U Hyeok Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2417846/publications.pdf Version: 2024-02-01

II HVEOR CHOL

#	Article	IF	CITATIONS
1	Self-assembled block copolymer electrolyte membranes with silica network-derived nanochannels for all-solid-state supercapacitors. Chemical Engineering Journal, 2022, 429, 132273.	6.6	5
2	Ion transport through layered hydrogels for low-frequency energy harvesting toward self-powered chemical systems. Journal of Materials Chemistry A, 2022, 10, 11881-11892.	5.2	1
3	The effect of inorganic nanoparticles on ion conduction in poly(lithium acrylate)-based composite polymer electrolytes for energy storage devices. Molecular Crystals and Liquid Crystals, 2022, 742, 103-110.	0.4	1
4	Multiâ€Foldable and Environmentally Stable Allâ€Solidâ€State Supercapacitor Based on Hierarchical Nanoâ€Canyon Structured Ionicâ€Gel Polymer Electrolyte. Advanced Functional Materials, 2022, 32, .	7.8	16
5	Ion-cluster-mediated ultrafast self-healable ionoconductors for reconfigurable electronics. Nature Communications, 2022, 13, .	5.8	30
6	Ionic liquid-based molecular design for transparent, flexible, and fire-retardant triboelectric nanogenerator (TENG) for wearable energy solutions. Nano Energy, 2021, 84, 105925.	8.2	56
7	Role of Chain Polarity on Ion and Polymer Dynamics: Molecular Volume-Based Analysis of the Dielectric Constant for Polymerized Norbornene-Based Ionic Liquids. Macromolecules, 2020, 53, 10561-10573.	2.2	18
8	Water-Assisted Increase of Ionic Conductivity of Lithium Poly(acrylic acid)-Based Aqueous Polymer Electrolyte. ACS Applied Energy Materials, 2020, 3, 10119-10130.	2.5	19
9	Flexible and high ion conducting solid polymer electrolytes prepared via ring-opening polymerization. Molecular Crystals and Liquid Crystals, 2020, 705, 99-104.	0.4	2
10	The effect of lithium salt type on ionic conductivity of poly(vinylidene difluoride)-based solid polymer electrolytes. Molecular Crystals and Liquid Crystals, 2020, 705, 93-98.	0.4	1
11	The Effect of Oligo(oxyethylene) Moieties on Ion Conduction and Dielectric Properties of Norbornene-Based Imidazolium Tf ₂ N Ionic Liquid Monomers. Macromolecules, 2020, 53, 4990-5000.	2.2	11
12	Dielectric control of porous polydimethylsiloxane elastomers with Au nanoparticles for enhancing the output performance of triboelectric nanogenerators. RSC Advances, 2020, 10, 21309-21317.	1.7	27
13	Tuning Morphology and Properties of Epoxy-Based Solid-State Polymer Electrolytes by Molecular Interaction for Flexible All-Solid-State Supercapacitors. Chemistry of Materials, 2020, 32, 3879-3892.	3.2	29
14	Organic Ionic Crystals: Solidâ€Phase Structure and Thermal Properties of Dicationic α , ω â€Bis[N,N′ â€(4â€alkylpyridinium)]alkane Hexafluorophosphate Salts. Asian Journal of Organic Chemistry, 2019, 8, 1718-1725.	1.3	3
15	Highly Flexible and Stable Solid-State Supercapacitors Based on a Homogeneous Thin Ion Gel Polymer Electrolyte Using a Poly(dimethylsiloxane) Stamp. ACS Applied Materials & Interfaces, 2019, 11, 42221-42232.	4.0	27
16	Synthesis and Characterization of Silica Aerogel-Polymer Hybrid Materials. Molecular Crystals and Liquid Crystals, 2019, 687, 97-104.	0.4	4
17	The role of inorganic nanoparticle on ion conduction of epoxy-based solid polymer electrolytes for lithium-ion batteries. Molecular Crystals and Liquid Crystals, 2019, 687, 105-112.	0.4	2
18	Interesting phase behaviors and ion-conducting properties of dicationic <i>N</i> -alkylimidazolium tetrafluoroborate salts. RSC Advances, 2019, 9, 3972-3978.	1.7	10

