
Wuled Lenggoro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2417797/publications.pdf Version: 2024-02-01

MULED LENCCORO

#	Article	IF	CITATIONS
1	Nanocellulose from oil palm mesocarp fiber using hydrothermal treatment with low concentration of oxalic acid. Materials Today: Proceedings, 2022, 48, 1899-1904.	1.8	7
2	Surface treatment of clayey soil particles for reducing water loss through evaporation. Advanced Powder Technology, 2022, 33, 103465.	4.1	0
3	Recent Development and Environmental Applications of Nanocellulose-Based Membranes. Membranes, 2022, 12, 287.	3.0	31
4	Liquid Transport of Heated Glycerol-Water Mixtures with Colloidal Fluorescent Particles through Multiple Biomass Layers. E-Journal of Surface Science and Nanotechnology, 2022, 20, 13-19.	0.4	1
5	Deagglomeration of spray-dried submicron particles by low-power aqueous sonication. Advanced Powder Technology, 2022, 33, 103543.	4.1	2
6	Detachment of Submicron Particles from Substrates Using the Suspension-Assisted Ultrasonic Method. Journal of Chemical Engineering of Japan, 2021, 54, 135-143.	0.6	2
7	Adsorptive capacity of spray-dried pH-treated bentonite and kaolin powders for ammonium removal. Advanced Powder Technology, 2021, 32, 1833-1843.	4.1	9
8	Growth-controlled synthesis of polymer-coated colloidal-gold nanoparticles using electrospray-based chemical reduction. Particuology, 2021, 57, 72-81.	3.6	6
9	Nanocellulose and Nanocellulose-Based Composites for Food Applications. , 2020, , 369-385.		4
10	Isolation of nanocellulose from Saba' (Musa acuminata x balbisiana) banana peel by one-pot oxidation-hydrolysis system. International Journal of Management, Finance and Accounting, 2020, 1, .	0.2	2
11	Nanoparticles Carrying Biological Molecules. , 2020, , 4-1-4-11.		0
12	High-throughput production of magnetite nanoparticles prepared by the monopolar arrangement of iron electrodes in water. Chemical Engineering Science, 2019, 201, 112-120.	3.8	16
13	Visualization and Localization of Submicron-Sized Ammonium Sulfate Particles on Needles of Japanese Larch (Larix kaempferi) and Japanese Cedar (Cryptomeria japonica) and Leaves of Japanese Beech (Fagus) Tj ETQc 1151.	1 1 0.784 2.1	1314 rgBT /O
14	Decomposition of solution droplets under the influence of thermal convection over a heated horizontal plate. Advanced Powder Technology, 2018, 29, 441-449.	4.1	1
15	Particulate structures produced by electrosprays of colloidal silica suspensions in both negative and positive zeta potentials. Advanced Powder Technology, 2018, 29, 1771-1777.	4.1	7
16	Formation of fine and encapsulated mefenamic acid form I particles for dissolution improvement via electrospray method. Particulate Science and Technology, 2018, 36, 298-307.	2.1	3
17	Development of low-cost and user-friendly sustainable portable particulate sensor. IOP Conference Series: Materials Science and Engineering, 2018, 458, 012041.	0.6	1
18	Nanoparticles Carrying Biological Molecules: Recent Advances and Applications. KONA Powder and Particle Journal, 2018, 35, 89-111.	1.7	40

#	Article	IF	CITATIONS
19	Carbonaceous Nanoparticle Layers Prepared using Candle Soot by Direct- and Spray-based Depositions. Aerosol and Air Quality Research, 2018, 18, 856-865.	2.1	11

$_{20}$ Effects of submicron ammonium sulfate particles on the growth and yield of komatsuna (Brassica) Tj ETQq0 0 0 rgBT/Overlogk 10 Tf 50

