9	237
57	Human Monoclonal Antibodies against NS1 Protein Protect against Lethal West Nile Virus Infection. MBio, 2021, 12, e0244021.	1.8	12
58	Pan-ebolavirus protective therapy by two multifunctional human antibodies. Cell, 2021, 184, 5593-5607.e18.	13.5	21
59	Structural Biology Illuminates Molecular Determinants of Broad Ebolavirus Neutralization by Human Antibodies for Pan-Ebolavirus Therapeutic Development. Frontiers in Immunology, 2021, 12, 808047.	2.2	4
60	A phase 1 trial of lipid-encapsulated mRNA encoding a monoclonal antibody with neutralizing activity against Chikungunya virus. Nature Medicine, 2021, 27, 2224-2233.	15.2	65
61	127. Development of a Kinetic ELISA (kELISA) and Reactive B-cell Frequency (RBF) Assay to Detect Respiratory Syncytial Virus (RSV) Pre-Fusion F Protein-Specific Immune Responses in Infants. Open Forum Infectious Diseases, 2021, 8, S77-S78.	0.4	0
62	Inappropriate Citation of Vaccine Article. Journal of Infectious Diseases, 2020, 222, 1413-1414.	1.9	0
63	Vaccine innovations for emerging infectious diseases—a symposium report. Annals of the New York Academy of Sciences, 2020, 1462, 14-26.	1.8	15
64	Correlation of clinical and chest radiograph findings in pediatric submersion cases. Pediatric Radiology, 2020, 50, 492-500.	1.1	3
65	Antibodies targeting epitopes on the cell-surface form of NS1 protect against Zika virus infection during pregnancy. Nature Communications, 2020, 11, 5278.	5.8	30
66	Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19. Nature Immunology, 2020, 21, 1506-1516.	7.0	563
67	PyIR: a scalable wrapper for processing billions of immunoglobulin and T cell receptor sequences using IgBLAST. BMC Bioinformatics, 2020, 21, 314.	1.2	21
68	Discovery of Marburg virus neutralizing antibodies from virus-naÃ ⁻ ve human antibody repertoires using large-scale structural predictions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31142-31148.	3.3	10
69	Potent Henipavirus Neutralization by Antibodies Recognizing Diverse Sites on Hendra and Nipah Virus Receptor Binding Protein. Cell, 2020, 183, 1536-1550.e17.	13.5	28
70	Computationally Designed Cyclic Peptides Derived from an Antibody Loop Increase Breadth of Binding for Influenza Variants. Structure, 2020, 28, 1114-1123.e4.	1.6	21
71	High Frequency of Shared Clonotypes in Human T Cell Receptor Repertoires. Cell Reports, 2020, 32, 107882.	2.9	39
72	Humoral Immunity to Hantavirus Infection. MSphere, 2020, 5, .	1.3	20

5

#	Article	IF	CITATIONS
73	Intramuscular Delivery of Replicon RNA Encoding ZIKV-117 Human Monoclonal Antibody Protects against Zika Virus Infection. Molecular Therapy - Methods and Clinical Development, 2020, 18, 402-414.	1.8	63
74	Integrated pipeline for the accelerated discovery of antiviral antibody therapeutics. Nature Biomedical Engineering, 2020, 4, 1030-1043.	11.6	46
75	Identification of Structurally Related Antibodies in Antibody Sequence Databases Using Rosetta-Derived Position-Specific Scoring. Structure, 2020, 28, 1124-1130.e5.	1.6	11
76	Human mAbs Broadly Protect against Arthritogenic Alphaviruses by Recognizing Conserved Elements of the Mxra8 Receptor-Binding Site. Cell Host and Microbe, 2020, 28, 699-711.e7.	5.1	40
77	Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature, 2020, 584, 443-449.	13.7	956
78	Mechanism of differential Zika and dengue virus neutralization by a public antibody lineage targeting the DIII lateral ridge. Journal of Experimental Medicine, 2020, 217, .	4.2	26
79	A cross-reactive antibody protects against Ross River virus musculoskeletal disease despite rapid neutralization escape in mice. PLoS Pathogens, 2020, 16, e1008743.	2.1	12
80	Human Antibodies Protect against Aerosolized Eastern Equine Encephalitis Virus Infection. Cell, 2020, 183, 1884-1900.e23.	13.5	26
81	Human monoclonal antibodies against Ross River virus target epitopes within the E2 protein and protect against disease. PLoS Pathogens, 2020, 16, e1008517.	2.1	18
82	Human-likeness of antibody biologics determined by back-translation and comparison with large antibody variable gene repertoires. MAbs, 2020, 12, 1758291.	2.6	10
83	Identification of Dengue Virus Serotype 3 Specific Antigenic Sites Targeted by Neutralizing Human Antibodies. Cell Host and Microbe, 2020, 27, 710-724.e7.	5.1	25
84	E. coli production process yields stable dengue 1 virus-sized particles (VSPs). Vaccine, 2020, 38, 3305-3312.	1.7	7
85	Human antibodies neutralize enterovirus D68 and protect against infection and paralytic disease. Science Immunology, 2020, 5, .	5.6	32
86	Diverse patterns of antibody variable gene repertoire disruption in patients with amyloid light chain (AL) amyloidosis. PLoS ONE, 2020, 15, e0235713.	1.1	2
87	Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein. Nature Medicine, 2020, 26, 1422-1427.	15.2	450
88	Multi-state design of flexible proteins predicts sequences optimal for conformational change. PLoS Computational Biology, 2020, 16, e1007339.	1.5	17
89	Broad dengue neutralization in mosquitoes expressing an engineered antibody. PLoS Pathogens, 2020, 16, e1008103.	2.1	69
90	Analysis of a Therapeutic Antibody Cocktail Reveals Determinants for Cooperative and Broad Ebolavirus Neutralization. Immunity, 2020, 52, 388-403.e12.	6.6	71

#	Article	IF	CITATIONS
91	Non-neutralizing Antibodies from a Marburg Infection Survivor Mediate Protection by Fc-Effector Functions and by Enhancing Efficacy of Other Antibodies. Cell Host and Microbe, 2020, 27, 976-991.e11.	5.1	43
92	Anti–influenza H7 human antibody targets antigenic site in hemagglutinin head domain interface. Journal of Clinical Investigation, 2020, 130, 4734-4739.	3.9	13
93	1408. Enterovirus D68 RNA Visualized in the Anterior Horn of the Spinal Cord of a Pediatric Patient with Flaccid Paralysis. Open Forum Infectious Diseases, 2020, 7, S712-S712.	0.4	Ο
94	Multi-state design of flexible proteins predicts sequences optimal for conformational change. , 2020, 16, e1007339.		0
95	Multi-state design of flexible proteins predicts sequences optimal for conformational change. , 2020, 16, e1007339.		Ο
96	Multi-state design of flexible proteins predicts sequences optimal for conformational change. , 2020, 16, e1007339.		0
97	Multi-state design of flexible proteins predicts sequences optimal for conformational change. , 2020, 16, e1007339.		Ο
98	Broad dengue neutralization in mosquitoes expressing an engineered antibody. , 2020, 16, e1008103.		0
99	Broad dengue neutralization in mosquitoes expressing an engineered antibody. , 2020, 16, e1008103.		Ο
100	Broad dengue neutralization in mosquitoes expressing an engineered antibody. , 2020, 16, e1008103.		0
101	Broad dengue neutralization in mosquitoes expressing an engineered antibody. , 2020, 16, e1008103.		0
102	Harmonization of Zika neutralization assays by using the WHO International Standard for anti-Zika virus antibody. Npj Vaccines, 2019, 4, 42.	2.9	13
103	Mucosal Immunization with a pH-Responsive Nanoparticle Vaccine Induces Protective CD8 ⁺ Lung-Resident Memory T Cells. ACS Nano, 2019, 13, 10939-10960.	7.3	89
104	Antibody Determinants of Influenza Immunity. Journal of Infectious Diseases, 2019, 219, S21-S29.	1.9	19
105	Potent anti-influenza H7 human monoclonal antibody induces separation of hemagglutinin receptor-binding head domains. PLoS Biology, 2019, 17, e3000139.	2.6	37
106	Broadly Neutralizing Antibodies Targeting New Sites of Vulnerability in Hepatitis C Virus E1E2. Journal of Virology, 2019, 93, .	1.5	37
107	A Site of Vulnerability on the Influenza Virus Hemagglutinin Head Domain Trimer Interface. Cell, 2019, 177, 1136-1152.e18.	13.5	177
108	A lipid-encapsulated mRNA encoding a potently neutralizing human monoclonal antibody protects against chikungunya infection. Science Immunology, 2019, 4, .	5.6	147

