Sunil C Kaul

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2416584/publications.pdf

Version: 2024-02-01

240 papers

9,536 citations

53 h-index 83 g-index

243 all docs

243
docs citations

times ranked

243

8050 citing authors

#	Article	IF	Citations
1	Withanone and Withaferin-A are predicted to interact with transmembrane protease serine 2 (TMPRSS2) and block entry of SARS-CoV-2 into cells. Journal of Biomolecular Structure and Dynamics, 2022, 40, 1-13.	3.5	128
2	COVID19-inhibitory activity of withanolides involves targeting of the host cell surface receptor ACE2: insights from computational and biochemical assays. Journal of Biomolecular Structure and Dynamics, 2022, 40, 7885-7898.	3 . 5	14
3	Phosphatidylserine Exposed Lipid Bilayer Models for Understanding Cancer Cell Selectivity of Natural Compounds: A Molecular Dynamics Simulation Study. Membranes, 2022, 12, 64.	3.0	5
4	Computational Identification of BCR-ABL Oncogenic Signaling as a Candidate Target of Withaferin A and Withanone. Biomolecules, 2022, 12, 212.	4.0	5
5	A Low Dose Combination of Withaferin A and Caffeic Acid Phenethyl Ester Possesses Anti-Metastatic Potential In Vitro: Molecular Targets and Mechanisms. Cancers, 2022, 14, 787.	3.7	9
6	Molecular Insights into the Antistress Potentials of Brazilian Green Propolis Extract and Its Constituent Artepillin C. Molecules, 2022, 27, 80.	3.8	3
7	Molecular dynamics simulations and experimental studies reveal differential permeability of withaferin-A and withanone across the model cell membrane. Scientific Reports, 2021, 11, 2352.	3.3	22
8	Computational Insights into the Potential of Withaferin-A, Withanone and Caffeic Acid Phenethyl Ester for Treatment of Aberrant-EGFR Driven Lung Cancers. Biomolecules, 2021, 11, 160.	4.0	12
9	Identification and Characterization of MortaparibPlus—A Novel Triazole Derivative That Targets Mortalin-p53 Interaction and Inhibits Cancer-Cell Proliferation by Wild-Type p53-Dependent and -Independent Mechanisms. Cancers, 2021, 13, 835.	3.7	14
10	Withanolide Derivative 2,3-Dihydro- $3\hat{l}^2$ -methoxy Withaferin-A Modulates the Circadian Clock via Interaction with RAR-Related Orphan Receptor \hat{l}_\pm (RORa). Journal of Natural Products, 2021, 84, 1882-1888.	3.0	6
11	Mutant p53L194F Harboring Luminal-A Breast Cancer Cells Are Refractory to Apoptosis and Cell Cycle Arrest in Response to MortaparibPlus, a Multimodal Small Molecule Inhibitor. Cancers, 2021, 13, 3043.	3.7	8
12	Experimental Evidence for Therapeutic Potentials of Propolis. Nutrients, 2021, 13, 2528.	4.1	28
13	Molecular mechanism of anti-SARS-CoV2 activity of Ashwagandha-derived withanolides. International Journal of Biological Macromolecules, 2021, 184, 297-312.	7.5	30
14	Functional characterization of miR-708 microRNA in telomerase positive and negative human cancer cells. Scientific Reports, 2021, 11, 17052.	3.3	4
15	Experimental evidence and mechanism of action of some popular neuro-nutraceutical herbs. Neurochemistry International, 2021, 149, 105124.	3.8	11
16	Why Ashwagandha for Healthy Ageing? Evidence from Cultured Human Cells. Healthy Ageing and Longevity, 2021, , 589-615.	0.2	1
17	Effect of Ashwagandha Withanolides on Muscle Cell Differentiation. Biomolecules, 2021, 11, 1454.	4.0	6
18	Computational and in vitro experimental analyses of the anti-COVID-19 potential of Mortaparib and MortaparibPlus. Bioscience Reports, 2021, 41, .	2.4	1

