Xian-Bin Li

List of Publications by Citations

Source: https://exaly.com/author-pdf/2416494/xian-bin-li-publications-by-citations.pdf

Version: 2024-04-26

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

62 14,739 341 109 h-index g-index citations papers 362 6.73 17,122 7.2 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
341	Finer features for functional microdevices. <i>Nature</i> , 2001 , 412, 697-8	50.4	2170
340	Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. <i>Nano Today</i> , 2010 , 5, 15-20	17.9	393
339	Designable 3D nanofabrication by femtosecond laser direct writing. <i>Nano Today</i> , 2010 , 5, 435-448	17.9	377
338	Recent developments in superhydrophobic surfaces with unique structural and functional properties. <i>Soft Matter</i> , 2012 , 8, 11217	3.6	295
337	Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device. <i>Carbon</i> , 2012 , 50, 1667-1673	10.4	251
336	Curvature-driven reversible in situ switching between pinned and roll-down superhydrophobic States for water droplet transportation. <i>Advanced Materials</i> , 2011 , 23, 545-9	24	236
335	Three-Level Biomimetic Rice-Leaf Surfaces with Controllable Anisotropic Sliding. <i>Advanced Functional Materials</i> , 2011 , 21, 2927-2932	15.6	208
334	Two-Photon Photopolymerization and 3D Lithographic Microfabrication. <i>Advances in Polymer Science</i> , 2006 , 169-273	1.3	202
333	Photoreduction of Graphene Oxides: Methods, Properties, and Applications. <i>Advanced Optical Materials</i> , 2014 , 2, 10-28	8.1	191
332	Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization. <i>Advanced Materials</i> , 2010 , 22, 3204-7	24	178
331	Bioinspired Graphene Actuators Prepared by Unilateral UV Irradiation of Graphene Oxide Papers. <i>Advanced Functional Materials</i> , 2015 , 25, 4548-4557	15.6	177
330	Moisture-responsive graphene paper prepared by self-controlled photoreduction. <i>Advanced Materials</i> , 2015 , 27, 332-8	24	176
329	Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system. <i>Applied Physics Letters</i> , 2002 , 80, 312-314	3.4	171
328	Multifunctional superparamagnetic iron oxide nanoparticles: design, synthesis and biomedical photonic applications. <i>Nanoscale</i> , 2013 , 5, 7664-84	7.7	164
327	Monolayer II-VI semiconductors: A first-principles prediction. <i>Physical Review B</i> , 2015 , 92,	3.3	160
326	One order of magnitude faster phase change at reduced power in Ti-Sb-Te. <i>Nature Communications</i> , 2014 , 5, 4086	17.4	158
325	Light-Mediated Manufacture and Manipulation of Actuators. <i>Advanced Materials</i> , 2016 , 28, 8328-8343	24	146

324	Three-dimensional focal spots related to two-photon excitation. <i>Applied Physics Letters</i> , 2002 , 80, 3673	-3675	145
323	Bioinspired Underwater Superoleophobic Membrane Based on a Graphene Oxide Coated Wire Mesh for Efficient Oil/Water Separation. <i>ACS Applied Materials & Discrete </i>	9.5	143
322	Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process. <i>Nature Communications</i> , 2016 , 7, 11573	17.4	134
321	Functional organic single crystals for solid-state laser applications. <i>Laser and Photonics Reviews</i> , 2014 , 8, 687-715	8.3	132
320	Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing. <i>Light: Science and Applications</i> , 2017 , 6, e17112	16.7	122
319	Unraveling Bright Molecule-Like State and Dark Intrinsic State in Green-Fluorescence Graphene Quantum Dots via Ultrafast Spectroscopy. <i>Advanced Optical Materials</i> , 2013 , 1, 264-271	8.1	122
318	High numerical aperture microlens arrays of close packing. <i>Applied Physics Letters</i> , 2010 , 97, 031109	3.4	121
317	Recent developments in superhydrophobic graphene and graphene-related materials: from preparation to potential applications. <i>Nanoscale</i> , 2015 , 7, 7101-14	7.7	117
316	Elastic force analysis of functional polymer submicron oscillators. <i>Applied Physics Letters</i> , 2001 , 79, 317	3-33475	106
315	Protein-based soft micro-optics fabricated by femtosecond laser direct writing. <i>Light: Science and Applications</i> , 2014 , 3, e129-e129	16.7	105
314	Bioinspired Fabrication of Superhydrophobic Graphene Films by Two-Beam Laser Interference. <i>Advanced Functional Materials</i> , 2014 , 24, 4595-4602	15.6	100
313	Magnetic-mesoporous Janus nanoparticles. <i>Chemical Communications</i> , 2011 , 47, 1225-7	5.8	99
312	Deep electron traps and origin of p-type conductivity in the earth-abundant solar-cell material Cu2ZnSnS4. <i>Physical Review B</i> , 2013 , 87,	3.3	97
311	Slow cooling and efficient extraction of C-exciton hot carriers in MoS monolayer. <i>Nature Communications</i> , 2017 , 8, 13906	17.4	95
310	Aqueous multiphoton lithography with multifunctional silk-centred bio-resists. <i>Nature Communications</i> , 2015 , 6, 8612	17.4	94
309	Two-photon laser precision microfabrication and its applications to micro-nano devices and systems. <i>Journal of Lightwave Technology</i> , 2003 , 21, 624-633	4	93
308	Understanding phase-change behaviors of carbon-doped GeBbIIeIFor phase-change memory application. ACS Applied Materials & Samp; Interfaces, 2014, 6, 14207-14	9.5	92
307	Bandgap Tailoring and Synchronous Microdevices Patterning of Graphene Oxides. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 3594-3599	3.8	90

