
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2417866/publications.pdf Version: 2024-02-01

PENIATA VESEISKA

#	Article	IF	CITATIONS
1	Bromodomain 4 inhibition leads to <i>MYCN</i> downregulation in Wilms tumor. Pediatric Blood and Cancer, 2022, 69, e29401.	0.8	6
2	Iron-Chelation Treatment by Novel Thiosemicarbazone Targets Major Signaling Pathways in Neuroblastoma. International Journal of Molecular Sciences, 2022, 23, 376.	1.8	4
3	A selective p53 activator and anticancer agent to improve colorectal cancer therapy. Cell Reports, 2021, 35, 108982.	2.9	20
4	New Target for Precision Medicine Treatment of Giant-Cell Tumor of Bone: Sunitinib Is Effective in the Treatment of Neoplastic Stromal Cells with Activated PDGFRÎ ² Signaling. Cancers, 2021, 13, 3543.	1.7	7
5	Enhanced Antiproliferative Effect of Combined Treatment with Calcitriol and All-Trans Retinoic Acid in Relation to Vitamin D Receptor and Retinoic Acid Receptor α Expression in Osteosarcoma Cell Lines. International Journal of Molecular Sciences, 2020, 21, 6591.	1.8	3
6	Novel Thiosemicarbazones Sensitize Pediatric Solid Tumor Cell-Types to Conventional Chemotherapeutics through Multiple Molecular Mechanisms. Cancers, 2020, 12, 3781.	1.7	4
7	Repurposing Tyrosine Kinase Inhibitors to Overcome Multidrug Resistance in Cancer: A Focus on Transporters and Lysosomal Sequestration. International Journal of Molecular Sciences, 2020, 21, 3157.	1.8	31
8	NANOG/NANOGP8 Localizes at the Centrosome and is Spatiotemporally Associated with Centriole Maturation. Cells, 2020, 9, 692.	1.8	6
9	Serial Xenotransplantation in NSG Mice Promotes a Hybrid Epithelial/Mesenchymal Gene Expression Signature and Stemness in Rhabdomyosarcoma Cells. Cancers, 2020, 12, 196.	1.7	6
10	Individualization of Treatment Improves the Survival of Children With High-Risk Solid Tumors: Comparative Patient Series Analysis in a Real-Life Scenario. Frontiers in Oncology, 2019, 9, 644.	1.3	2
11	Prediction of neuroblastoma cell response to treatment with natural or synthetic retinoids using selected protein biomarkers. PLoS ONE, 2019, 14, e0218269.	1.1	11
12	Strategies to Discover p53 Activators and a p73 Activator for Neuroblastoma. Proceedings (mdpi), 2019, 22, .	0.2	0
13	Phospho-Protein Arrays as Effective Tools for Screening Possible Targets for Kinase Inhibitors and Their Use in Precision Pediatric Oncology. Frontiers in Oncology, 2019, 9, 930.	1.3	9
14	New inhibitor of the TAp73 interaction with MDM2 and mutant p53 with promising antitumor activity against neuroblastoma. Cancer Letters, 2019, 446, 90-102.	3.2	36
15	Comparative Analysis of Putative Prognostic and Predictive Markers in Neuroblastomas: High Expression of PBX1 Is Associated With a Poor Response to Induction Therapy. Frontiers in Oncology, 2019, 9, 1221.	1.3	7
16	Pharmacological targeting of mitochondria in cancer stem cells: An ancient organelle at the crossroad of novel anti-cancer therapies. Pharmacological Research, 2019, 139, 298-313.	3.1	55
17	Comprehensive Molecular Profiling for Relapsed/Refractory Pediatric Burkitt Lymphomas—Retrospective Analysis of Three Real-Life Clinical Cases—Addressing Issues on Randomization and Customization at the Bedside. Frontiers in Oncology, 2019, 9, 1531.	1.3	3
18	Personalized Treatment of H3K27M-Mutant Pediatric Diffuse Gliomas Provides Improved Therapeutic Opportunities. Frontiers in Oncology, 2019, 9, 1436.	1.3	50