#	Article	IF	CITATIONS
19	Potential of Withaferin-A, Withanone and Caffeic Acid Phenethyl ester as ATP-competitive inhibitors of BRAF: A bioinformatics study. Current Research in Structural Biology, 2021, 3, 301-311.	2.2	6
20	Caffeic acid phenethyl ester (CAPE) confers wild type p53 function in p53Y220C mutant: bioinformatics and experimental evidence. Discover Oncology, 2021, 12, 64.	2.1	6
21	Induction of Senescence in Cancer Cells by a Novel Combination of Cucurbitacin B and Withanone: Molecular Mechanism and Therapeutic Potential. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 1031-1041.	3.6	30
22	Identification of Caffeic Acid Phenethyl Ester (CAPE) as a Potent Neurodifferentiating Natural Compound That Improves Cognitive and Physiological Functions in Animal Models of Neurodegenerative Diseases. Frontiers in Aging Neuroscience, 2020, 12, 561925.	3.4	10
23	Bioinformatics and Molecular Insights to Anti-Metastasis Activity of Triethylene Glycol Derivatives. International Journal of Molecular Sciences, 2020, 21, 5463.	4.1	5
24	Photothermogenetic inhibition of cancer stemness by near-infrared-light-activatable nanocomplexes. Nature Communications, 2020, 11, 4117.	12.8	30
25	Novel Caffeic Acid Phenethyl Ester-Mortalin Antibody Nanoparticles Offer Enhanced Selective Cytotoxicity to Cancer Cells. Cancers, 2020, 12, 2370.	3.7	20
26	Combination of Withaferin-A and CAPE Provides Superior Anticancer Potency: Bioinformatics and Experimental Evidence to Their Molecular Targets and Mechanism of Action. Cancers, 2020, 12, 1160.	3.7	32
27	Anti-Stress, Glial- and Neuro-Differentiation Potential of Resveratrol: Characterization by Cellular, Biochemical and Imaging Assays. Nutrients, 2020, 12, 671.	4.1	6
28	Stress-induced changes in CARF expression determine cell fate to death, survival, or malignant transformation. Cell Stress and Chaperones, 2020, 25, 481-494.	2.9	11
29	Soyasapogenol-A targets CARF and results in suppression of tumor growth and metastasis in p53 compromised cancer cells. Scientific Reports, 2020, 10, 6323.	3.3	22
30	Folic Acid Receptor-Mediated Targeting Enhances the Cytotoxicity, Efficacy, and Selectivity of Withania somnifera Leaf Extract: In vitro and in vivo Evidence. Frontiers in Oncology, 2019, 9, 602.	2.8	27
31	Express ELISA for detection of mortalin. BioTechniques, 2019, 67, 166-171.	1.8	2
32	Marine Carotenoid Fucoxanthin Possesses Anti-Metastasis Activity: Molecular Evidence. Marine Drugs, 2019, 17, 338.	4.6	34
33	Modulation of Diacylglycerol-Induced Melanogenesis in Human Melanoma and Primary Melanocytes: Role of Stress Chaperone Mortalin. Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-11.	1.2	1
34	Wild type p53 function in p53Y220C mutant harboring cells by treatment with Ashwagandha derived anticancer withanolides: bioinformatics and experimental evidence. Journal of Experimental and Clinical Cancer Research, 2019, 38, 103.	8.6	24
35	Rat Glioma Cell-Based Functional Characterization of Anti-Stress and Protein Deaggregation Activities in the Marine Carotenoids, Astaxanthin and Fucoxanthin. Marine Drugs, 2019, 17, 189.	4.6	19
36	2, 3-Dihydro-3Î ² -methoxy Withaferin-A Lacks Anti-Metastasis Potency: Bioinformatics and Experimental Evidences. Scientific Reports, 2019, 9, 17344.	3.3	18

#	Article	IF	CITATIONS
37	Mortaparib, a novel dual inhibitor of mortalin and PARP1, is a potential drug candidate for ovarian and cervical cancers. Journal of Experimental and Clinical Cancer Research, 2019, 38, 499.	8.6	20
38	Molecular Insights Into Withaferin-A-Induced Senescence: Bioinformatics and Experimental Evidence to the Role of NF $^{\Omega}$ B and CARF. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 183-191.	3.6	13
39	CARF: A Stress, Senescence, and Cancer Regulator. , 2019, , .		O
40	Cucurbitacin B and cancer intervention: Chemistry, biology and mechanisms (Review). International Journal of Oncology, 2018, 52, 19-37.	3.3	40
41	Anticancer Activity in Honeybee Propolis: Functional Insights to the Role of Caffeic Acid Phenethyl Ester and Its Complex With \hat{I}^3 -Cyclodextrin. Integrative Cancer Therapies, 2018, 17, 867-873.	2.0	45
42	Bioactivities in the tamarind seed extracts: A preliminary study. AIP Conference Proceedings, 2018, , .	0.4	2
43	Tumor suppressor activity of miR-451: Identification of CARF as a new target. Scientific Reports, 2018, 8, 375.	3.3	22
44	Self-assembled nanodiamond supraparticles for anticancer chemotherapy. Nanoscale, 2018, 10, 8969-8978.	5.6	24
45	Identification and Functional Characterization of Anti-metastasis and Anti-angiogenic Activities of Triethylene Glycol Derivatives. Frontiers in Oncology, 2018, 8, 552.	2.8	6
46	Anti-Stress and Glial Differentiation Effects of a Novel Combination of Cucurbitacin B and Withanone (CucWi-N): Experimental Evidence. Annals of Neurosciences, 2018, 25, 201-209.	1.7	8
47	Anticancer activity of the supercritical extract of Brazilian green propolis and its active component, artepillinï½½C: Bioinformatics and experimental analyses of its mechanisms of action. International Journal of Oncology, 2018, 52, 925-932.	3.3	34
48	Integration of conventional cell viability assays for reliable and reproducible read-outs: experimental evidence. BMC Research Notes, 2018, 11, 403.	1.4	16
49	Organic cultivation of Ashwagandha with improved biomass and high content of active Withanolides: Use of Vermicompost. PLoS ONE, 2018, 13, e0194314.	2.5	19
50	CARF enrichment promotes epithelial–mesenchymal transition via Wnt/β-catenin signaling: its clinical relevance and potential as a therapeutic target. Oncogenesis, 2018, 7, 39.	4.9	30
51	Caffeic acid phenethyl ester (CAPE) possesses pro-hypoxia and anti-stress activities: bioinformatics and experimental evidences. Cell Stress and Chaperones, 2018, 23, 1055-1068.	2.9	10
52	Molecular dynamics-based identification of novel natural mortalin–p53 abrogators as anticancer agents. Journal of Receptor and Signal Transduction Research, 2017, 37, 8-16.	2.5	8
53	Relevance of mortalin to cancer cell stemness and cancer therapy. Scientific Reports, 2017, 7, 42016.	3.3	58
54	Withaferin-A kills cancer cells with and without telomerase: chemical, computational and experimental evidences. Cell Death and Disease, 2017, 8, e2755-e2755.	6.3	41