306	Two-dimensional transition metal honeycomb realized: Hf on Ir(111). Nano Letters, 2013, 13, 4671-4	11.5	89
305	Silver-Coated Rose Petal: Green, Facile, Low-Cost and Sustainable Fabrication of a SERS Substrate with Unique Superhydrophobicity and High Efficiency. <i>Advanced Optical Materials</i> , 2013 , 1, 56-60	8.1	89
304	Optical Tamm states enhanced broad-band absorption of organic solar cells. <i>Applied Physics Letters</i> , 2012 , 101, 243901	3.4	88
303	Role of electronic excitation in the amorphization of Ge-Sb-Te alloys. <i>Physical Review Letters</i> , 2011 , 107, 015501	7.4	86
302	Phase-Change Superlattice Materials toward Low Power Consumption and High Density Data Storage: Microscopic Picture, Working Principles, and Optimization. <i>Advanced Functional Materials</i> , 2018 , 28, 1803380	15.6	85
301	Wearable Superhydrophobic Elastomer Skin with Switchable Wettability. <i>Advanced Functional Materials</i> , 2018 , 28, 1800625	15.6	82
300	Solving efficiency-stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode. <i>Advanced Materials</i> , 2012 , 24, 1187-91	24	82
299	Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes. <i>Applied Physics Letters</i> , 2001 , 79, 1411-1413	3.4	82
298	Biomimetic graphene films and their properties. <i>Nanoscale</i> , 2012 , 4, 4858-69	7.7	81
297	Direct Laser Writing of Superhydrophobic PDMS Elastomers for Controllable Manipulation via Marangoni Effect. <i>Advanced Functional Materials</i> , 2017 , 27, 1702946	15.6	78
296	Ultrafast optical spectroscopy of surface-modified silicon quantum dots: unraveling the underlying mechanism of the ultrabright and color-tunable photoluminescence. <i>Light: Science and Applications</i> , 2015 , 4, e245-e245	16.7	76
295	High performance magnetically controllable microturbines. <i>Lab on A Chip</i> , 2010 , 10, 2902-5	7.2	76
294	Whispering-gallery mode lasing from patterned molecular single-crystalline microcavity array. <i>Laser and Photonics Reviews</i> , 2013 , 7, 281-288	8.3	75
293	Recent Developments in Flexible Organic Light-Emitting Devices. <i>Advanced Materials Technologies</i> , 2019 , 4, 1800371	6.8	75
292	The Role of Trap-assisted Recombination in Luminescent Properties of Organometal Halide CH3NH3PbBr3 Perovskite Films and Quantum Dots. <i>Scientific Reports</i> , 2016 , 6, 27286	4.9	74
291	Remote manipulation of micronanomachines containing magnetic nanoparticles. <i>Optics Letters</i> , 2009 , 34, 581-3	3	74
29 0	Ultrathin Metal Films as the Transparent Electrode in ITO-Free Organic Optoelectronic Devices. <i>Advanced Optical Materials</i> , 2019 , 7, 1800778	8.1	74
289	SERS-Enabled Lab-on-a-Chip Systems. <i>Advanced Optical Materials</i> , 2015 , 3, 618-633	8.1	72

(2014-2017)

288	Sensitively Humidity-Driven Actuator Based on Photopolymerizable PEG-DA Films. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1601002	4.6	70	
287	Perovskite Single-Crystal Microwire-Array Photodetectors with Performance Stability beyond 1 Year. <i>Advanced Materials</i> , 2020 , 32, e2001998	24	70	
286	Distributed Feedback Lasers Based on Thiophene/Phenylene Co-Oligomer Single Crystals. <i>Advanced Functional Materials</i> , 2012 , 22, 33-38	15.6	70	
285	A facile approach for artificial biomimetic surfaces with both superhydrophobicity and iridescence. <i>Soft Matter</i> , 2010 , 6, 263-267	3.6	69	
284	S-Tapered Fiber Sensors for Highly Sensitive Measurement of Refractive Index and Axial Strain. Journal of Lightwave Technology, 2012 , 30, 3126-3132	4	66	
283	New structural picture of the Ge2Sb2Te5 phase-change alloy. <i>Physical Review Letters</i> , 2011 , 106, 02550	1 7.4	64	
282	Determination of formation and ionization energies of charged defects in two-dimensional materials. <i>Physical Review Letters</i> , 2015 , 114, 196801	7.4	63	
281	Laser-structured Janus wire mesh for efficient oil-water separation. <i>Nanoscale</i> , 2017 , 9, 17933-17938	7.7	62	
280	Direct observation of quantum-confined graphene-like states and novel hybrid states in graphene oxide by transient spectroscopy. <i>Advanced Materials</i> , 2013 , 25, 6539-45	24	62	
279	O-FIB: far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment. <i>Light: Science and Applications</i> , 2020 , 9, 41	16.7	61	
278	First-principles calculations of a robust two-dimensional boron honeycomb sandwiching a triangular molybdenum layer. <i>Physical Review B</i> , 2014 , 90,	3.3	59	
277	Novel Zn-doped SnO2 hierarchical architectures: synthesis, characterization, and gas sensing properties. <i>CrystEngComm</i> , 2012 , 14, 1701-1708	3.3	59	
276	Highly Efficient Three Primary Color Organic Single-Crystal Light-Emitting Devices with Balanced Carrier Injection and Transport. <i>Advanced Functional Materials</i> , 2017 , 27, 1604659	15.6	57	
275	Dual-3D Femtosecond Laser Nanofabrication Enables Dynamic Actuation. <i>ACS Nano</i> , 2019 , 13, 4041-404	18 6.7	56	
274	Femtosecond laser ionization and fragmentation of molecules for environmental sensing. <i>Laser and Photonics Reviews</i> , 2015 , 9, 275-293	8.3	55	
273	Mechanically robust stretchable organic optoelectronic devices built using a simple and universal stencil-pattern transferring technology. <i>Light: Science and Applications</i> , 2018 , 7, 35	16.7	55	
272	Flat Boron: A New Cousin of Graphene. Advanced Materials, 2019, 31, e1900392	24	54	
271	Laser-Mediated Programmable N Doping and Simultaneous Reduction of Graphene Oxides. Advanced Optical Materials, 2014 , 2, 120-125	8.1	54	