James E Crowe Jr

#	Article	IF	CITATIONS
109	Cross-reactive neutralizing human survivor monoclonal antibody BDBV223 targets the ebolavirus stalk. Nature Communications, 2019, 10, 1788.	5.8	24
110	Structural Diversity of Ultralong CDRH3s in Seven Bovine Antibody Heavy Chains. Frontiers in Immunology, 2019, 10, 558.	2.2	32
111	Dengue and Zika Virus Cross-Reactive Human Monoclonal Antibodies Protect against Spondweni Virus Infection and Pathogenesis in Mice. Cell Reports, 2019, 26, 1585-1597.e4.	2.9	18
112	Role of antibody heavy and light chain interface residues in affinity maturation of binding to HIV envelope glycoprotein. Molecular Systems Design and Engineering, 2019, 4, 737-746.	1.7	3
113	Early Human B Cell Response to Ebola Virus in Four U.S. Survivors of Infection. Journal of Virology, 2019, 93, .	1.5	15
114	New-Onset Post-Transplant Diabetes Mellitus after Allogeneic Hematopoietic Cell Transplant Is Initiated by Insulin Resistance, Not Immunosuppressive Medications. Biology of Blood and Marrow Transplantation, 2019, 25, 1225-1231.	2.0	14
115	High frequency of shared clonotypes in human B cell receptor repertoires. Nature, 2019, 566, 398-402.	13.7	262
116	2593. Human Monoclonal Antibodies Potently Neutralize Enterovirus D68 in both a Clade-Specific and -Independent Manner. Open Forum Infectious Diseases, 2019, 6, S901-S901.	0.4	0
117	Ehrlichia chaffeensis Outer Membrane Protein 1-Specific Human Antibody-Mediated Immunity Is Defined by Intracellular TRIM21-Dependent Innate Immune Activation and Extracellular Neutralization. Infection and Immunity, 2019, 87, .	1.0	12
118	Structural Basis of Protection against H7N9 Influenza Virus by Human Anti-N9 Neuraminidase Antibodies. Cell Host and Microbe, 2019, 26, 729-738.e4.	5.1	51
119	Influenza H7N9 Virus Neuraminidase-Specific Human Monoclonal Antibodies Inhibit Viral Egress and Protect from Lethal Influenza Infection in Mice. Cell Host and Microbe, 2019, 26, 715-728.e8.	5.1	49
120	Immune repertoire fingerprinting by principal component analysis reveals shared features in subject groups with common exposures. BMC Bioinformatics, 2019, 20, 629.	1.2	5
121	Human <i> V _H 1-69 </i> Gene-Encoded Human Monoclonal Antibodies against Staphylococcus aureus IsdB Use at Least Three Distinct Modes of Binding To Inhibit Bacterial Growth and Pathogenesis. MBio, 2019, 10, .	1.8	16
122	Human mAbs to Staphylococcus aureus IsdA Provide Protection Through Both Heme-Blocking and Fc-Mediated Mechanisms. Journal of Infectious Diseases, 2019, 219, 1264-1273.	1.9	20
123	A protective human monoclonal antibody targeting the West Nile virus E protein preferentially recognizes mature virions. Nature Microbiology, 2019, 4, 71-77.	5.9	25
124	Protective antibodies against Eastern equine encephalitis virus bind to epitopes in domains A and B of the E2 glycoprotein. Nature Microbiology, 2019, 4, 187-197.	5.9	45
125	Mechanism of Enhanced Immature Dengue Virus Attachment to Endosomal Membrane Induced by prM Antibody. Structure, 2019, 27, 253-267.e8.	1.6	36
126	Multistate design of influenza antibodies improves affinity and breadth against seasonal viruses. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1597-1602.	3.3	23

#	Article	IF	CITATIONS
127	Influenza Virus–Specific Human Antibody Repertoire Studies. Journal of Immunology, 2019, 202, 368-373.	0.4	16
128	Structural basis of a potent human monoclonal antibody against Zika virus targeting a quaternary epitope. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1591-1596.	3.3	53
129	Antibody-Mediated Protective Mechanisms Induced by a Trivalent Parainfluenza Virus-Vectored Ebolavirus Vaccine. Journal of Virology, 2019, 93, .	1.5	13
130	Characterization of recombinant yellow fever-dengue vaccine viruses with human monoclonal antibodies targeting key conformational epitopes. Vaccine, 2019, 37, 4601-4609.	1.7	5
131	Plasma deconvolution identifies broadly neutralizing antibodies associated with hepatitis C virus clearance. Journal of Clinical Investigation, 2019, 129, 4786-4796.	3.9	33
132	Peptide arrays of three collections of human sera from patients infected with mosquito-borne viruses. F1000Research, 2019, 8, 1875.	0.8	6
133	Peptide arrays incubated with three collections of human sera from patients infected with mosquito-borne viruses. F1000Research, 2019, 8, 1875.	0.8	9
134	Mouse and Human Monoclonal Antibodies Protect against Infection by Multiple Genotypes of Japanese Encephalitis Virus. MBio, 2018, 9, .	1.8	32
135	Synergistic anti-HCV broadly neutralizing human monoclonal antibodies with independent mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E82-E91.	3.3	52
136	The Marburgvirus-Neutralizing Human Monoclonal Antibody MR191 Targets a Conserved Site to Block Virus Receptor Binding. Cell Host and Microbe, 2018, 23, 101-109.e4.	5.1	40
137	Is It Possible to Develop a "Universal―Influenza Virus Vaccine?. Cold Spring Harbor Perspectives in Biology, 2018, 10, a029496.	2.3	23
138	Structure–function characterization of three human antibodies targeting the vaccinia virus adhesion molecule D8. Journal of Biological Chemistry, 2018, 293, 390-401.	1.6	19
139	Metabolic Complications Precede Alloreactivity and are Characterized by Changes in Th1/Th17 Immunity. Biology of Blood and Marrow Transplantation, 2018, 24, S254-S255.	2.0	Ο
140	HCV Broadly Neutralizing Antibodies Use a CDRH3 Disulfide Motif to Recognize an E2 Glycoprotein Site that Can Be Targeted for Vaccine Design. Cell Host and Microbe, 2018, 24, 703-716.e3.	5.1	95
141	Broadly Neutralizing Antibody Mediated Clearance of Human Hepatitis C Virus Infection. Cell Host and Microbe, 2018, 24, 717-730.e5.	5.1	78
142	InÂVivo Delivery of Synthetic Human DNA-Encoded Monoclonal Antibodies Protect against Ebolavirus Infection in a Mouse Model. Cell Reports, 2018, 25, 1982-1993.e4.	2.9	38
143	Human Monoclonal Antibodies That Neutralize Pandemic Gll.4ÂNoroviruses. Gastroenterology, 2018, 155, 1898-1907.	0.6	59
144	Increased breadth of HIV-1 neutralization achieved by diverse antibody clones each with limited neutralization breadth. PLoS ONE, 2018, 13, e0209437.	1.1	8

#	Article	IF	CITATIONS
145	Current Understanding of Humoral Immunity to Enterovirus D68. Journal of the Pediatric Infectious Diseases Society, 2018, 7, S49-S53.	0.6	23
146	Efficacy of Human Monoclonal Antibody Monotherapy Against Bundibugyo Virus Infection in Nonhuman Primates. Journal of Infectious Diseases, 2018, 218, S565-S573.	1.9	13
147	Potent Neutralizing Human Monoclonal Antibodies Preferentially Target Mature Dengue Virus Particles: Implication for Novel Strategy for Dengue Vaccine. Journal of Virology, 2018, 92, .	1.5	24
148	Mxra8 is a receptor for multiple arthritogenic alphaviruses. Nature, 2018, 557, 570-574.	13.7	254
149	Multifunctional Pan-ebolavirus Antibody Recognizes a Site of Broad Vulnerability on the Ebolavirus Glycoprotein. Immunity, 2018, 49, 363-374.e10.	6.6	61
150	A multifunctional human monoclonal neutralizing antibody that targets a unique conserved epitope on influenza HA. Nature Communications, 2018, 9, 2669.	5.8	67
151	Broadly neutralizing antibodies from human survivors target a conserved site in the Ebola virus glycoprotein HR2–MPER region. Nature Microbiology, 2018, 3, 670-677.	5.9	68
152	Asymmetric antiviral effects of ebolavirus antibodies targeting glycoprotein stem and glycan cap. PLoS Pathogens, 2018, 14, e1007204.	2.1	16
153	Antibody Repertoires to the Same Ebola Vaccine Antigen Are Differentially Affected by Vaccine Vectors. Cell Reports, 2018, 24, 1816-1829.	2.9	8
154	Pan-Filovirus Serum Neutralizing Antibodies in a Subset of Congolese Ebolavirus Infection Survivors. Journal of Infectious Diseases, 2018, 218, 1929-1936.	1.9	16
155	Antibody-Dependent Enhancement of Ebola Virus Infection by Human Antibodies Isolated from Survivors. Cell Reports, 2018, 24, 1802-1815.e5.	2.9	64
156	A Role for Fc Function in Therapeutic Monoclonal Antibody-Mediated Protection against Ebola Virus. Cell Host and Microbe, 2018, 24, 221-233.e5.	5.1	182
157	Systematic Analysis of Monoclonal Antibodies against Ebola Virus GP Defines Features that Contribute to Protection. Cell, 2018, 174, 938-952.e13.	13.5	173
158	Multi-Donor Longitudinal Antibody Repertoire Sequencing Reveals the Existence of Public Antibody Clonotypes in HIV-1 Infection. Cell Host and Microbe, 2018, 23, 845-854.e6.	5.1	100
159	Integrating linear optimization with structural modeling to increase HIV neutralization breadth. PLoS Computational Biology, 2018, 14, e1005999.	1.5	8
160	Human antibody recognition of antigenic site IV on Pneumovirus fusion proteins. PLoS Pathogens, 2018, 14, e1006837.	2.1	35
161	OUP accepted manuscript. Journal of Infectious Diseases, 2018, 218, S418-S422.	1.9	6
162	A novel pre-fusion conformation-specific neutralizing epitope on the respiratory syncytial virus fusion protein. Nature Microbiology, 2017, 2, 16271.	5.9	82