#	Article	IF	CITATIONS
55	2,3-Dihydro-3Î ² -methoxy Withaferin-A Protects Normal Cells against Stress: Molecular Evidence of Its Potent Cytoprotective Activity. Journal of Natural Products, 2017, 80, 2756-2760.	3.0	15
56	Ashwagandha for Cancer Metastasis: Bioactives and Basics of Their Function., 2017,, 243-262.		0
57	Ashwagandha for Brain Health: Experimental Evidence for Its Neuroregenerative Activities. , 2017, , 283-304.		1
58	Ashwagandha Bioactives for Cancer Treatment: Experimental Evidence and Their Mechanism(s) of Action., 2017,, 149-174.		2
59	Withaferin-A as a Potential Candidate for Cancer Therapy: Experimental Evidence of Its Effects on Telomerase Plus and Minus Cancer Cells. , 2017, , 197-212.		O
60	Establishment of Hydroponic Cultivation of Ashwagandha for Active Ingredient Enriched Leaves., 2017,, 495-508.		2
61	Induction of senescence in cancer cells by 5′-Aza-2′-deoxycytidine: Bioinformatics and experimental insights to its targets. Computational Biology and Chemistry, 2017, 70, 49-55.	2.3	17
62	CARF is a multi-module regulator of cell proliferation and a molecular bridge between cellular senescence and carcinogenesis. Mechanisms of Ageing and Development, 2017, 166, 64-68.	4.6	15
63	Addressing Challenges to Enhance the Bioactives of <i>Withania somnifera </i> through Organ, Tissue, and Cell Culture Based Approaches. BioMed Research International, 2017, 2017, 1-15.	1.9	16
64	Triethylene glycol, an active component of Ashwagandha (Withania somnifera) leaves, is responsible for sleep induction. PLoS ONE, 2017, 12, e0172508.	2.5	30
65	Molecular Characterization and Enhancement of Anticancer Activity of Caffeic Acid Phenethyl Ester by \hat{I}^3 Cyclodextrin. Journal of Cancer, 2016, 7, 1755-1771.	2.5	65
66	Loss-of-function screening to identify miRNAs involved in senescence: tumor suppressor activity of miRNA-335 and its new target CARF. Scientific Reports, 2016, 6, 30185.	3.3	17
67	Cell Cycle Checkpoints and Senescence. Healthy Ageing and Longevity, 2016, , 145-167.	0.2	1
68	Stress chaperone mortalin regulates human melanogenesis. Cell Stress and Chaperones, 2016, 21, 631-644.	2.9	14
69	Alcoholic Extract of Ashwagandha Leaves Protects Against Amnesia by Regulation of Arc Function. Molecular Neurobiology, 2016, 53, 1760-1769.	4.0	13
70	Fate of bone marrow mesenchymal stromal cells following autologous transplantation in a rabbit model of osteonecrosis. Cytotherapy, 2016, 18, 198-204.	0.7	15
71	Stress Chaperone Mortalin Contributes to Epithelial-to-Mesenchymal Transition and Cancer Metastasis. Cancer Research, 2016, 76, 2754-2765.	0.9	93
72	Nootropic potential of Ashwagandha leaves: Beyond traditional root extracts. Neurochemistry International, 2016, 95, 109-118.	3.8	37

#	Article	IF	Citations
73	Functional Characterisation of Anticancer Activity in the Aqueous Extract of Helicteres angustifolia L. Roots. PLoS ONE, 2016, 11, e0152017.	2.5	14
74	Novel Methods to Generate Active Ingredients-Enriched Ashwagandha Leaves and Extracts. PLoS ONE, 2016, 11, e0166945.	2.5	29
75	Combinations of Ashwagandha Leaf Extracts Protect Brain-Derived Cells against Oxidative Stress and Induce Differentiation. PLoS ONE, 2015, 10, e0120554.	2.5	43
76	Serum-free isolation and culture system to enhance the proliferation and bone regeneration of adipose tissue-derived mesenchymal stem cells. In Vitro Cellular and Developmental Biology - Animal, 2015, 51, 515-529.	1.5	13
77	Circulating mortalin autoantibodyâ€"a new serological marker of liver cirrhosis. Cell Stress and Chaperones, 2015, 20, 715-719.	2.9	7
78	Functional Significance of Point Mutations in Stress Chaperone Mortalin and Their Relevance to Parkinson Disease. Journal of Biological Chemistry, 2015, 290, 8447-8456.	3.4	41
79	Biotechnological interventions in <i>Withania somnifera</i> (L.) Dunal. Biotechnology and Genetic Engineering Reviews, 2015, 31, 1-20.	6.2	41
80	CARF (Collaborator of ARF) overexpression in p53â€deficient cells promotes carcinogenesis. Molecular Oncology, 2015, 9, 1877-1889.	4.6	27
81	Targeting of DNA Damage Signaling Pathway Induced Senescence and Reduced Migration of Cancer cells. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 701-713.	3.6	16
82	Evaluation and Selection of Candidate Reference Genes for Normalization of Quantitative RT-PCR in Withania somnifera (L.) Dunal. PLoS ONE, 2015, 10, e0118860.	2.5	22
83	Targeting Mortalin by Embelin Causes Activation of Tumor Suppressor p53 and Deactivation of Metastatic Signaling in Human Breast Cancer Cells. PLoS ONE, 2015, 10, e0138192.	2.5	36
84	Collaborator of ARF (CARF) Regulates Proliferative Fate of Human Cells by Dose-dependent Regulation of DNA Damage Signaling. Journal of Biological Chemistry, 2014, 289, 18258-18269.	3.4	35
85	Identification and Functional Characterization of Nuclear Mortalin in Human Carcinogenesis. Journal of Biological Chemistry, 2014, 289, 24832-24844.	3.4	53
86	Embelin inhibits TNF- $\hat{l}\pm$ converting enzyme and cancer cell metastasis: molecular dynamics and experimental evidence. BMC Cancer, 2014, 14, 775.	2.6	26
87	Molecular characterization of collaborator of ARF (CARF) as a DNA damage response and cell cycle checkpoint regulatory protein. Experimental Cell Research, 2014, 322, 324-334.	2.6	25
88	Withanone-Rich Combination of Ashwagandha Withanolides Restricts Metastasis and Angiogenesis through hnRNP-K. Molecular Cancer Therapeutics, 2014, 13, 2930-2940.	4.1	65
89	Mortalin antibody-conjugated quantum dot transfer from human mesenchymal stromal cells to breast cancer cells requires cell–cell interaction. Experimental Cell Research, 2013, 319, 2770-2780.	2.6	17
90	Withania somnifera Water Extract as a Potential Candidate for Differentiation Based Therapy of Human Neuroblastomas. PLoS ONE, 2013, 8, e55316.	2.5	28