270	Perovskite quantum dots for light-emitting devices. <i>Nanoscale</i> , 2019 , 11, 19119-19139	7.7	53
269	Experimental Observation of Toroidal Dipole Modes in All-Dielectric Metasurfaces. <i>Advanced Optical Materials</i> , 2019 , 7, 1801166	8.1	53
268	Femtosecond laser programmed artificial musculoskeletal systems. <i>Nature Communications</i> , 2020 , 11, 4536	17.4	50
267	Miniature End-Capped Fiber Sensor for Refractive Index and Temperature Measurement. <i>IEEE Photonics Technology Letters</i> , 2014 , 26, 7-10	2.2	49
266	Engineering two-dimensional electronics by semiconductor defects. <i>Nano Today</i> , 2017 , 16, 30-45	17.9	48
265	Solvent-tunable PDMS microlens fabricated by femtosecond laser direct writing. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 1751-1756	7.1	48
264	Surface-plasmon enhanced absorption in organic solar cells by employing a periodically corrugated metallic electrode. <i>Applied Physics Letters</i> , 2012 , 101, 163303	3.4	48
263	Magnetic/upconversion luminescent mesoparticles of Fe3O4@LaF3:Yb3+, Er3+ for dual-modal bioimaging. <i>Chemical Communications</i> , 2012 , 48, 11238-40	5.8	48
262	100% Fill-Factor Aspheric Microlens Arrays (AMLA) With Sub-20-nm Precision. <i>IEEE Photonics Technology Letters</i> , 2009 , 21, 1535-1537	2.2	48
261	On-chip laser processing for the development of multifunctional microfluidic chips. <i>Laser and Photonics Reviews</i> , 2017 , 11, 1600116	8.3	47
260	Dry-etching-assisted femtosecond laser machining. <i>Laser and Photonics Reviews</i> , 2017 , 11, 1600115	8.3	47
259	Boron based two-dimensional crystals: theoretical design, realization proposal and applications. <i>Nanoscale</i> , 2015 , 7, 18863-71	7.7	47
258	Two-Dimensional Stretchable Organic Light-Emitting Devices with High Efficiency. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 31166-31171	9.5	46
257	Enhanced efficiency of organic light-emitting devices with metallic electrodes by integrating periodically corrugated structure. <i>Applied Physics Letters</i> , 2012 , 100, 053304	3.4	45
256	Flexible and efficient ITO-free semitransparent perovskite solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2016 , 157, 660-665	6.4	45
255	Photoluminescence quenching of inorganic cesium lead halides perovskite quantum dots (CsPbX) by electron/hole acceptor. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 1920-1926	3.6	44
254	A simple strategy to realize biomimetic surfaces with controlled anisotropic wetting. <i>Applied Physics Letters</i> , 2010 , 96, 053704	3.4	44
253	Stretchable Organometal-Halide-Perovskite Quantum-Dot Light-Emitting Diodes. <i>Advanced Materials</i> , 2019 , 31, e1807516	24	43

252	Quantum-Confined-Superfluidics-Enabled Moisture Actuation Based on Unilaterally Structured Graphene Oxide Papers. <i>Advanced Materials</i> , 2019 , 31, e1901585	24	43	
251	Light manipulation in organic light-emitting devices by integrating micro/nano patterns. <i>Laser and Photonics Reviews</i> , 2017 , 11, 1600145	8.3	42	
250	Photothermal Surface Plasmon Resonance and Interband Transition-Enhanced Nanocomposite Hydrogel Actuators with Hand-Like Dynamic Manipulation. <i>Advanced Optical Materials</i> , 2017 , 5, 170044	2 ^{8.1}	42	
249	Hybrid Tamm plasmon-polariton/microcavity modes for white top-emitting organic light-emitting devices. <i>Optica</i> , 2015 , 2, 579	8.6	40	
248	On-Chip Catalytic Microreactors for Modern Catalysis Research. <i>ChemCatChem</i> , 2013 , 5, 2091-2099	5.2	40	
247	Grating amplitude effect on electroluminescence enhancement of corrugated organic light-emitting devices. <i>Optics Letters</i> , 2011 , 36, 3915-7	3	40	
246	Crystalline liquid and rubber-like behavior in Cu nanowires. Nano Letters, 2013, 13, 3812-6	11.5	39	
245	Magnetic colloidosomes fabricated by Fe3O4BiO2 hetero-nanorods. <i>Soft Matter</i> , 2011 , 7, 7375	3.6	39	
244	Two-photon induced amplified spontaneous emission from needlelike triphenylamine-containing derivative crystals with low threshold. <i>Applied Physics Letters</i> , 2009 , 94, 201113	3.4	39	
243	Reflective Optical Fiber Sensors Based on Tilted Fiber Bragg Gratings Fabricated With Femtosecond Laser. <i>Journal of Lightwave Technology</i> , 2013 , 31, 455-460	4	38	
242	Arbitrary Shape Designable Microscale Organic Light-Emitting Devices by Using Femtosecond Laser Reduced Graphene Oxide as a Patterned Electrode. <i>ACS Photonics</i> , 2014 , 1, 690-695	6.3	36	
241	Bioinspired few-layer graphene prepared by chemical vapor deposition on femtosecond laser-structured Cu foil. <i>Laser and Photonics Reviews</i> , 2016 , 10, 441-450	8.3	36	
240	Angle-multiplexed optical printing of biomimetic hierarchical 3D textures. <i>Laser and Photonics Reviews</i> , 2017 , 11, 1600187	8.3	35	
239	Smart Compound Eyes Enable Tunable Imaging. Advanced Functional Materials, 2019, 29, 1903340	15.6	35	
238	High-performance magnetic antimicrobial Janus nanorods decorated with Ag nanoparticles. <i>Journal of Materials Chemistry</i> , 2012 , 22, 23741		35	
237	Study of Electron P honon Coupling Dynamics in Au Nanorods by Transient Depolarization Measurements. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 2913-2917	3.8	35	
236	Laser-Structured Graphene/Reduced Graphene Oxide Films towards Bio-Inspired Superhydrophobic Surfaces. <i>Bulletin of the Chemical Society of Japan</i> , 2019 , 92, 283-289	5.1	35	
235	Rapid Engraving of Artificial Compound Eyes from Curved Sapphire Substrate. <i>Advanced Functional Materials</i> , 2019 , 29, 1900037	15.6	34	