#	Article	IF	CITATIONS
19	Traffic lights for retinoids in oncology: molecular markers of retinoid resistance and sensitivity and their use in the management of cancer differentiation therapy. BMC Cancer, 2018, 18, 1059.	1.1	51
20	Effects of Sunitinib and Other Kinase Inhibitors on Cells Harboring a PDGFRB Mutation Associated with Infantile Myofibromatosis. International Journal of Molecular Sciences, 2018, 19, 2599.	1.8	16
21	Why Differentiation Therapy Sometimes Fails: Molecular Mechanisms of Resistance to Retinoids. International Journal of Molecular Sciences, 2018, 19, 132.	1.8	46
22	Cancer stem cells in sarcomas: Getting to the stemness core. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2134-2139.	1.1	14
23	Case report: rapid and durable response to PDGFR targeted therapy in a child with refractory multiple infantile myofibromatosis and a heterozygous germline mutation of the PDGFRB gene. BMC Cancer, 2017, 17, 119.	1.1	52
24	Much more than you expected: The non-DHFR-mediated effects of methotrexate. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 499-503.	1.1	32
25	Analysis of phosphorylation pattern of RTK and MAPK signaling pathways in pediatric neurogenic tumors. Annals of Oncology, 2017, 28, vii19.	0.6	0
26	Uniformity under in vitro conditions: Changes in the phenotype of cancer cell lines derived from different medulloblastoma subgroups. PLoS ONE, 2017, 12, e0172552.	1.1	4
27	Expression of nestin, CD133 and ABCG2 in relation to the clinical outcome in pediatric sarcomas. Cancer Biomarkers, 2016, 17, 107-116.	0.8	17
28	Cancer stem cell markers in pediatric sarcomas: Sox2 is associated with tumorigenicity in immunodeficient mice. Tumor Biology, 2016, 37, 9535-9548.	0.8	27
29	Non-DHFR-mediated effects of methotrexate in osteosarcoma cell lines: epigenetic alterations and enhanced cell differentiation. Cancer Cell International, 2016, 16, 14.	1.8	17
30	Co-Expression of Cancer Stem Cell Markers Corresponds to a Pro-Tumorigenic Expression Profile in Pancreatic Adenocarcinoma. PLoS ONE, 2016, 11, e0159255.	1.1	32
31	Nestin as a marker of cancer stem cells. Cancer Science, 2015, 106, 803-811.	1.7	201
32	Co-expression of nestin and CD133. Cancer Science, 2015, 106, July cover-July cover.	1.7	0
33	DHFR-mediated effects of methotrexate in medulloblastoma and osteosarcoma cells: The same ot come of treatment with different doses in sensitive cell lines. Oncology Reports, 2015, 33, 2169-75.	1.2	10
34	Atypical nuclear localization of CD133 plasma membrane glycoprotein in rhabdomyosarcoma cell lines. International Journal of Molecular Medicine, 2015, 36, 65-72.	1.8	19
35	Overexpression of the â^†Np73 isoform is associated with centrosome amplification in brain tumor cell lines. Tumor Biology, 2015, 36, 7483-7491.	0.8	9
36	The ATRA-induced differentiation of medulloblastoma cells is enhanced with LOX/COX inhibitors: an analysis of gene expression. Cancer Cell International, 2014, 14, 51.	1.8	9