#	Article	IF	CITATIONS
91	Intracellular distribution of human <scp>SIRT</scp> 7 and mapping of the nuclear/nucleolar localization signal. FEBS Journal, 2013, 280, 3451-3466.	4.7	96
92	Molecular interactions of Bcl-2 and Bcl-xL with mortalin: identification and functional characterization. Bioscience Reports, 2013, 33, .	2.4	23
93	Heterogeneous Nuclear Ribonucleoprotein K (hnRNP-K) Promotes Tumor Metastasis by Induction of Genes Involved in Extracellular Matrix, Cell Movement, and Angiogenesis. Journal of Biological Chemistry, 2013, 288, 15046-15056.	3.4	85
94	Druggability of Mortalin for Cancer and Neuro-Degenerative Disorders. Current Pharmaceutical Design, 2013, 19, 418-429.	1.9	29
95	Water Extract of Ashwagandha Leaves Has Anticancer Activity: Identification of an Active Component and Its Mechanism of Action. PLoS ONE, 2013, 8, e77189.	2.5	61
96	CARF Regulates Cellular Senescence and Apoptosis through p53-Dependent and -Independent Pathways. , 2013, , 137-157.		0
97	Druggability of mortalin for cancer and neuro-degenerative disorders. Current Pharmaceutical Design, 2013, 19, 418-29.	1.9	16
98	Withanone binds to mortalin and abrogates mortalin–p53 complex: Computational and experimental evidence. International Journal of Biochemistry and Cell Biology, 2012, 44, 496-504.	2.8	56
99	Water Extract from the Leaves of Withania somnifera Protect RA Differentiated C6 and IMR-32 Cells against Glutamate-Induced Excitotoxicity. PLoS ONE, 2012, 7, e37080.	2.5	65
100	Differential Activities of the Two Closely Related Withanolides, Withaferin A and Withanone: Bioinformatics and Experimental Evidences. PLoS ONE, 2012, 7, e44419.	2.5	92
101	Birth of Mortalin: Multiple Names, Niches and Functions Connecting Stress, Senescence and Cancer. , 2012, , 3-20.		1
102	Ashwagandha Derived Withanone Targets TPX2-Aurora A Complex: Computational and Experimental Evidence to its Anticancer Activity. PLoS ONE, 2012, 7, e30890.	2.5	41
103	Cell Internalizing Anti-Mortalin Antibody for Generation of Illuminating MSCs for Long-Term In vitro and In vivo Tracking. , 2012, , 295-305.		0
104	Consequences of Altered Mortalin Expression in Control of Cell Proliferation and Brain Function., 2012, , 95-109.		0
105	Cell Internalizing Anti-mortalin Antibody as a Nanocarrier. , 2012, , 323-335.		0
106	Mortalin's Machinery. , 2012, , 21-30.		2
107	Druggability of Mortalin for Cancer and Neuro-Degenerative Disorders. Current Pharmaceutical Design, 2012, 19, 418-429.	1.9	17
108	Ashwagandha Leaf Derived Withanone Protects Normal Human Cells Against the Toxicity of Methoxyacetic Acid, a Major Industrial Metabolite. PLoS ONE, 2011, 6, e19552.	2.5	34