21	Preparation and Characterisation of Cyclodextrin Glucanotransferase Enzyme Immobilised in Electrospun Nanofibrous Membrane. Journal of Fiber Science and Technology, 2017, 73, 251-260.	0.4	8
22	Fine Coal Ash Collection Efficiency of Advanced Low Temperature Electrostatic Precipitator on Pulverized Coal Combustion. Journal of the Society of Powder Technology, Japan, 2017, 54, 398-401.	0.1	2
23	Effect of epicuticular wax crystals on the localization of artificially deposited sub-micron carbon-based aerosols on needles of Cryptomeria japonica. Journal of Plant Research, 2016, 129, 873-881.	2.4	2
24	Removal of fine iron-oxide particles after post-filtration in local potable water using an electrophoretic method. Journal of Water Process Engineering, 2016, 9, 208-214.	5.6	1
25	Immobilisation of cyclodextrin glucanotransferase into polyvinyl alcohol (PVA) nanofibres via electrospinning. Biotechnology Reports (Amsterdam, Netherlands), 2016, 10, 44-48.	4.4	43
26	Deposition of nanostructures derived from electrostatically stabilised TiO2 aqueous suspension onto a biocomposite. Advanced Powder Technology, 2015, 26, 362-367.	4.1	3
27	Probing a dip-coated layer of organic molecules by an aerosol nanoparticle sensor with sub-100 nm resolution based on surface-enhanced Raman scattering. RSC Advances, 2015, 5, 5158-5163.	3.6	6
28	Preparation of poly(N-isopropylacrylamide) hydrogel beads by sedimentation polymerization combined with electrostatic atomization. Polymer Bulletin, 2015, 72, 1603-1610.	3.3	3
29	Preliminary Study on the Measurement of the Electrostatic Charging State of PM2.5 Collected on Filter Media. Asian Journal of Atmospheric Environment, 2015, 9, 137-145.	1.1	8
30	Electrochemical Processes for the Formation of Hydroxyapatite Powders. Bulletin of Chemical Reaction Engineering and Catalysis, 2014, 9, .	1.1	14
31	Effects of long-term exposure to ammonium sulfate particles on growth and gas exchange rates of Fagus crenata, Castanopsis sieboldii, Larix kaempferi and Cryptomeria japonica seedlings. Atmospheric Environment, 2014, 97, 493-500.	4.1	11
32	Area-selective deposition of charged particles derived from colloidal aerosol droplets on a surface with different hydrophilic levels. Journal of Aerosol Science, 2014, 78, 83-96.	3.8	6
33	Immobilization of colloidal particles into sub-100 nm porous structures by electrophoretic methods in aqueous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 459, 142-150.	4.7	9
34	Transformation of cyclodextrin glucanotransferase (CGTase) from aqueous suspension to fine solid particles via electrospraying. Enzyme and Microbial Technology, 2014, 64-65, 52-59.	3.2	9
35	Generation Behavior of Condensable Nanoparticles by Using Model Flue Gas Containing Boron Vapor. Journal of the Society of Powder Technology, Japan, 2014, 51, 363-367.	0.1	0
36	Insertion of Presynthesized Particles in the Pores of a Honeycomb Structure by an Aerosol Process. Journal of the Society of Powder Technology, Japan, 2014, 51, 759-764.	0.1	0