#	Article	IF	CITATIONS
163	Structural basis for antibody cross-neutralization of respiratory syncytial virus and human metapneumovirus. Nature Microbiology, 2017, 2, 16272.	5.9	65
164	Therapy with CTLA4-Ig and an antiviral monoclonal antibody controls chikungunya virus arthritis. Science Translational Medicine, 2017, 9, .	5.8	67
165	Treating Flu with Skin of Frog. Immunity, 2017, 46, 517-518.	6.6	4
166	Therapeutic treatment of Marburg and Ravn virus infection in nonhuman primates with a human monoclonal antibody. Science Translational Medicine, 2017, 9, .	5.8	64
167	A human antibody against Zika virus crosslinks the E protein to prevent infection. Nature Communications, 2017, 8, 14722.	5.8	122
168	Mapping the Human Memory B Cell and Serum Neutralizing Antibody Responses to Dengue Virus Serotype 4 Infection and Vaccination. Journal of Virology, 2017, 91, .	1.5	44
169	Prior Dengue Virus Exposure Shapes T Cell Immunity to Zika Virus in Humans. Journal of Virology, 2017, 91, .	1.5	148
170	Epitope and Paratope Mapping Reveals Temperature-Dependent Alterations in the Dengue-Antibody Interface. Structure, 2017, 25, 1391-1402.e3.	1.6	42
171	Immune correlates of protection for dengue: State of the art and research agenda. Vaccine, 2017, 35, 4659-4669.	1.7	81
172	Principles of Broad and Potent Antiviral Human Antibodies: Insights for Vaccine Design. Cell Host and Microbe, 2017, 22, 193-206.	5.1	65
173	Role of Non-local Interactions between CDR Loops in Binding Affinity of MR78 Antibody to Marburg Virus Glycoprotein. Structure, 2017, 25, 1820-1828.e2.	1.6	6
174	Monoclonal Antibodies Against the Staphylococcus aureus Bicomponent Leukotoxin AB Isolated Following Invasive Human Infection Reveal Diverse Binding and Modes of Action. Journal of Infectious Diseases, 2017, 215, 1124-1131.	1.9	65
175	Host Defense Mechanisms Against Viruses. , 2017, , 1175-1197.e7.		2
176	Therapeutic administration of a recombinant human monoclonal antibody reduces the severity of chikungunya virus disease in rhesus macaques. PLoS Neglected Tropical Diseases, 2017, 11, e0005637.	1.3	55
177	Broadly neutralizing antibodies with few somatic mutations and hepatitis C virus clearance. JCI Insight, 2017, 2, .	2.3	129
178	The cryoEM structures of immature and mature Zika virus and of mature Zika virus complexed with a human monoclonal antibody. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, a347-a347.	0.0	0
179	Human Antibodies that Recognize Novel Immunodominant Quaternary Epitopes on the HIV-1 Env Protein. PLoS ONE, 2016, 11, e0158861.	1.1	8
180	Human Monoclonal Antibodies to the Staphylococcus aureus Toxin LukAB have Distinct Mechanisms of Protection and Are Efficacious In Vivo. Open Forum Infectious Diseases, 2016, 3, .	0.4	0

#	Article	IF	CITATIONS
181	Determinants of VH1-46 Cross-Reactivity to Pemphigus Vulgaris Autoantigen Desmoglein 3 and Rotavirus Antigen VP6. Journal of Immunology, 2016, 197, 1065-1073.	0.4	21
182	Long antibody HCDR3s from HIV-naÃ ⁻ ve donors presented on a PG9 neutralizing antibody background mediate HIV neutralization. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4446-4451.	3.3	20
183	Characterization of dengue virus 2 growth in megakaryocyte–erythrocyte progenitor cells. Virology, 2016, 493, 162-172.	1.1	19
184	Deep sequencing and human antibody repertoire analysis. Current Opinion in Immunology, 2016, 40, 103-109.	2.4	49
185	A "Trojan horse―bispecific-antibody strategy for broad protection against ebolaviruses. Science, 2016, 354, 350-354.	6.0	101
186	Teaching a Clone to Walk, One Step at a Time. Cell, 2016, 166, 1360-1361.	13.5	8
187	Pathogenic Chikungunya Virus Evades B Cell Responses to Establish Persistence. Cell Reports, 2016, 16, 1326-1338.	2.9	62
188	Development of Human Monoclonal Antibodies Against Respiratory Syncytial Virus Using a High Efficiency Human Hybridoma Technique. Methods in Molecular Biology, 2016, 1442, 63-76.	0.4	3
189	Host-Primed Ebola Virus GP Exposes a Hydrophobic NPC1 Receptor-Binding Pocket, Revealing a Target for Broadly Neutralizing Antibodies. MBio, 2016, 7, e02154-15.	1.8	86
190	Structural basis for norovirus neutralization by an HBCA blocking human IgA antibody. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5830-E5837.	3.3	41
191	Early Th1 immunity promotes immune tolerance and may impair graft-versus-leukemia effect after allogeneic hematopoietic cell transplantation. Haematologica, 2016, 101, e204-e208.	1.7	1
192	Neutralizing human antibodies prevent Zika virus replication and fetal disease in mice. Nature, 2016, 540, 443-447.	13.7	349
193	Structures of Ebola virus GP and sGP in complex with therapeutic antibodies. Nature Microbiology, 2016, 1, 16128.	5.9	92
194	Structural basis for nonneutralizing antibody competition at antigenic site II of the respiratory syncytial virus fusion protein. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6849-E6858.	3.3	38
195	Cross-Neutralizing and Protective Human Antibody Specificities to Poxvirus Infections. Cell, 2016, 167, 684-694.e9.	13.5	141
196	Engineering Recombinant Reoviruses To Display gp41 Membrane-Proximal External-Region Epitopes from HIV-1. MSphere, 2016, 1, .	1.3	5
197	Cross-Reactive and Potent Neutralizing Antibody Responses in Human Survivors of Natural Ebolavirus Infection. Cell, 2016, 164, 392-405.	13.5	160
198	Low frequency of broadly neutralizing HIV antibodies during chronic infection even in quaternary epitope targeting antibodies containing large numbers of somatic mutations. Molecular Immunology, 2016, 70, 94-103.	1.0	12