#	Article	IF	Citations
109	Ashwagandha leaf extract and its components for brain derived cells: Protection against oxidative stress and induction of differentiation. Neuroscience Research, 2011, 71, e233.	1.9	O
110	676 MORTALIN-P53 INTERACTION IN CANCER CELLS IS STRESS DEPENDENT AND CONSTITUTES A NOVEL TARGET FOR LIVER CANCER THERAPY. Journal of Hepatology, 2011, 54, S272.	3.7	0
111	Molecular characterization of apoptosis induced by CARF silencing in human cancer cells. Cell Death and Differentiation, 2011, 18, 589-601.	11.2	25
112	Mortalin–p53 interaction in cancer cells is stress dependent and constitutes a selective target for cancer therapy. Cell Death and Differentiation, 2011, 18, 1046-1056.	11.2	143
113	Fate of bone marrow mesenchymal stem cells following the allogeneic transplantation of cartilaginous aggregates into osteochondral defects of rabbits. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 437-443.	2.7	21
114	Induction of mutant p53â€dependent apoptosis in human hepatocellular carcinoma by targeting stress protein mortalin. International Journal of Cancer, 2011, 129, 1806-1814.	5.1	65
115	MicroRNA-296 is enriched in cancer cells and downregulates p21WAF1 mRNA expression via interaction with its 3' untranslated region. Nucleic Acids Research, 2011, 39, 8078-8091.	14.5	42
116	Water Extract of Ashwagandha Leaves Limits Proliferation and Migration, and Induces Differentiation in Glioma Cells. Evidence-based Complementary and Alternative Medicine, 2011, 2011, 1-12.	1.2	33
117	Protective Role of Ashwagandha Leaf Extract and Its Component Withanone on Scopolamine-Induced Changes in the Brain and Brain-Derived Cells. PLoS ONE, 2011, 6, e27265.	2.5	154
118	Protection from aging by small chaperones. Annals of the New York Academy of Sciences, 2010, 1197, 67-75.	3.8	6
119	Tumor suppression by apoptotic and antiâ€angiogenic effects of mortalinâ€targeting adenoâ€oncolytic virus. Journal of Gene Medicine, 2010, 12, 586-595.	2.8	46
120	Molecular bridging of aging and cancer. Annals of the New York Academy of Sciences, 2010, 1197, 129-133.	3.8	15
121	Selective Killing of Cancer Cells by Ashwagandha Leaf Extract and Its Component Withanone Involves ROS Signaling. PLoS ONE, 2010, 5, e13536.	2.5	124
122	Proproliferative Functions of Drosophila Small Mitochondrial Heat Shock Protein 22 in Human Cells. Journal of Biological Chemistry, 2010, 285, 3833-3839.	3.4	27
123	CARF Is a Vital Dual Regulator of Cellular Senescence and Apoptosis. Journal of Biological Chemistry, 2009, 284, 1664-1672.	3.4	39
124	Deceleration of Senescence in Normal Human Fibroblasts by Withanone Extracted From Ashwagandha Leaves. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2009, 64A, 1031-1038.	3.6	29
125	Cell cycle checkpoint defects contribute to genomic instability in PTEN deficient cells independent of DNA DSB repair. Cell Cycle, 2009, 8, 2198-2210.	2.6	107
126	CARF: An emerging regulator of p53 tumor suppressor and senescence pathway. Mechanisms of Ageing and Development, 2009, 130, 18-23.	4.6	20

#	Article	IF	Citations
127	Effect of the alcoholic extract of Ashwagandha leaves and its components on proliferation, migration, and differentiation of glioblastoma cells: Combinational approach for enhanced differentiation. Cancer Science, 2009, 100, 1740-1747.	3.9	87
128	Stable and Nondisruptive <i>In Vitro</i> /i>/i>In Vivo Labeling of Mesenchymal Stem Cells by Internalizing Quantum Dots. Human Gene Therapy, 2009, 20, 217-224.	2.7	39
129	The Versatile Stress Protein Mortalin as a Chaperone Therapeutic Agent. Protein and Peptide Letters, 2009, 16, 517-529.	0.9	30
130	Glycerol stimulates innate chaperoning, proteasomal and stress-resistance functions: implications for geronto-manipulation. Biogerontology, 2008, 9, 269-282.	3.9	14
131	From proliferative to neurological role of an hsp70 stress chaperone, mortalin. Biogerontology, 2008, 9, 391-403.	3.9	43
132	Merger of Ayurveda and Tissue Culture-Based Functional Genomics: Inspirations from Systems Biology. Journal of Translational Medicine, 2008, 6, 14.	4.4	42
133	Selective killing of cancer cells by leaf extract of Ashwagandha: Components, activity and pathway analyses. Cancer Letters, 2008, 262, 37-47.	7.2	77
134	CARF (collaborator of ARF) interacts with HDM2: Evidence for a novel regulatory feedback regulation of CARF-p53-HDM2-p21WAF1 pathway. International Journal of Oncology, 2008, , .	3.3	9
135	Stable and Non-Disruptive In Vitro/In Vivo Labeling of Mesenchymal Stem Cells by Internalizing Quantum Dots. Human Gene Therapy, 2008, .	2.7	0
136	CARF (collaborator of ARF) interacts with HDM2: evidence for a novel regulatory feedback regulation of CARF-p53-HDM2-p21WAF1 pathway. International Journal of Oncology, 2008, 32, 663-71.	3.3	12
137	Selective Killing of Cancer Cells by Leaf Extract of Ashwagandha: Identification of a Tumor-Inhibitory Factor and the First Molecular Insights to Its Effect. Clinical Cancer Research, 2007, 13, 2298-2306.	7.0	160
138	Stress Chaperones, Mortalin, and Pex19p Mediate 5-Aza-2' Deoxycytidine-Induced Senescence of Cancer Cells by DNA Methylation-Independent Pathway. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2007, 62, 246-255.	3.6	29
139	Mortalin sensitizes human cancer cells to MKT-077-induced senescence. Cancer Letters, 2007, 252, 259-269.	7.2	79
140	Heat shock chaperone mortalin and carcinogenesis. , 2007, , 141-158.		3
141	An antibody-conjugated internalizing quantum dot suitable for long-term live imaging of cells. Biochemistry and Cell Biology, 2007, 85, 133-140.	2.0	28
142	Internalizing Antibody-Based Targeted Gene Delivery for Human Cancer Cells. Human Gene Therapy, 2007, 18, 1153-1160.	2.7	21
143	Three faces of mortalin: A housekeeper, guardian and killer. Experimental Gerontology, 2007, 42, 263-274.	2.8	217
144	Involvement of Mortalin in Cellular Senescence from the Perspective of its Mitochondrial Import, Chaperone, and Oxidative Stress Management Functions. Annals of the New York Academy of Sciences, 2007, 1100, 306-311.	3.8	50