#	Article	IF	CITATIONS
37	Preparation of LiMn ₂ 0 ₄ particles by glucose-assisted combustion method. Journal of the Ceramic Society of Japan, 2014, 122, 976-981.	1.1	0
38	Simultaneous Deposition of Submicron Aerosols onto Both Surfaces of a Plate Substrate by Electrostatic Forces. E-Journal of Surface Science and Nanotechnology, 2014, 12, 238-241.	0.4	8
39	Thermal stability of silica-coated magnetite nanoparticles prepared by an electrochemical method. Advanced Powder Technology, 2013, 24, 507-511.	4.1	57
40	One-step synthesis of silica-coated magnetite nanoparticles by electrooxidation of iron in sodium silicate solution. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	47
41	Deposition Process of Sulfate and Elemental Carbon in Japanese and Thai Forests. Asian Journal of Atmospheric Environment, 2012, 6, 246-258.	1.1	15
42	Effects of Long-term Exposure to Black Carbon Particles on Growth and Gas Exchange Rates of Fagus crenata, Castanopsis sieboldii, Larix kaempferi and Cryptomeria japonica Seedlings. Asian Journal of Atmospheric Environment, 2012, 6, 259-267.	1.1	11
43	Optical Method for Measuring Deposition Amount of Black Carbon Particles on Foliar Surface. Asian Journal of Atmospheric Environment, 2012, 6, 268-274.	1.1	5
44	Visualization of Artificially Deposited Submicron-sized Aerosol Particles on the Surfaces of Leaves and Needles in Trees. Asian Journal of Atmospheric Environment, 2012, 6, 275-280.	1.1	7
45	Investigation of Gene Expression of MMP-2 and TIMP-2 mRNA in Rat Lung in Inhaled Nickel Oxide and Titanium Dioxide Nanoparticles. Industrial Health, 2011, 49, 344-352.	1.0	25
46	Effect of additive ratio of mixed silane alkoxides on reactivity with TiO2 nanoparticle surface and their stability in organic solvents. Advanced Powder Technology, 2011, 22, 663-668.	4.1	17
47	A Colloidal Route to Detection of Organic Molecules Based on Surface-Enhanced Raman Spectroscopy Using Nanostructured Substrate Derived from Aerosols. Japanese Journal of Applied Physics, 2011, 50, 06GG10.	1.5	0
48	Measurement and analysis of fine particulate matters (PM10/PM2.5) and condensable nanoparticles emission from stationary sources. , 2011, , .		1
49	Electrical-driven disaggregation of the two-dimensional assembly of colloidal polymer particles under pulse DC charging. Advanced Powder Technology, 2010, 21, 534-541.	4.1	14
50	Electrophoretic packing structure from aqueous nanoparticle suspension in pulse DC charging. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 360, 13-19.	4.7	25
51	Electrostatic Deposition of Aerosol Particles Generated from an Aqueous Nanopowder Suspension on a Chemically Treated Substrate. Japanese Journal of Applied Physics, 2010, 49, 06GH17.	1.5	10
52	Surface modification of BaTiO3 particles by silane coupling agents in different solvents and their effect on dielectric properties of BaTiO3/epoxy composites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 352, 88-93.	4.7	87
53	Separation Characteristics of a Multi-stage VIS Impactor for PM10/PM2.5 Mass Concentration Measurement in a Stack of a Stationary Source. Journal of the Society of Powder Technology, Japan, 2009, 46, 467-475.	0.1	5
54	Deposition of TiO2 nanoparticles in surfactant-containing aqueous suspension by a pulsed DC charging-mode electrophoresis. Journal of the Ceramic Society of Japan, 2009, 117, 127-132.	1.1	20

#	Article	IF	CITATIONS
55	Measurement and Assembly of Liquid-Phase Nanoparticles by Aerosolisation. Journal of the Society of Powder Technology, Japan, 2009, 46, 114-118.	0.1	Ο
56	Investigation on the Correlations between Droplet and Particle Size Distribution in Ultrasonic Spray Pyrolysis. Industrial & Engineering Chemistry Research, 2008, 47, 1650-1659.	3.7	149
57	High luminance YAG:Ce nanoparticles fabricated from urea added aqueous precursor by flame process. Journal of Alloys and Compounds, 2008, 463, 350-357.	5.5	92
58	Formation and Luminescence Enhancement of Agglomerate-Free YAG:Ce[sup 3+] Submicrometer Particles by Flame-Assisted Spray Pyrolysis. Journal of the Electrochemical Society, 2007, 154, J91.	2.9	43
59	Photoluminescence Optimization of Luminescent Nanocomposites Fabricated by Spray Pyrolysis of a Colloid-Solution Precursor. Journal of the Electrochemical Society, 2007, 154, J121.	2.9	45
60	Biopersistence of Inhaled Nickel Oxide Nanoparticles in Rat Lung. Inhalation Toxicology, 2007, 19, 55-58.	1.6	47
61	Simulation and experimental study of spray pyrolysis of polydispersed droplets. Journal of Materials Research, 2007, 22, 1888-1898.	2.6	50
62	Correlations between Crystallite/Particle Size and Photoluminescence Properties of Submicrometer Phosphors. Chemistry of Materials, 2007, 19, 1723-1730.	6.7	339
63	Colloidal nanoparticle analysis by nanoelectrospray size spectrometry with a heated flow. Analytica Chimica Acta, 2007, 585, 193-201.	5.4	28
64	Controlled size polymer particle production via electrohydrodynamic atomization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 311, 67-76.	4.7	85
65	Formation of BaTiO3 nanoparticles from an aqueous precursor by flame-assisted spray pyrolysis. Journal of the European Ceramic Society, 2007, 27, 4489-4497.	5.7	38
66	Polymer-Assisted Annealing of Spray-Pyrolyzed Powders for Formation of Luminescent Particles with Submicrometer and Nanometer Sizes. Journal of the American Ceramic Society, 2007, 90, 425-432.	3.8	24
67	A Pulse Combustionâ€Spray Pyrolysis Process for the Preparation of Nano―and Submicrometerâ€Sized Oxide Particles. Journal of the American Ceramic Society, 2007, 90, 3779-3785.	3.8	13
68	Monolayer deposition of L10 FePt nanoparticles via electrospray route. Journal of Magnetism and Magnetic Materials, 2007, 313, 62-68.	2.3	14
69	Preparation of Submicron- and Nanometer-Sized Particles of Y2O3:Eu3+ by Flame Spray Pyrolysis Using Ultrasonic and Two-Fluid Atomizers. Journal of Chemical Engineering of Japan, 2006, 39, 68-76.	0.6	31
70	Effects of Ethanol Addition and Ba/Ti Ratios on Preparation of Barium Titanate Nanocrystals Via a Spray Pyrolysis Method. Journal of the American Ceramic Society, 2006, 89, 888-893.	3.8	15
71	Evaporative cooling of micron-sized droplets in a low-pressure aerosol reactor. Chemical Engineering Science, 2006, 61, 6029-6034.	3.8	41
72	Nanoparticle assembly on patterned "plus/minus―surfaces from electrospray of colloidal dispersion. Journal of Colloid and Interface Science, 2006, 303, 124-130.	9.4	53