#	Article	IF	CITATIONS
37	LOX/COX inhibitors enhance the antineoplastic effects of all-trans retinoic acid in osteosarcoma cell lines. Tumor Biology, 2014, 35, 7617-7627.	0.8	5
38	The power of natural phenolic compounds: caffeic acid is able to enhance the retinoid-induced differentiation of tumor cells. Cancer & Metabolism, 2014, 2, .	2.4	1
39	Changes in expression of cscs markers in rhabdomyosarcoma xenografted cell lines. Pathology, 2014, 46, S48-S49.	0.3	Ο
40	EGFR signaling in the HGG-02 glioblastoma cell line with an unusual loss of EGFR gene copy. Oncology Reports, 2014, 31, 480-487.	1.2	13
41	Intracellular distribution of the ΔNp73 protein isoform in medulloblastoma cells: a study with newly generated rabbit polyclonal antibodies. Histology and Histopathology, 2013, 28, 913-24.	0.5	6
42	Nestin expression in high-grade osteosarcomas and its clinical significance. Oncology Reports, 2012, 27, 1592-8.	1.2	12
43	CD133 Expression and Identification of CD133/nestin Positive Cells in Rhabdomyosarcomas and Rhabdomyosarcoma Cell Lines. Analytical Cellular Pathology, 2011, 34, 303-318.	0.7	22
44	Low-level copy number changes of MYC genes have a prognostic impact in medulloblastoma. Journal of Neuro-Oncology, 2011, 102, 25-33.	1.4	20
45	Analysis of nuclear nestin localization in cell lines derived from neurogenic tumors. Tumor Biology, 2011, 32, 631-639.	0.8	33
46	CD133 expression and identification of CD133/nestin positive cells in rhabdomyosarcomas and rhabdomyosarcoma cell lines. Analytical Cellular Pathology, 2011, 34, 303-18.	0.7	14
47	Clinicopathological correlations of nestin expression in surgically resectable pancreatic cancer including an analysis of perineural invasion. Journal of Gastrointestinal and Liver Diseases, 2011, 20, 389-96.	0.5	11
48	An unusual loss of EGFR gene copy in glioblastoma multiforme in a child: a case report and analysis of a successfully derived HGG-02 cell line. Child's Nervous System, 2010, 26, 841-846.	0.6	4
49	Analysis of the intracellular localization of p73 N-terminal protein isoforms TAp73 and â^†Np73 in medulloblastoma cell lines. Journal of Molecular Histology, 2010, 41, 267-275.	1.0	9
50	Nestin expression in human tumors and tumor cell lines Neoplasma, 2010, 57, 291-298.	0.7	93
51	Enhancement of ATRA-induced differentiation of neuroblastoma cells with LOX/COX inhibitors: an expression profiling study. Journal of Experimental and Clinical Cancer Research, 2010, 29, 45.	3.5	14
52	Influence of LOX/COX inhibitors on cell differentiation induced by all-trans retinoic acid in neuroblastoma cell lines. International Journal of Molecular Medicine, 2010, 25, 271-80.	1.8	21
53	Influence of LOX/COX inhibitors on cell differentiation induced by all-trans retinoic acid in neuroblastoma cell lines. International Journal of Molecular Medicine, 2009, 25, .	1.8	8
54	Characterization of a GM7 glioblastoma cell line showing CD133 positivity and both cytoplasmic and nuclear localization of nestin. Oncology Reports, 2009, 21, 119-27.	1.2	20

#	Article	IF	CITATIONS
55	Nestin expression in osteosarcomas and derivation of nestin/CD133 positive osteosarcoma cell lines. BMC Cancer, 2008, 8, 300.	1.1	48
56	The optimization of sample treatment for spectral karyotyping with applications for human tumour cells. Cytogenetic and Genome Research, 2007, 116, 186-193.	0.6	4
57	Screening of genomic imbalances in glioblastoma multiforme using high-resolution comparative genomic hybridization. Oncology Reports, 2007, 17, 457-64.	1.2	20
58	Nestin expression in the cell lines derived from glioblastoma multiforme. BMC Cancer, 2006, 6, 32.	1.1	74
59	The role of actin in the apoptotic cell death of P19 embryonal carcinoma cells. International Journal of Oncology, 2005, 27, 1013.	1.4	2
60	Differentiation of HL-60 myeloid leukemia cells induced by all-trans retinoic acid is enhanced in combination with caffeic acid. International Journal of Molecular Medicine, 2004, 14, 305.	1.8	5
61	Differentiation of HL-60 myeloid leukemia cells induced by all-trans retinoic acid is enhanced in combination with caffeic acid. International Journal of Molecular Medicine, 2004, 14, 305-10.	1.8	13
62	Specific cytoskeleton changes during apoptosis accompanying induced differentiation of HL-60 myeloid leukemia cells. Oncology Reports, 2003, 10, 1049.	1.2	7
63	Specific cytoskeleton changes during apoptosis accompanying induced differentiation of HL-60 myeloid leukemia cells. Oncology Reports, 2003, 10, 1049-58.	1.2	8
64	Reaction of the Skin Fibroblast Cytoskeleton to Micromanipulation Interventions. Journal of Structural Biology, 2001, 136, 110-118.	1.3	5
65	The influence of incorporated bromodeoxyuridine on mutagenicity testing by sister chromatid exchange induction inVicia faba root tip cells. Biologia Plantarum, 1995, 37, 9-14.	1.9	4
66	The use of a micronucleus test to characterise adaptation ofVicia faba root tip cells to gamma-radiation. Biologia Plantarum, 1994, 36, 215-220.	1.9	1
67	Characterization of a GM7 glioblastoma cell line showing CD133 positivity and both cytoplasmic and nuclear localization of nestin. Oncology Reports, 1994, 21, 119.	1.2	12
68	Screening of genomic imbalances in glioblastoma multiforme using high-resolution comparative genomic hybridization. Oncology Reports, 0, , .	1.2	8