#	Article	IF	Citations
145	CARF Binds to Three Members (ARF, p53, and HDM2) of the p53 Tumor-Suppressor Pathway. Annals of the New York Academy of Sciences, 2007, 1100, 312-315.	3.8	13
146	Quantum Dot-Based Mortalin Staining as a Visual Assay for Detection of Induced Senescence in Cancer Cells. Annals of the New York Academy of Sciences, 2007, 1100, 368-372.	3.8	9
147	Functional Significance of Minor Structural and Expression Changes in Stress Chaperone Mortalin. Annals of the New York Academy of Sciences, 2007, 1119, 165-175.	3.8	28
148	Use of Ribozymes in Cellular Aging Research. Methods in Molecular Biology, 2007, 371, 209-226.	0.9	1
149	Evidence for Differential Structure and Function of Hsp70 Family Members, Mot-1 and Mot-2, in Control of Cellular Senescence. Annals of the New York Academy of Sciences, 2006, 928, 357-357.	3.8	0
150	CARF Regulates p19ARF-p53-p21WAF1 Senescence Pathway by Multiple Checkpoints. Annals of the New York Academy of Sciences, 2006, 1067, 217-219.	3.8	7
151	Structural and Functional Differences between Mouse Mot-1 and Mot-2 Proteins That Differ in Two Amino Acids. Annals of the New York Academy of Sciences, 2006, 1067, 220-223.	3.8	11
152	Quantum Dot-Based Protein Imaging and Functional Significance of Two Mitochondrial Chaperones in Cellular Senescence and Carcinogenesis. Annals of the New York Academy of Sciences, 2006, 1067, 469-473.	3.8	27
153	Geroprotection by Glycerol: Insights to Its Mechanisms and Clinical Potentials. Annals of the New York Academy of Sciences, 2006, 1067, 488-492.	3.8	13
154	Upregulation of mortalin/mthsp70/Grp75 contributes to human carcinogenesis. International Journal of Cancer, 2006, 118, 2973-2980.	5.1	214
155	On the brotherhood of the mitochondrial chaperones mortalin and heat shock protein 60. Cell Stress and Chaperones, 2006, 11, 116.	2.9	163
156	Identification and characterization of molecular interactions between mortalin/mtHsp70 and HSP60. Biochemical Journal, 2005, 391, 185-190.	3.7	89
157	Imminent approaches towards molecular interventions in ageing. Mechanisms of Ageing and Development, 2005, 126, 481-490.	4.6	6
158	Activation of Wild Type p53 Function by Its Mortalin-binding, Cytoplasmically Localizing Carboxyl Terminus Peptides. Journal of Biological Chemistry, 2005, 280, 39373-39379.	3.4	120
159	Dose and dose rate effects of low dose ionizing radiation on activation of p53 in immortalized murine cells. International Congress Series, 2005, 1276, 179-180.	0.2	1
160	Quantum dots in bio-imaging: Revolution by the small. Biochemical and Biophysical Research Communications, 2005, 329, 1173-1177.	2.1	140
161	Nanogel-quantum dot hybrid nanoparticles for live cell imaging. Biochemical and Biophysical Research Communications, 2005, 331, 917-921.	2.1	202
162	Evaluation of the anti-genotoxicity of leaf extract of Ashwagandha. Food and Chemical Toxicology, 2005, 43, 95-98.	3.6	23

#	Article	IF	CITATIONS
163	Mimotope-hormesis and mortalin/grp75/mthsp70: a new hypothesis on how infectious disease-associated epitope mimicry may explain low cancer burden in developing nations. FEBS Letters, 2005, 579, 586-590.	2.8	9
164	Identification of Metastasis-related Genes in a Mouse Model Using a Library of Randomized Ribozymes. Journal of Biological Chemistry, 2004, 279, 38083-38086.	3.4	45
165	Use of a Randomized Hybrid Ribozyme Library for Identification of Genes Involved in Muscle Differentiation. Journal of Biological Chemistry, 2004, 279, 51622-51629.	3.4	18
166	LIM kinase-2 targeting as a possible anti-metastasis therapy. Journal of Gene Medicine, 2004, 6, 357-363.	2.8	37
167	Reduction in mortalin level by its antisense expression causes senescence-like growth arrest in human immortalized cells. Journal of Gene Medicine, 2004, 6, 439-444.	2.8	70
168	Dose and Dose-Rate Effects of Low-Dose Ionizing Radiation on Activation of Trp53 in Immortalized Murine Cells. Radiation Research, 2004, 162, 296-307.	1.5	38
169	Emerging Technologies: Trendy RNA Tools for Aging Research. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2004, 59, B771-B783.	3.6	7
170	Evaluation of the anti-proliferative and anti-oxidative activities of leaf extract from in vivo and in vitro raised Ashwagandha. Food and Chemical Toxicology, 2004, 42, 2015-2020.	3.6	38
171	Know-how of RNA interference and its applications in research and therapy. Mutation Research - Reviews in Mutation Research, 2004, 567, 71-84.	5.5	36
172	Alternative reading frame protein (ARF)-independent function of CARF (collaborator of ARF) involves its interactions with p53: evidence for a novel p53-activation pathway and its negative feedback control. Biochemical Journal, 2004, 380, 605-610.	3.7	39
173	A novel putative collaborator of p19ARF. Experimental Gerontology, 2003, 38, 245-252.	2.8	15
174	Mortalin imaging in normal and cancer cells with quantum dot immuno-conjugates. Cell Research, 2003, 13, 503-507.	12.0	118
175	Targeting mortalin using conventional and RNAâ€helicaseâ€coupled hammerhead ribozymes. EMBO Reports, 2003, 4, 595-601.	4.5	57
176	Mortalin–MPD (mevalonate pyrophosphate decarboxylase) interactions and their role in control of cellular proliferation. Biochemical and Biophysical Research Communications, 2003, 302, 735-742.	2.1	71
177	Overexpressed mortalin (mot-2)/mthsp70/GRP75 and hTERT cooperate to extend the in vitro lifespan of human fibroblasts. Experimental Cell Research, 2003, 286, 96-101.	2.6	93
178	Escaping Cellular Senescence In Vitro. , 2003, , 85-99.		1
179	Cellular Senescence Pathways in Mouse and Human. , 2003, , 225-238.		1
180	A Major Functional Difference between the Mouse and Human ARF Tumor Suppressor Proteins. Journal of Biological Chemistry, 2002, 277, 36665-36670.	3.4	29