#	Article	IF	CITATIONS
73	Preparation of functional nanostructured particles by spray drying. Advanced Powder Technology, 2006, 17, 587-611.	4.1	169
74	Flame Spray Pyrolysis for Preparing Red-Light-Emitting, Submicron-Sized Luminescent Strontium Titanate Particles. Japanese Journal of Applied Physics, 2006, 45, 967-973.	1.5	11
75	Synthesis and Crystallinity of Zirconium Oxide Particles by Pyrolysis of Poly (ethylene glycol) - based Polymeric Precursors. Journal of the Society of Powder Technology, Japan, 2005, 42, 688-693.	0.1	0
76	Novel Processing for Softly Agglomerated Luminescent Y2O3: Eu3+ Nanoparticles Using Polymeric Precursors. Journal of the Ceramic Society of Japan, 2005, 113, 97-100.	1.3	8
77	Polymer-supported solution synthesis of blue luminescent BaMgAl10O17:Eu2+ particles. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 122, 188-195.	3.5	15
78	Direct Synthesis of Barium Titanate Nanoparticles Via a Low Pressure Spray Pyrolysis Method. Journal of Materials Research, 2005, 20, 2873-2882.	2.6	17
79	Direct synthesis of barium magnesium aluminate blue phosphor particles via a flame route. Materials Letters, 2005, 59, 1183-1187.	2.6	32
80	One-step synthesis of titanium oxide nanoparticles by spray pyrolysis of organic precursors. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 123, 194-202.	3.5	77
81	Dispersion and aggregation of nanoparticles derived from colloidal droplets under low-pressure conditions. Journal of Colloid and Interface Science, 2005, 288, 423-431.	9.4	33
82	Changes in the Shape and Mobility of Colloidal Gold Nanorods with Electrospray and Differential Mobility Analyzer Methods. Langmuir, 2005, 21, 10375-10382.	3.5	39
83	A polymer solution process for synthesis of (Y,Gd)3Al5O12:Ce phosphor particles. Journal of Non-Crystalline Solids, 2005, 351, 697-704.	3.1	23
84	The crystallinity and the photoluminescent properties of spray pyrolized ZnO phosphor containing Eu2+ and Eu3+ ions. Journal of Physics and Chemistry of Solids, 2004, 65, 1843-1847.	4.0	69
85	Nickel and nickel oxide nanoparticles prepared from nickel nitrate hexahydrate by a low pressure spray pyrolysis. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 111, 69-76.	3.5	124
86	One-step synthesis and photoluminescence of doped strontium titanate particles with controlled morphology. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 113, 60-66.	3.5	28
87	Mass Analysis of Water-Soluble Polymers by Mobility Measurement of Charge-Reduced Ions Generated by Electrosprays. Analytical Chemistry, 2004, 76, 1045-1053.	6.5	54
88	Continuous Single-Step Fabrication of Nonaggregated, Size-Controlled and Cubic Nanocrystalline Y2O3:Eu3+Phosphors Using Flame Spray Pyrolysis. Japanese Journal of Applied Physics, 2004, 43, 3535-3539.	1.5	50
89	Nanoparticles of a doped oxide phosphor prepared by direct-spray pyrolysis. Journal of Materials Research, 2004, 19, 3534-3539.	2.6	43
90	Preparation of Au/Ag Alloy Particles by Spray Pyrolysis and Its Applications. Journal of the Society of Powder Technology, Japan, 2004, 41, 246-251.	0.1	2