И Нуеок Сноі

#	Article	IF	CITATIONS
19	Effects of pyridine and pyrrole moieties on supercapacitive properties of imine-rich nitrogen-doped graphene. Carbon, 2019, 152, 915-923.	5.4	22
20	Ion–Dipole-Interaction-Driven Complexation of Polyethers with Polyviologen-Based Single-Ion Conductors. Macromolecules, 2019, 52, 4240-4250.	2.2	5
21	Characterization of a Soft Pressure Sensor on the Basis of Ionic Liquid Concentration and Thickness of the Piezoresistive Layer. IEEE Sensors Journal, 2019, 19, 6076-6084.	2.4	21
22	Effect of chain flexibility on cell adhesion: Semi-flexible model-based analysis of cell adhesion to hydrogels. Scientific Reports, 2019, 9, 2463.	1.6	19
23	Effect of Poly(ethylene glycol) Crystallization on Ionic Conduction and Dielectric Response of Imidazolium-Based Copolyester Ionomers. Macromolecules, 2019, 52, 2314-2328.	2.2	10
24	Ion Conducting ROMP Monomers Based on (Oxa)norbornenes with Pendant Imidazolium Salts Connected via Oligo(oxyethylene) Units and with Oligo(ethyleneoxy) Terminal Moieties. Macromolecules, 2019, 52, 1371-1388.	2.2	6
25	Studies of Ion Conductance in Polymers Derived from Norbornene Imidazolium Salts Containing Ethyleneoxy Moieties. Macromolecules, 2019, 52, 1389-1399.	2.2	5
26	Functionalized Silica Particle Based Single Ion Conducting Hybrid Electrolyte for Li-Ion Battery. ECS Meeting Abstracts, 2019, , .	0.0	0
27	Mutifunctional Epoxy-Based Solid Polymer Electrolytes for Energy Storage Systems. ECS Meeting Abstracts, 2019, , .	0.0	0
28	Ion Conduction, Dielectric and Mechanical Properties of Epoxy-Based Solid Polymer Electrolytes Containing Succinonitrile. Macromolecular Research, 2018, 26, 459-465.	1.0	21
29	Ion Conduction and Viscoelastic Response of Epoxyâ€Based Solid Polymer Electrolytes Containing Solvating Plastic Crystal Plasticizer. Macromolecular Chemistry and Physics, 2018, 219, 1700514.	1.1	23
30	Influence of Al ₂ O ₃ Nanowires on Ion Transport in Nanocomposite Solid Polymer Electrolytes. Macromolecules, 2018, 51, 10194-10201.	2.2	33
31	Tuning anhydrous proton conduction in single-ion polymers by crystalline ion channels. Nature Communications, 2018, 9, 5029.	5.8	40
32	Multifunctional Epoxy-Based Solid Polymer Electrolytes for Solid-State Supercapacitors. ACS Applied Materials & Interfaces, 2018, 10, 35108-35117.	4.0	79
33	Correlating morphology to thermal and electrical properties in imidazolium-poly(ethylene glycol) copolyesters. Polymer, 2018, 146, 420-428.	1.8	7
34	Manipulation and Investigation of Uniformly-Spaced Nanowire Array on a Substrate via Dielectrophoresis and Electrostatic Interaction. Nanomaterials, 2018, 8, 456.	1.9	0
35	High Ion Conducting Nanohybrid Solid Polymer Electrolytes <i>via</i> Single-Ion Conducting Mesoporous Organosilica in Poly(ethylene oxide). Chemistry of Materials, 2017, 29, 4401-4410.	3.2	67
36	Bis-imidazolium iodide organic ionic plastic crystals and their applications to solid state dye-sensitized solar cells. Organic Electronics, 2017, 48, 241-247.	1.4	23