#	Article	IF	Citations
181	Ski is involved in transcriptional regulation by the repressor and full-length forms of Gli3. Genes and Development, 2002, 16, 2843-2848.	5.9	76
182	CARF Is a Novel Protein That Cooperates with Mouse p19 (Human p14) in Activating p53. Journal of Biological Chemistry, 2002, 277, 37765-37770.	3.4	58
183	An Hsp70 family chaperone, mortalin/mthsp70/PBP74/Grp75: what, when, and where?. Cell Stress and Chaperones, 2002, 7, 309.	2.9	242
184	Hsp70 Family Member, mot-2/mthsp70/GRP75, Binds to the Cytoplasmic Sequestration Domain of the p53 Protein. Experimental Cell Research, 2002, 274, 246-253.	2.6	162
185	Mortalin: present and prospective. Experimental Gerontology, 2002, 37, 1157-1164.	2.8	87
186	Rhodacyanine dye MKT-077 inhibits in vitro telomerase assay but has no detectable effects on telomerase activity in vivo. Cancer Research, 2002, 62, 4434-8.	0.9	21
187	Cell-Cycle Dependent Tyrosine Phosphorylation on Mortalin Regulates Its Interaction with Fibroblast Growth Factor-1. Biochemical and Biophysical Research Communications, 2001, 280, 1203-1209.	2.1	50
188	Role of PML and PML-RARα in Mad-Mediated Transcriptional Repression. Molecular Cell, 2001, 7, 1233-1243.	9.7	137
189	An N-terminal Region of Mot-2 Binds to p53 In Vitro. Neoplasia, 2001, 3, 110-114.	5.3	62
190	Identification and characterization of molecular interactions between glucose-regulated proteins (GRPs) mortalin/GRP75/peptide-binding protein 74 (PBP74) and GRP94. Biochemical Journal, 2001, 357, 393.	3.7	38
191	Identification and characterization of molecular interactions between glucose-regulated proteins (GRPs) mortalin/GRP75/peptide-binding protein 74 (PBP74) and GRP94. Biochemical Journal, 2001, 357, 393-398.	3.7	46
192	p53-independent upregulation of p21WAF1 in NIH 3T3 cells malignantly transformed by mot-2. Cell Research, 2001, 11, 55-60.	12.0	5
193	Pex19p Dampens the p19ARF-p53-p21WAF1 Tumor Suppressor Pathway*. Journal of Biological Chemistry, 2001, 276, 18649-18652.	3.4	41
194	The Ski Protein Family Is Required for MeCP2-mediated Transcriptional Repression. Journal of Biological Chemistry, 2001, 276, 34115-34121.	3.4	191
195	PML-RARα Alleviates the Transcriptional Repression Mediated by Tumor Suppressor Rb. Journal of Biological Chemistry, 2001, 276, 43491-43494.	3.4	41
196	Gros1, a potential growth suppressor on chromosome 1: its identity to basement membrane-associated proteoglycan, leprecan. Oncogene, 2000, 19, 3576-3583.	5.9	34
197	Senescence and immortalization of human cells. Biogerontology, 2000, 1, 103-121.	3.9	40
198	Structurally and Functionally Distinct Mouse Hsp70 Family Members Mot-1 and Mot-2 Proteins are Encoded by Two Alleles. DNA Research, 2000, 7, 229-231.	3.4	25

#	Article	IF	Citations
199	Extramitochondrial Localization of Mortalin/mthsp70/PBP74/GRP75. Biochemical and Biophysical Research Communications, 2000, 275, 174-179.	2.1	179
200	Transcriptional Inactivation of p53 by Deletions and Single Amino Acid Changes in Mouse mot-1 Protein. Biochemical and Biophysical Research Communications, 2000, 279, 602-606.	2.1	16
201	Inactivation of p53 and life span extension of human diploid fibroblasts by mot-2. FEBS Letters, 2000, 474, 159-164.	2.8	73
202	GROWTH SUPPRESSION OF HUMAN TRANSFORMED CELLS BY TREATMENT WITH BARK EXTRACTS FROM A MEDICINAL PLANT, TERMINALIA ARJUNA. In Vitro Cellular and Developmental Biology - Animal, 2000, 36, 544.	1.5	18
203	Cloning and Characterization of a Novel Gene, striamin, That Interacts with the Tumor Suppressor Protein p53. Journal of Biological Chemistry, 1999, 274, 14948-14955.	3.4	5
204	Viral Ski Inhibits Retinoblastoma Protein (Rb)-mediated Transcriptional Repression in a Dominant Negative Fashion. Journal of Biological Chemistry, 1999, 274, 4485-4488.	3.4	80
205	NIH 3T3 cells malignantly transformed by mot-2 show inactivation and cytoplasmic sequestration of the p53 protein. Cell Research, 1999, 9, 261-269.	12.0	42
206	Identification of a 55-kDa Ezrin-Related Protein That Induces Cytoskeletal Changes and Localizes to the Nucleolus. Experimental Cell Research, 1999, 250, 51-61.	2.6	27
207	A Novel Testis-Specific Metallothionein-like Protein, Tesmin, Is an Early Marker of Male Germ Cell Differentiation. Genomics, 1999, 57, 130-136.	2.9	69
208	Fibroblast growth factor-1 interacts with the glucose-regulated protein GRP75/mortalin. Biochemical Journal, 1999, 343, 461-466.	3.7	79
209	Fibroblast growth factor-1 interacts with the glucose-regulated protein GRP75/mortalin. Biochemical Journal, 1999, 343, 461.	3.7	28
210	Ski is a component of the histone deacetylase complex required for transcriptional repression by Mad and thyroid hormone receptor. Genes and Development, 1999, 13, 412-423.	5.9	253
211	Malignant transformation of NIH3T3 cells by overexpression of mot-2 protei. Oncogene, 1998, 17, 907-911.	5.9	86
212	A Novel Alternatively Spliced Form of Murine Vascular Endothelial Growth Factor, VEGF 115. Journal of Biological Chemistry, 1998, 273, 3033-3038.	3.4	40
213	Inactivation of Tumor Suppressor p53 by Mot-2, a hsp70 Family Member. Journal of Biological Chemistry, 1998, 273, 29586-29591.	3.4	207
214	Expression Analysis of Mortalin, a Unique Member of the Hsp70 Family of Proteins, in Rat Tissues. Experimental Cell Research, 1997, 232, 56-63.	2.6	28
215	Decrease in Amplified Telomeric Sequences and Induction of Senescence Markers by Introduction of Human Chromosome 7 or Its Segments in SUSM-1. Experimental Cell Research, 1997, 235, 345-353.	2.6	57
216	Elevated Levels of Mortalin Expression in Human Brain Tumors. Experimental Cell Research, 1997, 237, 38-45.	2.6	98