#	Article	IF	CITATIONS
199	Dengue Virus prM-Specific Human Monoclonal Antibodies with Virus Replication-Enhancing Properties Recognize a Single Immunodominant Antigenic Site. Journal of Virology, 2016, 90, 780-789.	1.5	50
200	Chimeric Filoviruses for Identification and Characterization of Monoclonal Antibodies. Journal of Virology, 2016, 90, 3890-3901.	1,5	41
201	Functional Transplant of a Dengue Virus Serotype 3 (DENV3)-Specific Human Monoclonal Antibody Epitope into DENV1. Journal of Virology, 2016, 90, 5090-5097.	1.5	30
202	Immunogenicity and efficacy of alphavirus-derived replicon vaccines for respiratory syncytial virus and human metapneumovirus in nonhuman primates. Vaccine, 2016, 34, 950-956.	1.7	26
203	Recognition of influenza H3N2 variant virus by human neutralizing antibodies. JCI Insight, 2016, 1, .	2.3	20
204	H7N9 influenza virus neutralizing antibodies that possess few somatic mutations. Journal of Clinical Investigation, 2016, 126, 1482-1494.	3.9	62
205	Improving Loop Modeling of the Antibody Complementarity-Determining Region 3 Using Knowledge-Based Restraints. PLoS ONE, 2016, 11, e0154811.	1.1	24
206	A Chimeric Pneumovirus Fusion Protein Carrying Neutralizing Epitopes of Both MPV and RSV. PLoS ONE, 2016, 11, e0155917.	1.1	14
207	Phenome-Wide Association Study to Explore Relationships between Immune System Related Genetic Loci and Complex Traits and Diseases. PLoS ONE, 2016, 11, e0160573.	1.1	23
208	Frequent Use of the IgA Isotype in Human B Cells Encoding Potent Norovirus-Specific Monoclonal Antibodies That Block HBGA Binding. PLoS Pathogens, 2016, 12, e1005719.	2.1	27
209	Antibody Responses and Functions in Defense against Viral Infection. , 2016, , 279-285.		1
210	Use of Human Hybridoma Technology To Isolate Human Monoclonal Antibodies. Microbiology Spectrum, 2015, 3, AID-0027-2014.	1.2	63
211	Design of Protein Multi-specificity Using an Independent Sequence Search Reduces the Barrier to Low Energy Sequences. PLoS Computational Biology, 2015, 11, e1004300.	1.5	33
212	Association of VH4-59 Antibody Variable Gene Usage with Recognition of an Immunodominant Epitope on the HIV-1 Gag Protein. PLoS ONE, 2015, 10, e0133509.	1.1	0
213	Source and Purity of Dengue-Viral Preparations Impact Requirement for Enhancing Antibody to Induce Elevated IL-11² Secretion: A Primary Human Monocyte Model. PLoS ONE, 2015, 10, e0136708.	1.1	6
214	Mechanism of Human Antibody-Mediated Neutralization of Marburg Virus. Cell, 2015, 160, 893-903.	13.5	130
215	Structural Basis for Marburg Virus Neutralization by a Cross-Reactive Human Antibody. Cell, 2015, 160, 904-912.	13.5	110
216	Influenza Viruses with Receptor-Binding N1 Neuraminidases Occur Sporadically in Several Lineages and Show No Attenuation in Cell Culture or Mice. Journal of Virology, 2015, 89, 3737-3745.	1.5	18

#	Article	IF	CITATIONS
217	Cryo-EM structure of an antibody that neutralizes dengue virus type 2 by locking E protein dimers. Science, 2015, 349, 88-91.	6.0	208
218	Isolation and Characterization of Broad and Ultrapotent Human Monoclonal Antibodies with Therapeutic Activity against Chikungunya Virus. Cell Host and Microbe, 2015, 18, 86-95.	5.1	116
219	Vaccine-elicited antibody that neutralizes H5N1 influenza and variants binds the receptor site and polymorphic sites. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9346-9351.	3.3	26
220	Spleen Tyrosine Kinase (Syk) Mediates IL-1β Induction by Primary Human Monocytes during Antibody-enhanced Dengue Virus Infection. Journal of Biological Chemistry, 2015, 290, 17306-17320.	1.6	44
221	A highly potent human antibody neutralizes dengue virus serotype 3 by binding across three surface proteins. Nature Communications, 2015, 6, 6341.	5.8	181
222	Deciphering the human immunome. Expert Review of Vaccines, 2015, 14, 1421-1425.	2.0	11
223	Cryo-EM structures elucidate neutralizing mechanisms of anti-chikungunya human monoclonal antibodies with therapeutic activity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13898-13903.	3.3	50
224	Broadly Neutralizing Alphavirus Antibodies Bind an Epitope on E2 and Inhibit Entry and Egress. Cell, 2015, 163, 1095-1107.	13.5	157
225	A New Quaternary Structure Epitope on Dengue Virus Serotype 2 Is the Target of Durable Type-Specific Neutralizing Antibodies. MBio, 2015, 6, e01461-15.	1.8	89
226	Identification of Residues in the Human Respiratory Syncytial Virus Fusion Protein That Modulate Fusion Activity and Pathogenesis. Journal of Virology, 2015, 89, 512-522.	1.5	44
227	Redesigned HIV antibodies exhibit enhanced neutralizing potency and breadth. Journal of Clinical Investigation, 2015, 125, 2523-2531.	3.9	31
228	STAT4 Deficiency Fails To Induce Lung Th2 or Th17 Immunity following Primary or Secondary Respiratory Syncytial Virus (RSV) Challenge but Enhances the Lung RSV-Specific CD8 ⁺ T Cell Immune Response to Secondary Challenge. Journal of Virology, 2014, 88, 9655-9672.	1.5	8
229	Dengue Viruses Are Enhanced by Distinct Populations of Serotype Cross-Reactive Antibodies in Human Immune Sera. PLoS Pathogens, 2014, 10, e1004386.	2.1	144
230	A potent antiâ€dengue human antibody preferentially recognizes the conformation of <scp>E</scp> protein monomers assembled on the virus surface. EMBO Molecular Medicine, 2014, 6, 358-371.	3.3	154
231	Dengue virus envelope protein domain I/II hinge determines long-lived serotype-specific dengue immunity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1939-1944.	3.3	55
232	Paramyxoviruses: Respiratory Syncytial Virus and Human Metapneumovirus. , 2014, , 601-627.		5
233	Diagnostic errors in interpretation of pediatric musculoskeletal radiographs at common injury sites. Pediatric Radiology, 2014, 44, 552-557.	1.1	15
234	Differential Accessibility of a Rotavirus VP6 Epitope in Trimers Comprising Type I, II, or III Channels as Revealed by Binding of a Human Rotavirus VP6-Specific Antibody. Journal of Virology, 2014, 88, 469-476.	1.5	16

#	Article	IF	CITATIONS
235	Proof of principle for epitope-focused vaccine design. Nature, 2014, 507, 201-206.	13.7	451
236	Intracellular neutralization of a virus using a cell-penetrating molecular transporter. Nanomedicine, 2014, 9, 1613-1624.	1.7	7
237	Combining Single RNA Sensitive Probes with Subdiffraction-Limited and Live-Cell Imaging Enables the Characterization of Virus Dynamics in Cells. ACS Nano, 2014, 8, 302-315.	7.3	33
238	Isolation of Dengue Virus-Specific Memory B Cells with Live Virus Antigen from Human Subjects following Natural Infection Reveals the Presence of Diverse Novel Functional Groups of Antibody Clones. Journal of Virology, 2014, 88, 12233-12241.	1.5	92
239	Escape from neutralization by the respiratory syncytial virus-specific neutralizing monoclonal antibody palivizumab is driven by changes in on-rate of binding to the fusion protein. Virology, 2014, 454-455, 139-144.	1.1	31
240	Early Th1 Immunity Decreases Acute Graft-Versus-Host Disease and Impairs Graft-Versus-Leukemia Effect after Allogeneic Hematopoietic Cell Transplantation. Biology of Blood and Marrow Transplantation, 2014, 20, S51-S52.	2.0	0
241	Committing the Oldest Sins in the Newest Kind of Ways—Antibodies Targeting the Influenza Virus Type A Hemagglutinin Globular Head. Microbiology Spectrum, 2014, 2, .	1.2	12
242	Tissue-Specific Expressed Antibody Variable Gene Repertoires. PLoS ONE, 2014, 9, e100839.	1.1	37
243	Impact of new sequencing technologies on studies of the human B cell repertoire. Current Opinion in Immunology, 2013, 25, 613-618.	2.4	24
244	Antibody Recognition of the Pandemic H1N1 Influenza Virus Hemagglutinin Receptor Binding Site. Journal of Virology, 2013, 87, 12471-12480.	1.5	139
245	A recurring motif for antibody recognition of the receptor-binding site of influenza hemagglutinin. Nature Structural and Molecular Biology, 2013, 20, 363-370.	3.6	141
246	Molecular mechanisms driving respiratory syncytial virus assembly. Future Microbiology, 2013, 8, 123-131.	1.0	16
247	Human Monoclonal Antibodies Derived From Memory B Cells Following Live Attenuated Dengue Virus Vaccination or Natural Infection Exhibit Similar Characteristics. Journal of Infectious Diseases, 2013, 207, 1898-1908.	1.9	74
248	The Potent and Broadly Neutralizing Human Dengue Virus-Specific Monoclonal Antibody 1C19 Reveals a Unique Cross-Reactive Epitope on the bc Loop of Domain II of the Envelope Protein. MBio, 2013, 4, e00873-13.	1.8	143
249	Gold nanorod vaccine for respiratory syncytial virus. Nanotechnology, 2013, 24, 295102.	1.3	63
250	Human Germline Antibody Gene Segments Encode Polyspecific Antibodies. PLoS Computational Biology, 2013, 9, e1003045.	1.5	78
251	Universal Flu Vaccines: <i>Primum non nocere</i> . Science Translational Medicine, 2013, 5, 200fs34.	5.8	19