234	Optical Nanofabrication of Concave Microlens Arrays. Laser and Photonics Reviews, 2019, 13, 1800272	8.3	34
233	Origin of high thermal stability of amorphous Ge1Cu2Te3 alloy: A significant Cu-bonding reconfiguration modulated by Te lone-pair electrons for crystallization. <i>Acta Materialia</i> , 2015 , 90, 88-93	8.4	34
232	Compact Long-Period Fiber Gratings With Resonance at Second-Order Diffraction. <i>IEEE Photonics Technology Letters</i> , 2012 , 24, 1393-1395	2.2	34
231	Hydrogen in ZnO revisited: Bond center versus antibonding site. <i>Physical Review B</i> , 2008 , 78,	3.3	34
230	Clarification of the Molecular Doping Mechanism in Organic Single-Crystalline Semiconductors and their Application in Color-Tunable Light-Emitting Devices. <i>Advanced Materials</i> , 2018 , 30, e1801078	24	34
229	Sunlight-Reduced Graphene Oxides as Sensitive Moisture Sensors for Smart Device Design. <i>Advanced Materials Technologies</i> , 2017 , 2, 1700045	6.8	33
228	Electron Extraction Dynamics in CdSe and CdSe/CdS/ZnS Quantum Dots Adsorbed with Methyl Viologen. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 17240-17246	3.8	33
227	Matching Photocurrents of Sub-cells in Double-Junction Organic Solar Cells via Coupling Between Surface Plasmon Polaritons and Microcavity Modes. <i>Advanced Optical Materials</i> , 2013 , 1, 809-813	8.1	33
226	Superhydrophobic SERS Substrates Based on Silver-Coated Reduced Graphene Oxide Gratings Prepared by Two-Beam Laser Interference. ACS Applied Materials & Interfaces, 2015, 7, 27059-65	9.5	33
225	Unraveling Charge Separation and Transport Mechanisms in Aqueous-Processed Polymer/CdTe Nanocrystal Hybrid Solar Cells. <i>Advanced Energy Materials</i> , 2014 , 4, 1301882	21.8	32
225		21.8 3.6	32 32
	Nanocrystal Hybrid Solar Cells. <i>Advanced Energy Materials</i> , 2014 , 4, 1301882 Hybrid-State Dynamics of Gold Nanorods/Dye J-Aggregates under Strong Coupling. <i>Angewandte</i>		
224	Nanocrystal Hybrid Solar Cells. <i>Advanced Energy Materials</i> , 2014 , 4, 1301882 Hybrid-State Dynamics of Gold Nanorods/Dye J-Aggregates under Strong Coupling. <i>Angewandte Chemie</i> , 2011 , 123, 7970-7974 Flexible perovskite solar cells with ultrathin Au anode and vapour-deposited perovskite film. <i>Solar</i>	3.6	32
224	Nanocrystal Hybrid Solar Cells. <i>Advanced Energy Materials</i> , 2014 , 4, 1301882 Hybrid-State Dynamics of Gold Nanorods/Dye J-Aggregates under Strong Coupling. <i>Angewandte Chemie</i> , 2011 , 123, 7970-7974 Flexible perovskite solar cells with ultrathin Au anode and vapour-deposited perovskite film. <i>Solar Energy Materials and Solar Cells</i> , 2017 , 169, 8-12	3.6 6.4	32
224	Nanocrystal Hybrid Solar Cells. Advanced Energy Materials, 2014, 4, 1301882 Hybrid-State Dynamics of Gold Nanorods/Dye J-Aggregates under Strong Coupling. Angewandte Chemie, 2011, 123, 7970-7974 Flexible perovskite solar cells with ultrathin Au anode and vapour-deposited perovskite film. Solar Energy Materials and Solar Cells, 2017, 169, 8-12 Vacancy Structures and Melting Behavior in Rock-Salt GeSbTe. Scientific Reports, 2016, 6, 25453	3.6 6.4 4.9	32 31 31
224 223 222 221	Nanocrystal Hybrid Solar Cells. <i>Advanced Energy Materials</i> , 2014 , 4, 1301882 Hybrid-State Dynamics of Gold Nanorods/Dye J-Aggregates under Strong Coupling. <i>Angewandte Chemie</i> , 2011 , 123, 7970-7974 Flexible perovskite solar cells with ultrathin Au anode and vapour-deposited perovskite film. <i>Solar Energy Materials and Solar Cells</i> , 2017 , 169, 8-12 Vacancy Structures and Melting Behavior in Rock-Salt GeSbTe. <i>Scientific Reports</i> , 2016 , 6, 25453 Mechanical stretch for tunable wetting from topological PDMS film. <i>Soft Matter</i> , 2013 , 9, 4236 Monitoring Thermal Effect in Femtosecond Laser Interaction With Glass by Fiber Bragg Grating.	3.6 6.4 4.9 3.6	32 31 31 31
224 223 222 221 220	Nanocrystal Hybrid Solar Cells. <i>Advanced Energy Materials</i> , 2014 , 4, 1301882 Hybrid-State Dynamics of Gold Nanorods/Dye J-Aggregates under Strong Coupling. <i>Angewandte Chemie</i> , 2011 , 123, 7970-7974 Flexible perovskite solar cells with ultrathin Au anode and vapour-deposited perovskite film. <i>Solar Energy Materials and Solar Cells</i> , 2017 , 169, 8-12 Vacancy Structures and Melting Behavior in Rock-Salt GeSbTe. <i>Scientific Reports</i> , 2016 , 6, 25453 Mechanical stretch for tunable wetting from topological PDMS film. <i>Soft Matter</i> , 2013 , 9, 4236 Monitoring Thermal Effect in Femtosecond Laser Interaction With Glass by Fiber Bragg Grating. <i>Journal of Lightwave Technology</i> , 2011 , 29, 2126-2130 Impurity doping in SiO2: Formation energies and defect levels from first-principles calculations.	3.6 6.4 4.9 3.6	32 31 31 31

(2018-2014)