#	Article	IF	CITATIONS
91	Spray Pyrolysis Synthesis and Evaluation of Fine Bimetallic Au-Pd Particles. Journal of the Ceramic Society of Japan, 2004, 112, 405-408.	1.3	3
92	Synthesis of Single Crystalline ZnO Nanoparticles by Salt-Assisted Spray Pyrolysis. Journal of Nanoparticle Research, 2003, 5, 47-53.	1.9	45
93	Title is missing!. Journal of Nanoparticle Research, 2003, 5, 191-198.	1.9	34
94	Control of size and morphology in NiO particles prepared by a low-pressure spray pyrolysis. Materials Research Bulletin, 2003, 38, 1819-1827.	5.2	105
95	Preparation of nanoparticles via spray route. Chemical Engineering Science, 2003, 58, 537-547.	3.8	550
96	In Situ Synthesis of Polymer Nanocomposite Electrolytes Emitting a High Luminescence with a Tunable Wavelength. Journal of Physical Chemistry B, 2003, 107, 1957-1961.	2.6	61
97	Measurement of Cluster Ions and Residue Nanoparticles from Water Samples with an Electrospray/Differential Mobility Analyzer. Analytical Sciences, 2003, 19, 843-851.	1.6	13
98	Agglomerate-free BaTiO ₃ particles by salt-assisted spray pyrolysis. Journal of Materials Research, 2002, 17, 3222-3229.	2.6	16
99	Luminescent Polymer Electrolytes Prepared by Growing ZnO Nanoparticles in the Matrix of Polyethylene Glycol. Journal of the Electrochemical Society, 2002, 149, H107.	2.9	26
100	Nanoparticle Separation in Salted Droplet Microreactors. Chemistry of Materials, 2002, 14, 2623-2627.	6.7	40
101	Synthesis and Photoluminescence of Spherical ZnS:Mn2+Particles. Chemistry of Materials, 2002, 14, 4969-4974.	6.7	81
102	Sizing of Colloidal Nanoparticles by Electrospray and Differential Mobility Analyzer Methods. Langmuir, 2002, 18, 4584-4591.	3.5	124
103	Synthesis of LaPO4:Ce,Tb phosphor particles by spray pyrolysis. Materials Letters, 2001, 50, 92-96.	2.6	114
104	Synthesis of CeO2 nanoparticles by salt-assisted ultrasonic aerosol decomposition. Journal of Materials Chemistry, 2001, 11, 2925-2927.	6.7	74
105	Oxidation Behavior of Spray Pyrolyzed Ag-Pd Alloy Particle Journal of the Society of Powder Technology, Japan, 2001, 38, 542-547.	0.1	11
106	Fabrication and Characterization of SiO2 Particles Generated by Spray Method for Standards Aerosol Journal of Chemical Engineering of Japan, 2001, 34, 1285-1292.	0.6	38
107	One-step synthesis of the green phosphor Ce-Tb-Mg-Al-O system with spherical particle shape and fine size. Applied Physics A: Materials Science and Processing, 2001, 72, 103-105.	2.3	11
108	Novel Route to Nanoparticle Synthesis by Salt-Assisted Aerosol Decomposition. Advanced Materials, 2001, 13, 1579.	21.0	154