252 Crowdsourcing Immunity. Science, 2013, 340, 692-693.

6.0 0

#	Article	IF	CITATIONS
253	Unusual Features of Vaccinia Virus Extracellular Virion Form Neutralization Resistance Revealed in Human Antibody Responses to the Smallpox Vaccine. Journal of Virology, 2013, 87, 1569-1585.	1.5	26
254	Intermittent Testicular Torsion in the Pediatric Patient: Sonographic Indicators of a Difficult Diagnosis. American Journal of Roentgenology, 2013, 201, 912-918.	1.0	34
255	Reversion of Somatic Mutations of the Respiratory Syncytial Virus–Specific Human Monoclonal Antibody Fab19 Reveal a Direct Relationship between Association Rate and Neutralizing Potency. Journal of Immunology, 2013, 190, 3732-3739.	0.4	26
256	Prophylactic and therapeutic testing of Nicotiana-derived RSV-neutralizing human monoclonal antibodies in the cotton rat model. MAbs, 2013, 5, 263-269.	2.6	28
257	Human Rotavirus VP6-Specific Antibodies Mediate Intracellular Neutralization by Binding to a Quaternary Structure in the Transcriptional Pore. PLoS ONE, 2013, 8, e61101.	1.1	51
258	Secondary mechanisms of diversification in the human antibody repertoire. Frontiers in Immunology, 2013, 4, 42.	2.2	35
259	Discovering naturally processed antigenic determinants that confer protective T cell immunity. Journal of Clinical Investigation, 2013, 123, 1976-1987.	3.9	58
260	Human antibodies that neutralize respiratory droplet transmissible H5N1 influenza viruses. Journal of Clinical Investigation, 2013, 123, 4405-4409.	3.9	31
261	Human antibodies that neutralize respiratory droplet transmissible H5N1 influenza viruses. Journal of Clinical Investigation, 2013, 123, 4979-4979.	3.9	0
262	Influenza Human Monoclonal Antibody 1F1 Interacts with Three Major Antigenic Sites and Residues Mediating Human Receptor Specificity in H1N1 Viruses. PLoS Pathogens, 2012, 8, e1003067.	2.1	80
263	Persistence of Circulating Memory B Cell Clones with Potential for Dengue Virus Disease Enhancement for Decades following Infection. Journal of Virology, 2012, 86, 2665-2675.	1.5	136
264	Human Respiratory Syncytial Virus Nucleoprotein and Inclusion Bodies Antagonize the Innate Immune Response Mediated by MDA5 and MAVS. Journal of Virology, 2012, 86, 8245-8258.	1.5	136
265	Respiratory Syncytial Virus Regulates Human MicroRNAs by Using Mechanisms Involving Beta Interferon and NF-κB. MBio, 2012, 3, .	1.8	68
266	A Critical Phenylalanine Residue in the Respiratory Syncytial Virus Fusion Protein Cytoplasmic Tail Mediates Assembly of Internal Viral Proteins into Viral Filaments and Particles. MBio, 2012, 3, .	1.8	54
267	Structure of the human metapneumovirus fusion protein with neutralizing antibody identifies a pneumovirus antigenic site. Nature Structural and Molecular Biology, 2012, 19, 461-463.	3.6	66
268	Location and length distribution of somatic hypermutation-associated DNA insertions and deletions reveals regions of antibody structural plasticity. Genes and Immunity, 2012, 13, 523-529.	2.2	67
269	Identification of human neutralizing antibodies that bind to complex epitopes on dengue virions. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7439-7444.	3.3	350
270	Human Monoclonal Antibodies to Pandemic 1957 H2N2 and Pandemic 1968 H3N2 Influenza Viruses. Journal of Virology, 2012, 86, 6334-6340.	1.5	57

#	Article	IF	CITATIONS
271	Influenza Virus Resistance to Human Neutralizing Antibodies. MBio, 2012, 3, e00213-12.	1.8	2
272	Predicting posttransplantation diabetes mellitus by regulatory T-cell phenotype: implications for metabolic intervention to modulate alloreactivity. Blood, 2012, 119, 2417-2421.	0.6	16
273	Tissue-specific regulatory T cells: biomarker for acute graft-vs-host disease and survival. Experimental Hematology, 2012, 40, 974-982.e1.	0.2	19
274	A stabilized respiratory syncytial virus reverse genetics system amenable to recombination-mediated mutagenesis. Virology, 2012, 434, 129-136.	1.1	120
275	A Chemically Programmed Antibody Is a Longâ€Lasting and Potent Inhibitor of Influenza Neuraminidase. ChemBioChem, 2012, 13, 2191-2195.	1.3	11
276	High-throughput antibody sequencing reveals genetic evidence of global regulation of the naÃ ⁻ ve and memory repertoires that extends across individuals. Genes and Immunity, 2012, 13, 469-473.	2.2	79
277	Independent Structural Domains in Paramyxovirus Polymerase Protein. Journal of Biological Chemistry, 2012, 287, 6878-6891.	1.6	47
278	Viral Pneumonia. , 2012, , 453-460.		1
279	Human Peripheral Blood Antibodies with Long HCDR3s Are Established Primarily at Original Recombination Using a Limited Subset of Germline Genes. PLoS ONE, 2012, 7, e36750.	1.1	113
280	Respiratory Syncytial Virus Assembles into Structured Filamentous Virion Particles Independently of Host Cytoskeleton and Related Proteins. PLoS ONE, 2012, 7, e40826.	1.1	31
281	Frequency and genetic characterization of <scp>V(DD)J</scp> recombinants in the human peripheral blood antibody repertoire. Immunology, 2012, 137, 56-64.	2.0	59
282	Human Metapneumovirus. , 2012, , 1134-1137.e4.		1
283	Tribute to David T. Karzon, MD and Robert M. Chanock, MD. Vaccine, 2011, 29, 3725-3727.	1.7	0
284	Prevention of Fetal and Early Life Infections Through Maternal–Neonatal Immunization. , 2011, , 1212-1230.		6
285	An Insertion Mutation That Distorts Antibody Binding Site Architecture Enhances Function of a Human Antibody. MBio, 2011, 2, e00345-10.	1.8	40
286	Severe pandemic 2009 H1N1 influenza disease due to pathogenic immune complexes. Nature Medicine, 2011, 17, 195-199.	15.2	242
287	Identification of potential human respiratory syncytial virus and metapneumovirus T cell epitopes using computational prediction and MHC binding assays. Journal of Immunological Methods, 2011, 374, 13-17.	0.6	14
288	Machine learning competition in immunology – Prediction of HLA class I binding peptides. Journal of Immunological Methods, 2011, 374, 1-4.	0.6	53

#	Article	IF	CITATIONS
289	Activation of protein kinase R is required for induction of stress granules by respiratory syncytial virus but dispensable for viral replication. Virology, 2011, 413, 103-110.	1.1	65
290	Epitope-Specific Human Influenza Antibody Repertoires Diversify by B Cell Intraclonal Sequence Divergence and Interclonal Convergence. Journal of Immunology, 2011, 187, 3704-3711.	0.4	81
291	A Broadly Neutralizing Human Monoclonal Antibody That Recognizes a Conserved, Novel Epitope on the Clobular Head of the Influenza H1N1 Virus Hemagglutinin. Journal of Virology, 2011, 85, 10905-10908.	1.5	182
292	Regulatory T cell expression of CLA or α4β7 and skin or gut acute GVHD outcomes. Bone Marrow Transplantation, 2011, 46, 436-442.	1.3	40
293	Maturation-Induced Cloaking of Neutralization Epitopes on HIV-1 Particles. PLoS Pathogens, 2011, 7, e1002234.	2.1	39
294	Reply to Schlapbach et al. Journal of Infectious Diseases, 2011, 203, 296-296.	1.9	0
295	Human Metapneumovirus. , 2011, , 1129-1131.e1.		1
296	Interaction Between Post-Transplant Diabetes Mellitus and Regulatory T Cell Phenotype. Blood, 2011, 118, 3039-3039.	0.6	5
297	Surfing a genetic association interaction network to identify modulators of antibody response to smallpox vaccine. Genes and Immunity, 2010, 11, 630-636.	2.2	45
298	Populationâ€Based Incidence of Human Metapneumovirus Infection among Hospitalized Children. Journal of Infectious Diseases, 2010, 201, 1890-1898.	1.9	102
299	Transforming Growth Factor Beta Is a Major Regulator of Human Neonatal Immune Responses following Respiratory Syncytial Virus Infection. Journal of Virology, 2010, 84, 12895-12902.	1.5	44
300	Naturally Occurring Human Monoclonal Antibodies Neutralize both 1918 and 2009 Pandemic Influenza A (H1N1) Viruses. Journal of Virology, 2010, 84, 3127-3130.	1.5	90
301	Respiratory Syncytial Virus Induces Host RNA Stress Granules To Facilitate Viral Replication. Journal of Virology, 2010, 84, 12274-12284.	1.5	144
302	Pseudovirion Particles Bearing Native HIV Envelope Trimers Facilitate a Novel Method for Generating Human Neutralizing Monoclonal Antibodies Against HIV. Journal of Acquired Immune Deficiency Syndromes (1999), 2010, 54, 223-235.	0.9	32
303	Homing in on Acute Graft vs. Host Disease: Tissue-Specific T Regulatory and Th17 Cells. Current Topics in Microbiology and Immunology, 2010, 341, 121-146.	0.7	12
304	Structural Basis of Preexisting Immunity to the 2009 H1N1 Pandemic Influenza Virus. Science, 2010, 328, 357-360.	6.0	521
305	Specificity for Human Hemoglobin Enhances Staphylococcus aureus Infection. Cell Host and Microbe, 2010, 8, 544-550.	5.1	136
306	Emerging studies of human HIV-specific antibody repertoires. Vaccine, 2010, 28, B18-B23.	1.7	9