216	Surface plasmon-polariton mediated red emission from organic light-emitting devices based on metallic electrodes integrated with dual-periodic corrugation. <i>Scientific Reports</i> , 2014 , 4, 7108	4.9	30	
215	Anti-reflection resonance in distributed Bragg reflectors-based ultrathin highly absorbing dielectric and its application in solar cells. <i>Applied Physics Letters</i> , 2013 , 102, 103901	3.4	30	
214	Protein-Based Three-Dimensional Whispering-Gallery-Mode Micro-Lasers with Stimulus-Responsiveness. <i>Scientific Reports</i> , 2015 , 5, 12852	4.9	30	
213	A light-driven turbine-like micro-rotor and study on its light-to-mechanical power conversion efficiency. <i>Applied Physics Letters</i> , 2012 , 101, 113901	3.4	30	
212	Band-Gap-Controllable Photonic Crystals Consisting of Magnetic Nanocrystal Clusters in a Solidified Polymer Matrix. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 18542-18545	3.8	30	
211	Giant elasticity of photopolymer nanowires. <i>Applied Physics Letters</i> , 2007 , 91, 063112	3.4	30	
210	Dynamics of Strong Coupling between J-Aggregates and Surface Plasmon Polaritons in Subwavelength Hole Arrays. <i>Advanced Functional Materials</i> , 2016 , 26, 6198-6205	15.6	30	
209	A novel two-dimensional MgB6 crystal: metal-layer stabilized boron kagome lattice. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 1093-8	3.6	29	
208	Intrinsic Polarization and Tunable Color of Electroluminescence from Organic Single Crystal-based Light-Emitting Devices. <i>Scientific Reports</i> , 2015 , 5, 12445	4.9	29	
207	Role of electronic excitation in phase-change memory materials: A brief review. <i>Physica Status Solidi</i> (B): Basic Research, 2012 , 249, 1861-1866	1.3	29	
206	Electric field analyses on monolayer semiconductors: the example of InSe. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 6945-6950	3.6	28	
205	Optical force on toroidal nanostructures: Toroidal dipole versus renormalized electric dipole. <i>Physical Review A</i> , 2015 , 92,	2.6	28	
204	Size-dependent one-photon- and two-photon-pumped amplified spontaneous emission from organometal halide CHNHPbBr perovskite cubic microcrystals. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 2217-2224	3.6	27	
203	Photonic-Molecule Single-Mode Laser. <i>IEEE Photonics Technology Letters</i> , 2015 , 27, 1157-1160	2.2	27	
202	PDMS-Coated S-Tapered Fiber for Highly Sensitive Measurements of Transverse Load and Temperature. <i>IEEE Sensors Journal</i> , 2015 , 15, 3429-3435	4	26	
201	Metal I hsulator Transition of GeBb I Ie Superlattice: An Electron Counting Model Study. <i>IEEE</i> Nanotechnology Magazine, 2018 , 17, 140-146	2.6	26	
200	A Highly Sensitive Temperature Sensor Based on a Liquid-Sealed S-Tapered Fiber. <i>IEEE Photonics Technology Letters</i> , 2013 , 25, 829-832	2.2	26	
199	Biomimetic Graphene Actuators Enabled by Multiresponse Graphene Oxide Paper with Pretailored Reduction Gradient. <i>Advanced Materials Technologies</i> , 2018 , 3, 1800258	6.8	26	

198	Liquid-Assisted Femtosecond Laser Precision-Machining of Silica. <i>Nanomaterials</i> , 2018 , 8,	5.4	24
197	Theoretical characterization of reduction dynamics for graphene oxide by alkaline-earth metals. <i>Carbon</i> , 2013 , 52, 122-127	10.4	24
196	Native defects and substitutional impurities in two-dimensional monolayer InSe. <i>Nanoscale</i> , 2017 , 9, 11619-11624	7.7	24
195	Customization of Protein Single Nanowires for Optical Biosensing. Small, 2015, 11, 2869-76	11	23
194	Femtosecond Laser Inscribed Small-Period Long-Period Fiber Gratings With Dual-Parameter Sensing. <i>IEEE Sensors Journal</i> , 2018 , 18, 1100-1103	4	23
193	Dynamics of Strong Coupling between CdSe Quantum Dots and Surface Plasmon Polaritons in Subwavelength Hole Array. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 4648-4654	6.4	23
192	Universal Electron Injection Dynamics at Nanointerfaces in Dye-Sensitized Solar Cells. <i>Advanced Functional Materials</i> , 2012 , 22, 2783-2791	15.6	23
191	Surface-enhanced Raman scattering substrates of high-density and high-homogeneity hot spots by magneto-metal nanoprobe assembling. <i>Optics Letters</i> , 2010 , 35, 3297-9	3	23
190	Laser fabrication of graphene-based supercapacitors. <i>Photonics Research</i> , 2020 , 8, 577	6	23
189	Femtosecond Laser Direct Writing of Plasmonic Ag/Pd Alloy Nanostructures Enables Flexible Integration of Robust SERS Substrates. <i>Advanced Materials Technologies</i> , 2017 , 2, 1600270	6.8	22
188	Femtosecond Laser Inscribed Sapphire Fiber Bragg Grating for High Temperature and Strain Sensing. <i>IEEE Nanotechnology Magazine</i> , 2019 , 18, 208-211	2.6	22
187	Pneumatic smart surfaces with rapidly switchable dominant and latent superhydrophobicity. <i>NPG Asia Materials</i> , 2018 , 10, e470-e470	10.3	22
186	Organic Single-Crystalline Semiconductors for Light-Emitting Applications: Recent Advances and Developments. <i>Laser and Photonics Reviews</i> , 2019 , 13, 1900009	8.3	22
185	Rapid production of large-area deep sub-wavelength hybrid structures by femtosecond laser light-field tailoring. <i>Applied Physics Letters</i> , 2014 , 104, 031904	3.4	22
184	Programmable assembly of CdTe quantum dots into microstructures by femtosecond laser direct writing. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 4699	7.1	22
183	Nanostructures induced light harvesting enhancement in organic photovoltaics. <i>Nanophotonics</i> , 2017 , 7, 371-391	6.3	22
182	Flexible lasers based on the microstructured single-crystalline ultrathin films. <i>Journal of Materials Chemistry</i> , 2012 , 22, 24139		22
181	Spectral engineering by flexible tunings of optical Tamm states and Fabry-Perot cavity resonance. <i>Optics Letters</i> , 2013 , 38, 4382-5	3	22