#	Article	IF	CITATIONS
109	Title is missing!. Journal of Materials Science, 2001, 36, 1701-1705.	3.7	31
110	Functional Nanostructured Silica Powders Derived from Colloidal Suspensions by Sol Spraying. Journal of Nanoparticle Research, 2001, 3, 263-270.	1.9	83
111	Focus on Research in Nanoparticle in Asia. Journal of Nanoparticle Research, 2001, 3, 111-111.	1.9	0
112	Preparation of Nickel Powders by Spray Pyrolysis of Nickel Formate. Journal of the American Ceramic Society, 2001, 84, 1425-1432.	3.8	43
113	Correction: Novel Route to Nanoparticle Synthesis by Salt–Assisted Aerosol Decomposition. Advanced Materials, 2001, 13, 1744-1744.	21.0	0
114	Generation of Droplets and Ions by Electrospray. Journal of the Society of Powder Technology, Japan, 2000, 37, 753-760.	0.1	6
115	YAG:Ce phosphor particles prepared by ultrasonic spray pyrolysis. Materials Research Bulletin, 2000, 35, 789-798.	5.2	213
116	An experimental and modeling investigation of particle production by spray pyrolysis using a laminar flow aerosol reactor. Journal of Materials Research, 2000, 15, 733-743.	2.6	150
117	The roles of ammonia and ammonium bicarbonate in the preparation of nickel particles from nickel chloride. Journal of Materials Research, 2000, 15, 2157-2166.	2.6	23
118	One-Step Synthesis for Zn2SiO4:Mn Particles 0.3-1.3 µm in Size with Spherical Morphology and Non-Aggregation. Japanese Journal of Applied Physics, 2000, 39, L1051-L1053.	1.5	27
119	PREPARATION OF ZnS NANOPARTICLES BY ELECTROSPRAY PYROLYSIS. Journal of Aerosol Science, 2000, 31, 121-136.	3.8	156
120	Photoluminescence Properties of Ce1-xTbxMgAl11O19Phosphor Particles Prepared by Spray Pyrolysis. Japanese Journal of Applied Physics, 1999, 38, 2013-2016.	1.5	8
121	Morphology Control of Multicomponent Oxide Phosphor Particles Containing High Ductility Component by High Temperature Spray Pyrolysis. Journal of the Electrochemical Society, 1999, 146, 2744-2747.	2.9	36
122	Luminescence Characteristics of  Y 2SiO5 : Tb Phosphor Particles Directly Prepared by the Spray Method. Journal of the Electrochemical Society, 1999, 146, 1227-1230.	Pyrolysis 2.9	87
123	Preparation of nonaggregated Y ₂ O ₃ : Eu phosphor particles by spray pyrolysis method. Journal of Materials Research, 1999, 14, 2611-2615.	2.6	90
124	Gd2O3:Eu phosphor particles with sphericity, submicron size and non-aggregation characteristics. Journal of Physics and Chemistry of Solids, 1999, 60, 379-384.	4.0	138
125	Photoluminescence characteristics of YAG:Tb phosphor particles with spherical morphology and non-aggregation. Journal of Physics and Chemistry of Solids, 1999, 60, 1855-1858.	4.0	111
126	Y2SiO5:Ce Phosphor Particles 0.5–1.4 μm in Size with Spherical Morphology. Journal of Solid State Chemistry, 1999, 146, 168-175.	2.9	42

#	Article	IF	CITATIONS
127	Preparation of Y2O3:Eu phosphor without post-treatment by gas phase reaction. Journal of Aerosol Science, 1998, 29, S909-S910.	3.8	5
128	Preparation of non-aggregation YAG-Ce phosphor particles by spray pyrolysis. Journal of Aerosol Science, 1998, 29, S911-S912.	3.8	11
129	Formation of Submicron Copper Sulfide Particles Using Spray Pyrolysis Method. Japanese Journal of Applied Physics, 1998, 37, L288-L290.	1.5	23
130	The Formation of Ultrafine Particles of Metal Sulfide by the Electrostatic Spray Pyrolysis Method [Translated] ^{â€} . KONA Powder and Particle Journal, 1997, 15, 227-234.	1.7	4
131	The Formation of Ultrafine Particles of Metal Sulfide by the Electrostatic Spray Pyrolysis Method Journal of the Society of Powder Technology, Japan, 1996, 33, 192-198.	0.1	2
132	Budiansky's Theory and the Elastic Modulus of Polymer Alloys. Journal of Polymer Engineering, 1996, 16, .	1.4	4
133	Stabilisation of Emulsified Agarwood Oil in an Aqueous System Using Non-Ionic Surfactant. Key Engineering Materials, 0, 797, 186-195.	0.4	1