#	Article	IF	CITATIONS
307	A Chimeric A2 Strain of Respiratory Syncytial Virus (RSV) with the Fusion Protein of RSV Strain Line 19 Exhibits Enhanced Viral Load, Mucus, and Airway Dysfunction. Journal of Virology, 2009, 83, 4185-4194.	1.5	144
308	Capturing the Spectrum of Interaction Effects in Genetic Association Studies by Simulated Evaporative Cooling Network Analysis. PLoS Genetics, 2009, 5, e1000432.	1.5	72
309	Coronavirus infection and hospitalizations for acute respiratory illness in young children. Journal of Medical Virology, 2009, 81, 853-856.	2.5	66
310	Integrated analysis of genetic and proteomic data identifies biomarkers associated with adverse events following smallpox vaccination. Genes and Immunity, 2009, 10, 112-119.	2.2	77
311	Single molecule–sensitive probes for imaging RNA in live cells. Nature Methods, 2009, 6, 347-349.	9.0	129
312	Recent advances in the study of human antibody responses to influenza virus using optimized human hybridoma approaches. Vaccine, 2009, 27, G47-G51.	1.7	15
313	The human neonatal B cell response to respiratory syncytial virus uses a biased antibody variable gene repertoire that lacks somatic mutations. Molecular Immunology, 2009, 47, 407-414.	1.0	42
314	Amphiregulin-Deficient Mice Develop Spasmolytic Polypeptide Expressing Metaplasia and Intestinal Metaplasia. Gastroenterology, 2009, 136, 1288-1296.	0.6	58
315	Genetic diversity and evolution of human metapneumovirus fusion protein over twenty years. Virology Journal, 2009, 6, 138.	1.4	67
316	The Pediatric Burden of Human Coronaviruses Evaluated for Twenty Years. Pediatric Infectious Disease Journal, 2009, 28, 682-687.	1.1	77
317	α4β7± Regulatory T Cells (Tregs) at Engraftment Predict Long-Term Graft-Versus-Host Disease (GVHD) Outcomes Blood, 2009, 114, 2237-2237.	0.6	Ο
318	Neutralizing antibodies derived from the B cells of 1918 influenza pandemic survivors. Nature, 2008, 455, 532-536.	13.7	379
319	An optimized electrofusion-based protocol for generating virus-specific human monoclonal antibodies. Journal of Immunological Methods, 2008, 336, 142-151.	0.6	130
320	Enhancement of the CD8+ T cell response to a subdominant epitope of respiratory syncytial virus by deletion of an immunodominant epitope. Vaccine, 2008, 26, 4775-4782.	1.7	20
321	A Clinical Isolate Strain of Respiratory Syncytial Virus (RSV) Causes Airway Obstruction and Histopathology in Mice Similar to Severe RSV Disease in Infants. Journal of Allergy and Clinical Immunology, 2008, 121, S268-S268.	1.5	0
322	Immunodominance of theVH1–46Antibody Gene Segment in the Primary Repertoire of Human Rotavirus-Specific B Cells Is Reduced in the Memory Compartment through Somatic Mutation of Nondominant Clones. Journal of Immunology, 2008, 180, 3279-3288.	0.4	47
323	Functional Maturation of the Human Antibody Response to Rotavirus. Journal of Immunology, 2008, 180, 3980-3989.	0.4	33
324	An Alphavirus Replicon-Based Human Metapneumovirus Vaccine Is Immunogenic and Protective in Mice and Cotton Rats. Journal of Virology, 2008, 82, 11410-11418.	1.5	48

#	Article	IF	CITATIONS
325	Respiratory syncytial virus uses a Vps4-independent budding mechanism controlled by Rab11-FIP2. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10209-10214.	3.3	132
326	Human metapneumovirus nucleoprotein and phosphoprotein interact and provide the minimal requirements for inclusion body formation. Journal of General Virology, 2008, 89, 2698-2708.	1.3	57
327	Genetic Basis for Adverse Events after Smallpox Vaccination. Journal of Infectious Diseases, 2008, 198, 16-22.	1.9	67
328	Respiratory Syncytial Virus. , 2008, , 1112-1116.		3
329	Circulating Gut- or Skin-Homing Regulatory T Cells (Tregs) Predict Whether Acute Graft-Versus-Host Disease (aGVHD) Occurs in Gut or Skin Following Allogeneic Stem Cell Transplantation (ASCT). Blood, 2008, 112, 717-717.	0.6	1
330	Human Metapneumovirus. , 2008, , 1117-1119.		0
331	Venezuelan Equine Encephalitis Virus Replicon Particles Encoding Respiratory Syncytial Virus Surface Glycoproteins Induce Protective Mucosal Responses in Mice and Cotton Rats. Journal of Virology, 2007, 81, 13710-13722.	1.5	75
332	Tissue-Specific Regulation of CD8 + T-Lymphocyte Immunodominance in Respiratory Syncytial Virus Infection. Journal of Virology, 2007, 81, 2349-2358.	1.5	36
333	Evaporative cooling feature selection for genotypic data involving interactions. Bioinformatics, 2007, 23, 2113-2120.	1.8	39
334	Examination of a Fusogenic Hexameric Core from Human Metapneumovirus and Identification of a Potent Synthetic Peptide Inhibitor from the Heptad Repeat 1 Region. Journal of Virology, 2007, 81, 141-149.	1.5	29
335	Human Metapneumovirus Fusion Protein Vaccines That Are Immunogenic and Protective in Cotton Rats. Journal of Virology, 2007, 81, 698-707.	1.5	85
336	Genetic Predisposition for Adverse Events after Vaccination. Journal of Infectious Diseases, 2007, 196, 176-177.	1.9	47
337	A Recombinant Human Monoclonal Antibody to Human Metapneumovirus Fusion Protein That Neutralizes Virus In Vitro and Is Effective Therapeutically In Vivo. Journal of Virology, 2007, 81, 8315-8324.	1.5	71
338	Evidence for preferential Ig gene usage and differential TdT and exonuclease activities in human naÃ ⁻ ve and memory B cells. Molecular Immunology, 2007, 44, 2173-2183.	1.0	43
339	Towards a consensus on datasets and evaluation metrics for developing B-cell epitope prediction tools. Journal of Molecular Recognition, 2007, 20, 75-82.	1.1	209
340	Using the natural evolution of a rotavirus-specific human monoclonal antibody to predict the complex topography of a viral antigenic site. Immunome Research, 2007, 3, 8.	0.1	12
341	Detection of viral infections using colloidal quantum dots. , 2006, 6096, 198.		1
342	Feature Selection using a Random Forests Classifier for the Integrated Analysis of Multiple Data Types. , 2006, , .		55