(2014-2005)

180	Direct laser writing defects in holographic lithography-created photonic lattices. <i>Optics Letters</i> , 2005 , 30, 881-3	3	22
179	Template-confined growth of Ruddlesden-Popper perovskite micro-wire arrays for stable polarized photodetectors. <i>Nanoscale</i> , 2019 , 11, 18272-18281	7.7	21
178	Hybrid-State Dynamics of Dye Molecules and Surface Plasmon Polaritons under Ultrastrong Coupling Regime. <i>Laser and Photonics Reviews</i> , 2018 , 12, 1700176	8.3	21
177	Directional Forces by Momentumless Excitation and Order-to-Order Transition in Peierls-Distorted Solids: The Case of GeTe. <i>Physical Review Letters</i> , 2018 , 120, 185701	7.4	21
176	Sapphire-Based Fresnel Zone Plate Fabricated by Femtosecond Laser Direct Writing and Wet Etching. <i>IEEE Photonics Technology Letters</i> , 2016 , 28, 1290-1293	2.2	21
175	Role of the nano amorphous interface in the crystallization of Sb2Te3 towards non-volatile phase change memory: insights from first principles. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 10810-5	3.6	21
174	Dynamic laser prototyping for biomimetic nanofabrication. <i>Laser and Photonics Reviews</i> , 2014 , 8, 882-88	88 .3	21
173	Light trapping schemes in organic solar cells: A comparison between optical Tamm states and Fabry Pfot cavity modes. <i>Organic Electronics</i> , 2013 , 14, 1577-1585	3.5	21
172	Infrared Absorption of Femtosecond Laser Textured Silicon Under Vacuum. <i>IEEE Photonics Technology Letters</i> , 2015 , 27, 1481-1484	2.2	21
171	Photonic quasicrystals exhibit zero-transmission regions due to translational arrangement of constituent parts. <i>Physical Review B</i> , 2009 , 79,	3.3	21
170	Surface and Interface Engineering of Graphene Oxide Films by Controllable Photoreduction. <i>Chemical Record</i> , 2016 , 16, 1244-55	6.6	21
169	Charged defects in two-dimensional semiconductors of arbitrary thickness and geometry: Formulation and application to few-layer black phosphorus. <i>Physical Review B</i> , 2017 , 96,	3.3	20
168	Highly Stable On-Chip Embedded Organic Whispering Gallery Mode Lasers. <i>Journal of Lightwave Technology</i> , 2014 , 32, 2415-2419	4	20
167	Polarization dependent two-photon properties in an organic crystal. <i>Applied Physics Letters</i> , 2010 , 97, 101101	3.4	20
166	Amplified spontaneous emission in the cyano-substituted oligo(p-phenylenevinylene) organic crystals: Effect of excitation wavelength. <i>Applied Physics Letters</i> , 2010 , 96, 103508	3.4	20
165	Unidirectional Lasing From a Spiral-Shaped Microcavity of Dye-Doped Polymers. <i>IEEE Photonics Technology Letters</i> , 2015 , 27, 311-314	2.2	19
164	As-grown graphene/copper nanoparticles hybrid nanostructures for enhanced intensity and stability of surface plasmon resonance. <i>Scientific Reports</i> , 2016 , 6, 37190	4.9	19
163	Fabrication and Characterization of Organic Single Crystal-Based Light-Emitting Devices with Improved Contact Between the Metallic Electrodes and Crystal. <i>Advanced Functional Materials</i> , 2014 , 24, n/a-n/a	15.6	19

162	Surface plasmon enhanced absorption dynamics of regioregular poly(3-hexylthiophene). <i>Applied Physics Letters</i> , 2011 , 98, 251501	3.4	19
161	Plasmon-enhanced organic and perovskite solar cells with metal nanoparticles. <i>Nanophotonics</i> , 2020 , 9, 3111-3133	6.3	19
160	Graphene as a Transparent and Conductive Electrode for Organic Optoelectronic Devices. <i>Advanced Electronic Materials</i> , 2019 , 5, 1900247	6.4	18
159	Aluminum-centered tetrahedron-octahedron transition in advancing Al-Sb-Te phase change properties. <i>Scientific Reports</i> , 2015 , 5, 8548	4.9	18
158	Compact Machlehnder Interferometer Based on Tapered Hollow Optical Fiber. <i>IEEE Photonics Technology Letters</i> , 2015 , 27, 1277-1280	2.2	18
157	Highly flexible inverted organic solar cells with improved performance by using an ultrasmooth Ag cathode. <i>Applied Physics Letters</i> , 2012 , 101, 133303	3.4	18
156	Element-specific amorphization of vacancy-ordered GeSbTe for ternary-state phase change memory. <i>Acta Materialia</i> , 2017 , 136, 242-248	8.4	17
155	Gold-Hyperdoped Black Silicon With High IR Absorption by Femtosecond Laser Irradiation. <i>IEEE Nanotechnology Magazine</i> , 2017 , 16, 502-506	2.6	16
154	Black Silicon IR Photodiode Supersaturated With Nitrogen by Femtosecond Laser Irradiation. <i>IEEE Sensors Journal</i> , 2018 , 18, 3595-3601	4	16
153	Integrated optofluidic-microfluidic twin channels: toward diverse application of lab-on-a-chip systems. <i>Scientific Reports</i> , 2016 , 6, 19801	4.9	16
152	Rapid Fabrication of Large-Area Periodic Structures by Multiple Exposure of Two-Beam Interference. <i>Journal of Lightwave Technology</i> , 2013 , 31, 276-281	4	16
151	Cross-wavelength invisibility integrated with various invisibility tactics. Science Advances, 2020, 6,	14.3	16
150	Enhanced efficiency of organic light-emitting devices with corrugated nanostructures based on soft nano-imprinting lithography. <i>Applied Physics Letters</i> , 2016 , 109, 193301	3.4	16
149	Mask-free construction of three-dimensional silicon structures by dry etching assisted gray-scale femtosecond laser direct writing. <i>Applied Physics Letters</i> , 2017 , 110, 091602	3.4	15
148	Gradient Assembly of Polymer Nanospheres and Graphene Oxide Sheets for Dual-Responsive Soft Actuators. <i>ACS Applied Materials & Actuators</i> , 2019, 11, 37130-37138	9.5	15
147	Growth and property characterizations of photonic crystal structures consisting of colloidal microparticles. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2000 , 17, 476	1.7	15
146	High-Throughput Screening for Phase-Change Memory Materials. <i>Advanced Functional Materials</i> , 2021 , 31, 2009803	15.6	15
145	Time-dependent density-functional theory molecular-dynamics study on amorphization of Sc-Sb-Te alloy under optical excitation. <i>Npj Computational Materials</i> , 2020 , 6,	10.9	14

