
Jinqiang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2417793/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Macroencapsulation Devices for Cell Therapy. Engineering, 2022, 13, 53-70.	3.2	19
2	Developing Insulin Delivery Devices with Glucose Responsiveness. Trends in Pharmacological Sciences, 2021, 42, 31-44.	4.0	25
3	Injectable Biodegradable Polymeric Complex for Glucose-Responsive Insulin Delivery. ACS Nano, 2021, 15, 4294-4304.	7.3	29
4	Glucoseâ€Responsive Insulin and Delivery Systems: Innovation and Translation. Advanced Materials, 2020, 32, e1902004.	11.1	138
5	Dual self-regulated delivery of insulin and glucagon by a hybrid patch. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29512-29517.	3.3	64
6	Cryo-shocked cancer cells for targeted drug delivery and vaccination. Science Advances, 2020, 6, .	4.7	99
7	CRISPR-Cas12a delivery by DNA-mediated bioresponsive editing for cholesterol regulation. Science Advances, 2020, 6, eaba2983.	4.7	77
8	Transdermal colorimetric patch for hyperglycemia sensing in diabetic mice. Biomaterials, 2020, 237, 119782.	5.7	66
9	Engineering Biomaterials with Micro/Nanotechnologies for Cell Reprogramming. ACS Nano, 2020, 14, 1296-1318.	7.3	39
10	Glucoseâ€Responsive Systems: Glucoseâ€Responsive Insulin and Delivery Systems: Innovation and Translation (Adv. Mater. 13/2020). Advanced Materials, 2020, 32, 2070102.	11.1	3
11	Engineered PDâ€L1â€Expressing Platelets Reverse Newâ€Onset Type 1 Diabetes. Advanced Materials, 2020, 32, e1907692.	11.1	49
12	Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nature Biomedical Engineering, 2020, 4, 499-506.	11.6	353
13	Bioresponsive Protein Complex of aPD1 and aCD47 Antibodies for Enhanced Immunotherapy. Nano Letters, 2019, 19, 4879-4889.	4.5	103
14	Charge-switchable polymeric complex for glucose-responsive insulin delivery in mice and pigs. Science Advances, 2019, 5, eaaw4357.	4.7	104
15	Enzyme-activatable polymer–drug conjugate augments tumour penetration and treatment efficacy. Nature Nanotechnology, 2019, 14, 799-809.	15.6	555
16	Advances in Engineering Cells for Cancer Immunotherapy. Theranostics, 2019, 9, 7889-7905.	4.6	44
17	Glucose transporter inhibitor-conjugated insulin mitigates hypoglycemia. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10744-10748.	3.3	38
18	A Dualâ€Bioresponsive Drugâ€Đelivery Depot for Combination of Epigenetic Modulation and Immune Checkpoint Blockade. Advanced Materials, 2019, 31, e1806957.	11.1	145

JINQIANG WANG

#	Article	IF	CITATIONS
19	A Therapeutic Microneedle Patch Made from Hair-Derived Keratin for Promoting Hair Regrowth. ACS Nano, 2019, 13, 4354-4360.	7.3	184
20	A forskolin-conjugated insulin analog targeting endogenous glucose-transporter for glucose-responsive insulin delivery. Biomaterials Science, 2019, 7, 4508-4513.	2.6	12
21	Glucose-responsive oral insulin delivery for postprandial glycemic regulation. Nano Research, 2019, 12, 1539-1545.	5.8	61
22	In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nature Nanotechnology, 2019, 14, 89-97.	15.6	725
23	Advances in transdermal insulin delivery. Advanced Drug Delivery Reviews, 2019, 139, 51-70.	6.6	202
24	Shape-controlled synthesis of liquid metal nanodroplets for photothermal therapy. Nano Research, 2019, 12, 1313-1320.	5.8	83
25	In situ formed reactive oxygen species–responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy. Science Translational Medicine, 2018, 10, .	5.8	439
26	Bioresponsive Microneedles with a Sheath Structure for H ₂ O ₂ and pH Cascadeâ€Triggered Insulin Delivery. Small, 2018, 14, e1704181.	5.2	113
27	PDâ€∃ Blockade Cellular Vesicles for Cancer Immunotherapy. Advanced Materials, 2018, 30, e1707112.	11.1	196
28	Core–Shell Microneedle Gel for Self-Regulated Insulin Delivery. ACS Nano, 2018, 12, 2466-2473.	7.3	207
29	Synthetic beta cells for fusion-mediated dynamic insulin secretion. Nature Chemical Biology, 2018, 14, 86-93.	3.9	184
30	Cancer Immunotherapy: PDâ€┨ Blockade Cellular Vesicles for Cancer Immunotherapy (Adv. Mater.) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5
31	Cardiac cell–integrated microneedle patch for treating myocardial infarction. Science Advances, 2018, 4, eaat9365.	4.7	192
32	Conjugation of haematopoietic stem cells and platelets decorated with anti-PD-1 antibodies augments anti-leukaemia efficacy. Nature Biomedical Engineering, 2018, 2, 831-840.	11.6	220
33	Injectable Bioresponsive Gel Depot for Enhanced Immune Checkpoint Blockade. Advanced Materials, 2018, 30, e1801527.	11.1	233
34	ROSâ€Responsive Microneedle Patch for Acne Vulgaris Treatment. Advanced Therapeutics, 2018, 1, 1800035.	1.6	69
35	Engineering PD-1-Presenting Platelets for Cancer Immunotherapy. Nano Letters, 2018, 18, 5716-5725.	4.5	172
36	Drug Delivery: Thrombinâ€Responsive Transcutaneous Patch for Autoâ€Anticoagulant Regulation (Adv.) Tj ETQq	0 0 0 rgBT	/gverlock 10

JINQIANG WANG

#	Article	IF	CITATIONS
37	Enhanced Cisplatin Chemotherapy by Iron Oxide Nanocarrier-Mediated Generation of Highly Toxic Reactive Oxygen Species. Nano Letters, 2017, 17, 928-937.	4.5	548

Brug Delivery Devices: Insulinâ€Responsive Glucagon Delivery for Prevention of Hypoglycemia (Small) Tj ETQq0 0 0,rgBT /Overlock 10 Tf

39	Insulinâ€Responsive Glucagon Delivery for Prevention of Hypoglycemia. Small, 2017, 13, 1603028.	5.2	36
40	Locally Induced Adipose Tissue Browning by Microneedle Patch for Obesity Treatment. ACS Nano, 2017, 11, 9223-9230.	7.3	157
41	Leveraging H ₂ O ₂ Levels for Biomedical Applications. Advanced Biology, 2017, 1, e1700084.	3.0	66
42	Thrombinâ€Responsive Transcutaneous Patch for Autoâ€Anticoagulant Regulation. Advanced Materials, 2017, 29, 1604043.	11.1	90
43	Synergistic Transcutaneous Immunotherapy Enhances Antitumor Immune Responses through Delivery of Checkpoint Inhibitors. ACS Nano, 2016, 10, 8956-8963.	7.3	275
44	Engineered Nanoplatelets for Enhanced Treatment of Multiple Myeloma and Thrombus. Advanced Materials, 2016, 28, 9573-9580.	11.1	182