#	Article	IF	CITATIONS
343	Transcriptional Control of Activation-Induced Cytidine Deaminase and Error-Prone DNA Polymerases Is Functionally Mature in the B Cells of Infants at Birth. Human Immunology, 2006, 67, 43-46.	1.2	8
344	Rotavirus-Specific CD5+ B Cells in Young Children Exhibit a Distinct Antibody Repertoire Compared with CD5â ^{°°} B Cells. Human Immunology, 2006, 67, 33-42.	1.2	16
345	Viral Pneumonia. , 2006, , 433-440.		Ο
346	Low expression of the interleukin (IL)-4 receptor alpha chain and reduced signalling via the IL-4 receptor complex in human neonatal B cells. Immunology, 2006, 119, 54-62.	2.0	23
347	Automated image analysis of atomic force microscopy images of rotavirus particles. Ultramicroscopy, 2006, 106, 829-837.	0.8	30
348	Cytokine Expression Patterns Associated with Systemic Adverse Events following Smallpox Immunization. Journal of Infectious Diseases, 2006, 194, 444-453.	1.9	43
349	Nanoscale tools for rapid and sensitive diagnosis of viruses. Future Virology, 2006, 1, 769-781.	0.9	7
350	Cellular Immune Responses to Diluted and Undiluted Aventis Pasteur Smallpox Vaccine. Journal of Infectious Diseases, 2006, 194, 435-443.	1.9	25
351	The Role of Human Metapneumovirus in Upper Respiratory Tract Infections in Children: A 20‥ear Experience. Journal of Infectious Diseases, 2006, 193, 387-395.	1.9	230
352	Hybrid grammar-based approach to nonlinear dynamical system identification from biological time series. Physical Review E, 2006, 73, 021912.	0.8	10
353	Cooperativity of actin and microtubule elements during replication of respiratory syncytial virus. Virology, 2005, 331, 73-81.	1.1	93
354	Identification of an H-2Db-restricted CD8+ cytotoxic T lymphocyte epitope in the matrix protein of respiratory syncytial virus. Virology, 2005, 337, 335-343.	1.1	55
355	Prevalence of Reovirusâ€6pecific Antibodies in Young Children in Nashville, Tennessee. Journal of Infectious Diseases, 2005, 191, 1221-1224.	1.9	114
356	The Transmembrane Domain of the Respiratory Syncytial Virus F Protein Is an Orientation-Independent Apical Plasma Membrane Sorting Sequence. Journal of Virology, 2005, 79, 12528-12535.	1.5	27
357	A Prospective Study Comparing Human Metapneumovirus with Other Respiratory Viruses in Adults with Hematologic Malignancies and Respiratory Tract Infections. Journal of Infectious Diseases, 2005, 192, 1061-1065.	1.9	157
358	Application of semiconductor fluorescent nanocrystals as optical probes for rapid early viral detection. , 2005, , .		2
359	VH1–46 Is the Dominant Immunoglobulin Heavy Chain Gene Segment in Rotavirus-Specific Memory B Cells Expressing the Intestinal Homing Receptor α4β7. Journal of Immunology, 2005, 174, 3454-3460.	0.4	54
360	Human Metapneumovirus Infection Plays an Etiologic Role in Acute Asthma Exacerbations Requiring Hospitalization in Adults. Journal of Infectious Diseases, 2005, 192, 1149-1153.	1.9	151

#	Article	IF	CITATIONS
361	Pseudovirion Particle Production by Live Poxvirus Human Immunodeficiency Virus Vaccine Vector Enhances Humoral and Cellular Immune Responses. Journal of Virology, 2005, 79, 5537-5547.	1.5	18
362	Differential Regulation of Granzyme and Perforin in Effector and Memory T Cells following Smallpox Immunization. Journal of Immunology, 2005, 174, 3757-3764.	0.4	48
363	Smallpox Vaccination Does Not Elevate Systemic Levels of Prothrombotic Proteins Associated with Ischemic Cardiac Events. Journal of Infectious Diseases, 2005, 191, 724-730.	1.9	3
364	Progression of Respiratory Syncytial Virus Infection Monitored by Fluorescent Quantum Dot Probes. Nano Letters, 2005, 5, 591-595.	4.5	97
365	Natural Evolution of a Human Virus-Specific Antibody Gene Repertoire by Somatic Hypermutation Requires Both Hotspot-Directed and Randomly-Directed Processes. Human Immunology, 2005, 66, 666-676.	1.2	36
366	Prospective Study of the Incidence, Clinical Features, and Outcome of Symptomatic Upper and Lower Respiratory Tract Infections by Respiratory Viruses in Adult Recipients of Hematopoietic Stem Cell Transplants for Hematologic Malignancies. Biology of Blood and Marrow Transplantation, 2005, 11, 781-796.	2.0	200
367	Human metapneumovirus infection in children hospitalized for wheezing. Journal of Allergy and Clinical Immunology, 2005, 115, 1311-1312.	1.5	85
368	The Cotton Rat (Sigmodon hispidus) Is a Permissive Small Animal Model of Human Metapneumovirus Infection, Pathogenesis, and Protective Immunity. Journal of Virology, 2005, 79, 10944-10951.	1.5	111
369	Human Metapneumovirus and Lower Respiratory Tract Disease in Children. New England Journal of Medicine, 2004, 350, 1788-1790.	13.9	19
370	Adverse Events after Smallpox Immunizations Are Associated with Alterations in Systemic Cytokine Levels. Journal of Infectious Diseases, 2004, 189, 1401-1410.	1.9	45
371	Effect of Zinc Salts on Respiratory Syncytial Virus Replication. Antimicrobial Agents and Chemotherapy, 2004, 48, 783-790.	1.4	122
372	Human Metapneumovirus and Lower Respiratory Tract Disease in Otherwise Healthy Infants and Children. New England Journal of Medicine, 2004, 350, 443-450.	13.9	850
373	Human Metapneumovirus as a Major Cause of Human Respiratory Tract Disease. Pediatric Infectious Disease Journal, 2004, 23, S215-S221.	1.1	88
374	Vaccination Success Rate and Reaction Profile With Diluted and Undiluted Smallpox Vaccine. JAMA - Journal of the American Medical Association, 2004, 292, 1205.	3.8	53
375	B-Cell Development. , 2004, , 1518-1522.		0
376	CD154 Regulates Primate Humoral Immunity to Influenza. American Journal of Transplantation, 2003, 3, 680-688.	2.6	23
377	Generation of recombinant human monoclonal antibodies to rotavirus from single antigen-specific B cells selected with fluorescent virus-like particles. Journal of Immunological Methods, 2003, 275, 223-237.	0.6	56
378	Planar growth faults in double-layered or triple-layered (Ca,Sr)-ruthenate single crystals by the self-flux technique. Journal of Crystal Growth, 2003, 252, 372-381.	0.7	4

#	Article	IF	CITATIONS
379	Identification of a novel human leucocyte antigen-A*01-restricted cytotoxic T-lymphocyte epitope in the respiratory syncytial virus fusion protein. Immunology, 2003, 108, 474-480.	2.0	45
380	Immunology of viral respiratory tract infection in infancy. Paediatric Respiratory Reviews, 2003, 4, 112-119.	1.2	85
381	Respiratory Syncytial Virus Nucleoprotein-Specific Cytotoxic T-Cell Epitopes in a South African Population of Diverse HLA Types Are Conserved in Circulating Field Strains. Journal of Virology, 2003, 77, 7319-7329.	1.5	34
382	Infant and Adult Human B Cell Responses to Rotavirus Share Common Immunodominant Variable Gene Repertoires. Journal of Immunology, 2003, 171, 4680-4688.	0.4	64
383	Fatal Hemophagocytic Lymphohistiocytosis Associated with Epstein-Barr Virus Infection in a Patient with a Novel Mutation in the Signaling Lymphocytic Activation MoleculeAssociated Protein. Clinical Infectious Diseases, 2003, 37, e136-e141.	2.9	13
384	Apical recycling systems regulate directional budding of respiratory syncytial virus from polarized epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15143-15148.	3.3	100
385	PNEUMOCYSTIS CARINII PNEUMONIA IN A GIRL WITH A MIDBRAIN GLIOMA. Pediatric Hematology and Oncology, 2002, 19, 141-143.	0.3	0
386	The Human Polymeric Immunoglobulin Receptor Facilitates Invasion of Epithelial Cells by Streptococcus pneumoniae in a Strain-Specific and Cell Type-Specific Manner. Infection and Immunity, 2002, 70, 5091-5095.	1.0	44
387	Respiratory syncytial virus vaccine development. Vaccine, 2001, 20, S32-S37.	1.7	61
388	Blood Donor Leukocyte Reduction Filters as a Source of Human B Lymphocytes. BioTechniques, 2001, 31, 464-466.	0.8	21
389	Genetic and Structural Determinants of Virus Neutralizing Antibodies. Immunologic Research, 2001, 23, 135-146.	1.3	21
390	CD40-Ligand in Primate Cardiac Allograft and Viral Immunity. Immunologic Research, 2001, 23, 253-262.	1.3	26
391	Passively Acquired Antibodies Suppress Humoral But Not Cell-Mediated Immunity in Mice Immunized with Live Attenuated Respiratory Syncytial Virus Vaccines. Journal of Immunology, 2001, 167, 3910-3918.	0.4	96
392	Influence of Maternal Antibodies on Neonatal Immunization against Respiratory Viruses. Clinical Infectious Diseases, 2001, 33, 1720-1727.	2.9	99
393	A RhoA-derived peptide inhibits syncytium formation induced by respiratory syncytial virus and parainfluenza virus type 3. Nature Medicine, 2000, 6, 35-40.	15.2	87
394	Evaluation of a Live, Coldâ€Passaged, Temperatureâ€Sensitive, Respiratory Syncytial Virus Vaccine Candidate in Infancy. Journal of Infectious Diseases, 2000, 182, 1331-1342.	1.9	292
395	Recurrent Pneumococcal Arthritis as the Presenting Manifestation of X-Linked Agammaglobulinemia. Clinical Infectious Diseases, 2000, 31, 1287-1288.	2.9	12
396	Recurrent Achromobacter xylosoxidans Bacteremia Associated with Persistent Lymph Node Infection in a Patient with Hyper-Immunoglobulin M Syndrome. Clinical Infectious Diseases, 2000, 31, 1183-1187.	2.9	55