(2012-2018)

144	Strong electron-polarized atom chain in amorphous phase-change memory Ge Sb Te alloy. <i>Acta Materialia</i> , 2018 , 143, 102-106	8.4	14
143	Compact Long-Period Fiber Gratings Based on Periodic Microchannels. <i>IEEE Photonics Technology Letters</i> , 2013 , 25, 111-114	2.2	14
142	Recent Progress of Lithographic Microfabrication by the TPA-Induced Photopolymerization. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2004 , 17, 385-392	0.7	14
141	Preparation of a FeO-Au-GO nanocomposite for simultaneous treatment of oil/water separation and dye decomposition. <i>Nanoscale</i> , 2016 , 8, 17451-17457	7.7	14
140	Nacre-inspired moisture-responsive graphene actuators with robustness and self-healing properties. <i>Nanoscale</i> , 2019 , 11, 20614-20619	7.7	14
139	Excitation to defect-bound band edge states in two-dimensional semiconductors and its effect on carrier transport. <i>Npj Computational Materials</i> , 2019 , 5,	10.9	13
138	Correlated High-Pressure Phase Sequence of VO under Strong Compression. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 2388-2393	6.4	13
137	Fabrication of Black Silicon With Thermostable Infrared Absorption by Femtosecond Laser. <i>IEEE Photonics Journal</i> , 2016 , 8, 1-9	1.8	13
136	Simultaneous identification of multi-combustion-intermediates of alkanol-air flames by femtosecond filament excitation for combustion sensing. <i>Scientific Reports</i> , 2016 , 6, 27340	4.9	13
135	Sub-bandgap photo-response of non-doped black-silicon fabricated by nanosecond laser irradiation. <i>Optics Letters</i> , 2018 , 43, 1710-1713	3	13
134	Light-Responsive Actuators Based on Graphene. Frontiers in Chemistry, 2019, 7, 506	5	13
133	Femtosecond laser fabrication of 3D templates for mass production of artificial compound eyes. <i>Nami Jishu Yu Jingmi Gongcheng/Nanotechnology and Precision Engineering</i> , 2019 , 2, 110-117	2.4	13
132	Lithographic Microfabrication by Using Two-Photon Absorbing Phenylenevinylene Derivative. <i>Molecular Crystals and Liquid Crystals</i> , 2004 , 424, 35-41	0.5	13
131	Coexistence of bulk and surface polaritons in a magnetic-semiconductor superlattice influenced by a transverse magnetic field. <i>Journal of Applied Physics</i> , 2017 , 121, 103102	2.5	12
130	Stretchable PEG-DA Hydrogel-Based Whispering-Gallery-Mode Microlaser with Humidity Responsiveness. <i>Journal of Lightwave Technology</i> , 2018 , 36, 819-824	4	12
129	Microscale-Patterned Graphene Electrodes for Organic Light-Emitting Devices by a Simple Patterning Strategy. <i>Advanced Optical Materials</i> , 2018 , 6, 1701348	8.1	12
128	Flame treatment of graphene oxides: cost-effective production of nanoporous graphene electrode for Lithium-ion batteries. <i>Scientific Reports</i> , 2015 , 5, 17522	4.9	12
127	Distributed feedback lasing from thin organic crystal based on active waveguide grating structures. <i>Organic Electronics</i> , 2012 , 13, 1602-1605	3.5	12

126	Role of \${rm Fe}_{3}{rm O}_{4}\$ as a \$p\$-Dopant in Improving the Hole Injection and Transport of Organic Light-Emitting Devices. <i>IEEE Journal of Quantum Electronics</i> , 2011 , 47, 591-596	2	12
125	Improved hole injection and transport of organic light-emitting devices with an efficient p-doped hole-injection layer. <i>Applied Physics Letters</i> , 2009 , 95, 263303	3.4	12
124	Direct identification of Mott Hubbard band pattern beyond charge density wave superlattice in monolayer 1T-NbSe. <i>Nature Communications</i> , 2021 , 12, 1978	17.4	12
123	Femtosecond Laser Direct Writing Assisted Nonequilibriumly Doped Silicon n+-p Photodiodes for Light Sensing. <i>IEEE Sensors Journal</i> , 2015 , 15, 4259-4263	4	11
122	Laser interference fabrication of large-area functional periodic structure surface. <i>Frontiers of Mechanical Engineering</i> , 2018 , 13, 493-503	3.3	11
121	Bioinspired Superhydrophobic Surfaces via Laser-Structuring. Frontiers in Chemistry, 2020, 8, 835	5	11
120	Hybrid RefractiveDiffractive Optical Vortex Microlens. <i>IEEE Photonics Technology Letters</i> , 2016 , 28, 229	9 <u>-22</u> 302	11
119	Kraft Mesh Origami for Efficient Oil-Water Separation. <i>Langmuir</i> , 2019 , 35, 815-823	4	11
118	High Curvature Concave©onvex Microlens. IEEE Photonics Technology Letters, 2015, 27, 2465-2468	2.2	10
117	Dynamics of Strongly Coupled Hybrid States by Transient Absorption Spectroscopy. <i>Advanced Functional Materials</i> , 2018 , 28, 1801761	15.6	10
116	Organic Crystals: Fabrication and Characterization of Organic Single Crystal-Based Light-Emitting Devices with Improved Contact Between the Metallic Electrodes and Crystal (Adv. Funct. Mater. 45/2014). <i>Advanced Functional Materials</i> , 2014 , 24, 7066-7066	15.6	10
115	Three-dimensional micronanofabrication via two-photon-excited photoisomerization. <i>Applied Physics Letters</i> , 2009 , 95, 083118	3.4	10
114	Two-Photon Absorption and Spectral-Narrowed Light Source. <i>IEEE Journal of Quantum Electronics</i> , 2010 , 46, 1775-1781	2	10
113	Layer-Dependent Electron Transfer and Recombination Processes in MoS/WSe Multilayer Heterostructures. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 9649-9655	6.4	10
112	Well-Balanced Ambipolar Organic Single Crystals toward Highly Efficient Light-Emitting Devices. <i>Advanced Functional Materials</i> , 2020 , 30, 2002422	15.6	10
111	Directional Droplet Transport on Functional Surfaces with Superwettabilities. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2100043	4.6	10
110	Silicon-Based Suspended Structure Fabricated by Femtosecond Laser Direct Writing and Wet Etching. <i>IEEE Photonics Technology Letters</i> , 2016 , 28, 1605-1608	2.2	10
109	Light-Driven Magnetic Encoding for Hybrid Magnetic Micromachines. <i>Nano Letters</i> , 2021 , 21, 1628-1635	5 11.5	10