#	Article	IF	Citations
217	Expression of endothelin, fibronectin, and mortalin as aging and mortality markers. Experimental Gerontology, 1997, 32, 95-103.	2.8	34
218	Genetic Differences between the Pancytosolic and Perinuclear Forms of Murine Mortalin. Experimental Cell Research, 1996, 226, 381-386.	2.6	26
219	An effective elimination of false positives isolated from differential display of mRNAs. Molecular Biotechnology, 1996, 6, 213-217.	2.4	8
220	Correlation between Complementation Group for Immortality and the Cellular Distribution of Mortalin. Experimental Cell Research, 1995, 216, 101-106.	2.6	81
221	Mouse and human chromosomal assignments of mortalin, a novel member of the murine hsp70 family of proteins. FEBS Letters, 1995, 361, 269-272.	2.8	27
222	Cellular Mortality to Immortalization: Mortalin Cell Structure and Function, 1994, 19, 1-10.	1.1	23
223	Enhanced expression of multiple forms of VEGF is associated with spontaneous immortalization of murine fibroblasts. Biochimica Et Biophysica Acta - Molecular Cell Research, 1994, 1224, 365-370.	4.1	16
224	Identification of genetic events involved in early steps of immortalization of mouse fibroblasts. Biochimica Et Biophysica Acta - General Subjects, 1994, 1201, 389-396.	2.4	12
225	Hydrostatic pressure is like high temperature and oxidative stress in the damage it causes to yeast. FEMS Microbiology Letters, 1993, 108, 53-57.	1.8	42
226	Identification and differential expression of yeast SEC23 -related gene (Msec23) in mouse tissues. FEBS Letters, 1993, 315, 193-196.	2.8	8
227	On the Cytosolic and Perinuclear Mortalin: An Insight by Heat Shock. Biochemical and Biophysical Research Communications, 1993, 193, 348-355.	2.1	24
228	Spontaneous Immortalization of Mouse Fibroblasts Involves Structural Changes in Senescence-Inducing Protein, Mortalin. Biochemical and Biophysical Research Communications, 1993, 197, 202-206.	2.1	14
229	Differential Subcellular Distribution of Mortalin in Mortal and Immortal Mouse and Human Fibroblasts. Experimental Cell Research, 1993, 207, 442-448.	2.6	95
230	Protein markers for cellular mortality and immortality. Mutation Research - DNAging, 1991, 256, 243-254.	3.2	20
231	Effect of heat shock on growth and division of Stylonychia mytilus. Biochemistry and Cell Biology, 1991, 69, 23-28.	2.0	3
232	Deutrium oxide, dimethylsulfoxide and heat shock confer protection against hydrostatic pressure damage in yeast. Biochemical and Biophysical Research Communications, 1991, 174, 1141-1147.	2.1	38
233	Hyperthermia induced ultrastructural changes in Stylonychia mytilus cells. Journal of Thermal Biology, 1991, 16, 261-266.	2.5	1
234	Induction of barotolerance by heat shock treatment in yeast. FEMS Microbiology Letters, 1991, 80, 325-328.	1.8	82

#	Article	IF	CITATIONS
235	Heat shock induced ultrastructural alterations in Stylonychia mytilus cells Cell Structure and Function, 1991, 16, 95-103.	1.1	3
236	Do heat shock proteins provide protection against freezing?. FEMS Microbiology Letters, 1990, 72, 159-162.	1.8	55
237	Variation in sensitivity to heat shock during conjugational events and macronuclear development in Styloychia mytilus. Journal of Thermal Biology, 1990, 15, 201-205.	2.5	0
238	Do heat shock proteins provide protection against freezing?. FEMS Microbiology Letters, 1990, 72, 159-162.	1.8	19
239	Persistent hyperthermia induces adaptive modulations in the cytology of ciliates Stylonychia mytilus and Euplotes aediculatus. Journal of Thermal Biology, 1989, 14, 75-81.	2.5	2
240	Why is Mortalin a Potential Therapeutic Target for Cancer?. Frontiers in Cell and Developmental Biology, 0, 10 , .	3.7	8