#	Article	IF	CITATIONS
397	Human Antibody Responses to Mature and Immature Forms of Viral Envelope in Respiratory Syncytial Virus Infection: Significance for Subunit Vaccines. Journal of Virology, 1999, 73, 2956-2962.	1.5	52
398	Passive IgA Monoclonal Antibody Is No More Effective Than IgG at Protecting Mice from Mucosal Challenge with Respiratory Syncytial Virus. Journal of Infectious Diseases, 1999, 180, 1324-1327.	1.9	27
399	The live attenuated subgroup B respiratory syncytial virus vaccine candidate RSV 2B33F is attenuated and immunogenic in chimpanzees, but exhibits partial loss of the ts phenotype following replication in vivo. Virus Research, 1999, 59, 13-22.	1.1	14
400	Addition of a Missense Mutation Present in the L Gene of Respiratory Syncytial Virus (RSV) <i>cpts</i> 530/1030 to RSV Vaccine Candidate <i>cpts</i> 248/404 Increases Its Attenuation and Temperature Sensitivity. Journal of Virology, 1999, 73, 871-877.	1.5	81
401	RhoA Interacts with the Fusion Glycoprotein of Respiratory Syncytial Virus and Facilitates Virus-Induced Syncytium Formation. Journal of Virology, 1999, 73, 7262-7270.	1.5	74
402	Monoclonal Antibody-Resistant Mutants Selected with a Respiratory Syncytial Virus-Neutralizing Human Antibody Fab Fragment (Fab 19) Define a Unique Epitope on the Fusion (F) Glycoprotein. Virology, 1998, 252, 373-375.	1.1	46
403	Immune responses of infants to infection with respiratory viruses and live attenuated respiratory virus candidate vaccines. Vaccine, 1998, 16, 1423-1432.	1.7	50
404	Isolation of a Second Recombinant Human Respiratory Syncytial Virus Monoclonal Antibody Fragment (Fab RSVF2–5) that Exhibits Therapeutic Efficacy In Vivo. Journal of Infectious Diseases, 1998, 177, 1073-1076.	1.9	23
405	Evaluation of Two Live, Coldâ€Passaged, Temperatureâ€Sensitive Respiratory Syncytial Virus Vaccines in Chimpanzees and in Human Adults, Infants, and Children. Journal of Infectious Diseases, 1997, 176, 1428-1436.	1.9	197
406	The role of antibodies in respiratory viral immunity. Seminars in Virology, 1996, 7, 273-283.	4.1	12
407	Live Subgroup B Respiratory Syncytial Virus Vaccines that Are Attenuated, Genetically Stable, and Immunogenic in Rodents and Nonhuman Primates. Journal of Infectious Diseases, 1996, 173, 829-839.	1.9	60
408	Nucleotide Sequence Analysis of the Respiratory Syncytial Virus Subgroup A Cold-Passaged (cp) Temperature Sensitive (ts)cpts-248/404 Live Attenuated Virus Vaccine Candidate. Virology, 1996, 225, 419-422.	1.1	64
409	Acquisition of the ts phenotype by a chemically mutagenized cold-passaged human respiratory syncytial virus vaccine candidate results from the acquisition of a single mutation in the polymerase (L) gene. Virus Genes, 1996, 13, 269-273.	0.7	42
410	A Cold-Passaged, Attenuated Strain of Human Respiratory Syncytial Virus Contains Mutations in the F and L Genes. Virology, 1995, 208, 478-484.	1.1	53
411	Isolation and characterization of a highly attenuated respiratory syncytial virus (RSV) vaccine candidate by mutagenesis of the incompletely attenuated RSV A2 ts-1 NG-1 mutant virus. Vaccine, 1995, 13, 509-515.	1.7	16
412	Cold-passaged, temperature-sensitive mutants of human respiratory syncytial virus (RSV) are highly attenuated, immunogenic, and protective in seronegative chimpanzees, even when RSV antibodies are infused shortly before immunization. Vaccine, 1995, 13, 847-855.	1.7	97
413	Cytotoxic T cells specific for a single peptide on the M2 protein of respiratory syncytial virus are the sole mediators of resistance induced by immunization with M2 encoded by a recombinant vaccinia virus. Journal of Virology, 1995, 69, 1261-1264.	1.5	97
414	Recombinant human respiratory syncytial virus (RSV) monoclonal antibody Fab is effective therapeutically when introduced directly into the lungs of RSV-infected mice Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 1386-1390.	3.3	127

#	Article	IF	CITATIONS
415	Satisfactorily attenuated and protective mutants derived from a partially attenuated cold-passaged respiratory syncytial virus mutant by introduction of additional attenuating mutations during chemical mutagenesis. Vaccine, 1994, 12, 691-699.	1.7	86
416	A further attenuated derivative of a cold-passaged temperature-sensitive mutant of human respiratory syncytial virus retains immunogenicity and protective efficacy against wild-type challenge in seronegative chimpanzees. Vaccine, 1994, 12, 783-790.	1.7	98
417	An update on approaches to the development of respiratory syncytial virus (RSV) and parainfluenza virus type 3 (PIV3) vaccines. Virus Research, 1994, 32, 13-36.	1.1	148
418	A comparison in chimpanzees of the immunogenicity and efficacy of live attenuated respiratory syncytial virus (RSV) temperature-sensitive mutant vaccines and vaccinia virus recombinants that express the surface glycoproteins of RSV. Vaccine, 1993, 11, 1395-1404.	1.7	89
419	Human monoclonal Fab fragments derived from a combinatorial library bind to respiratory syncytial virus F glycoprotein and neutralize infectivity Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 10164-10168.	3.3	171
420	Standardized Two-Step Testing of Antibody Activity in COVID-19 Convalescent Plasma. SSRN Electronic Journal, 0, , .	0.4	2
421	History and Practice: Antibodies in Infectious Diseases. , 0, , 1-21.		1
422	Antibodies Targeting the Envelope of HIV-1., 0,, 191-208.		1
423	Committing the Oldest Sins in the Newest Kind of Ways-Antibodies Targeting the Influenza Virus Type A Hemagglutinin Clobular Head. , 0, , 209-219.		2
424	Dengue Antibody-Dependent Enhancement: Knowns and Unknowns. , 0, , 249-271.		25
425	Functions of Antibodies. , 0, , 23-48.		58
426	High-Throughput DNA Sequencing Analysis of Antibody Repertoires. , 0, , 345-362.		6
427	Antibody Structure. , 0, , 49-62.		1
428	Phage and Yeast Display. , 0, , 103-127.		2
429	Use of Human Hybridoma Technology To Isolate Human Monoclonal Antibodies. , 0, , 141-156.		5
430	Antibodies: Computer-Aided Prediction of Structure and Design of Function. , 0, , 173-190.		0
431	Plant-Derived Monoclonal Antibodies for Prevention and Treatment of Infectious Disease. , 0, , 411-425.		0
432	Human Metapneumovirus. , 0, , 237-247.		0

#	Article	IF	CITATIONS
433	Immunoglobulin E and Allergy: Antibodies in Immune Inflammation and Treatment. , 0, , 75-102.		0
434	Humanized Mice for Studying Human Immune Responses and Generating Human Monoclonal Antibodies. , 0, , 157-171.		1
435	Antibody Informatics: IMGT, the International ImMunoGeneTics Information System. , 0, , 363-379.		1
436	Radiolabeled Antibodies for Therapy of Infectious Diseases. , 0, , 399-409.		0
437	Peptide arrays of three collections of human sera from patients infected with mosquito-borne viruses. F1000Research, 0, 8, 1875.	0.8	0