И Нуеок Сноі

#	Article	IF	CITATIONS
37	The Role of Solvating 12-Crown-4 Plasticizer on Dielectric Constant and Ion Conduction of Poly(ethylene oxide) Single-Ion Conductors. Macromolecules, 2017, 50, 5582-5591.	2.2	32
38	Precise Placement of Metallic Nanowires on a Substrate by Localized Electric Fields and Inter-Nanowire Electrostatic Interaction. Nanomaterials, 2017, 7, 335.	1.9	3
39	Imidazoliumâ€Based Ionic Liquids as Initiators in Ring Opening Polymerization: Ionic Conduction and Dielectric Response of Endâ€Functional Polycaprolactones and Their Block Copolymers. Macromolecular Chemistry and Physics, 2016, 217, 1270-1281.	1.1	10
40	One-volt-driven superfast polymer actuators based on single-ion conductors. Nature Communications, 2016, 7, 13576.	5.8	130
41	Segmental Dynamics and Dielectric Constant of Polysiloxane Polar Copolymers as Plasticizers for Polymer Electrolytes. ACS Applied Materials & amp; Interfaces, 2016, 8, 3215-3225.	4.0	73
42	Molecular Volume Effects on the Dynamics of Polymerized Ionic Liquids and their Monomers. Electrochimica Acta, 2015, 175, 55-61.	2.6	76
43	Dynamics of Precise Ethylene Ionomers Containing Ionic Liquid Functionality. Macromolecules, 2015, 48, 410-420.	2.2	42
44	Ion Conduction in a Semicrystalline Polyviologen and Its Polyether Mixtures. Macromolecular Chemistry and Physics, 2015, 216, 344-349.	1.1	13
45	Plasticizing Li single-ion conductors with low-volatility siloxane copolymers and oligomers containing ethylene oxide and cyclic carbonates. Journal of Materials Chemistry A, 2015, 3, 21269-21276.	5.2	24
46	Dielectric and Viscoelastic Responses of Imidazolium-Based Ionomers with Different Counterions and Side Chain Lengths. Macromolecules, 2014, 47, 777-790.	2.2	179
47	High Ion Content Siloxane Phosphonium Ionomers with Very Low <i>T</i> _g . Macromolecules, 2014, 47, 4428-4437.	2.2	48
48	Influence of Solvating Plasticizer on Ion Conduction of Polysiloxane Single-Ion Conductors. Macromolecules, 2014, 47, 3145-3153.	2.2	63
49	Polymerized Ionic Liquids with Enhanced Static Dielectric Constants. Macromolecules, 2013, 46, 1175-1186.	2.2	126
50	Ionic Conduction and Dielectric Response of Poly(imidazolium acrylate) Ionomers. Macromolecules, 2012, 45, 3974-3985.	2.2	151
51	Synthesis and Lithium Ion Conduction of Polysiloxane Single-Ion Conductors Containing Novel Weak-Binding Borates. Chemistry of Materials, 2012, 24, 2316-2323.	3.2	129
52	1,2-Bis[N-(N′-alkylimidazolium)]ethane salts: a new class of organic ionic plastic crystals. Journal of Materials Chemistry, 2011, 21, 12280.	6.7	54
53	Imidazolium Polyesters: Structure–Property Relationships in Thermal Behavior, Ionic Conductivity, and Morphology. Advanced Functional Materials, 2011, 21, 708-717.	7.8	94
54	Ion Conduction in Imidazolium Acrylate Ionic Liquids and their Polymers. Chemistry of Materials, 2010, 22, 5814-5822.	3.2	124

#	Article	IF	CITATIONS
55	Influence of intermolecular interactions on molecular geometry and physical quantities in electrolyte systems. Molecular Physics, 0, , 1-6.	0.8	1
56	Preparation of porous polyacrylonitrile membrane-based gel polymer electrolyte for solid-state supercapacitor. Molecular Crystals and Liquid Crystals, 0, , 1-7.	0.4	0