108	Multimode Coherent Hybrid States: Ultrafast Investigation of Double Rabi Splitting between Surface Plasmons and Sulforhodamine 101 Dyes. <i>Advanced Optical Materials</i> , 2017 , 5, 1600857	8.1	9
107	On-Chip Polarization Rotators. Advanced Optical Materials, 2019 , 7, 1900129	8.1	9
106	Stability Improved Stretchable Metallic Gratings With Tunable Grating Period in Submicron Scale. Journal of Lightwave Technology, 2015 , 33, 3327-3331	4	9
105	The Optical and Electrical Properties of Co-Doped Black Silicon Textured by a Femtosecond Laser and Its Application to Infrared Light Sensing. <i>IEEE Sensors Journal</i> , 2016 , 16, 5227-5231	4	9
104	Fabrication of photopolymer hierarchical micronanostructures by coupling electrospinning and photolithography for SERS substrates. <i>Macromolecular Research</i> , 2013 , 21, 306-310	1.9	9
103	Strongly Localized Evanescent Optical Tamm States at Metal-DBR Interface. <i>Journal of Lightwave Technology</i> , 2013 , 31, 1654-1659	4	9
102	Flexible Efficient Top-Emitting Organic Light-Emitting Devices on a Silk Substrate. <i>IEEE Photonics Journal</i> , 2017 , 9, 1-6	1.8	9
101	Point-by-Point Dip Coated Long-Period Gratings in Microfibers. <i>IEEE Photonics Technology Letters</i> , 2014 , 26, 2503-2506	2.2	9
100	Micro-buried spiral zone plate in a lithium niobate crystal. <i>Applied Physics Letters</i> , 2017 , 110, 041102	3.4	8
99	Surface modification of nanostructured ZnS by femtosecond laser pulsing. <i>Applied Surface Science</i> , 2014 , 293, 332-335	6.7	8
98	Surface plasmon-enhanced amplified spontaneous emission from organic single crystals by integrating graphene/copper nanoparticle hybrid nanostructures. <i>Nanoscale</i> , 2017 , 9, 19353-19359	7.7	8
97	Enhanced Efficiency and Mechanical Robustness of Flexible Perovskite Solar Cells by Using HPbI3 Additive. <i>Solar Rrl</i> , 2021 , 5, 2000821	7.1	8
96	Electrical properties and structural transition of Ge2Sb2Te5 adjusted by rare-earth element Gd for nonvolatile phase-change memory. <i>Journal of Applied Physics</i> , 2018 , 124, 145107	2.5	8
95	NIR Photodetector Based on Nanosecond Laser-Modified Silicon. <i>IEEE Transactions on Electron Devices</i> , 2018 , 65, 4905-4909	2.9	8
94	Sulfur-Doped Silicon Photodiode by Ion Implantation and Femtosecond Laser Annealing. <i>IEEE Sensors Journal</i> , 2017 , 17, 2367-2371	4	7
93	Ultrafast Spectroscopic Study of InsulatorBemiconductorBemimetal Transitions in Graphene Oxide and Its Reduced Derivatives. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 22550-22555	3.8	7
92	Investigating the dynamics of excitons in monolayer WSe before and after organic super acid treatment. <i>Nanoscale</i> , 2018 , 10, 9346-9352	7.7	7
91	One-pot preparation of novel asymmetric structure nanoparticles and its application in catalysis. <i>RSC Advances</i> , 2014 , 4, 43586-43589	3.7	7

90	Simultaneous Femtosecond Laser Doping and Surface Texturing for Implanting Applications. Advanced Materials Interfaces, 2015 , 2, 1500058	4.6	7
89	Measurement of Two-Photon Absorption Cross Section of Metal Ions by a Mass Sedimentation Approach. <i>Scientific Reports</i> , 2015 , 5, 17712	4.9	7
88	Modulation Doping: A Strategy for 2D Materials Electronics. <i>Nano Letters</i> , 2021 , 21, 6298-6303	11.5	7
87	Evidence of concerted inversion for the photon-induced molecular switching of azobenzene using rotation-free azobenzene derivatives. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 5244	7.1	6
86	Many-particle induced band renormalization processes in few- and mono-layer MoS. <i>Nanotechnology</i> , 2021 , 32, 135208	3.4	6
85	Electro-responsive actuators based on graphene. Innovation(China), 2021, 2, 100168	17.8	6
84	Laser Fabrication of Bioinspired Graphene Surfaces With Superwettability. <i>Frontiers in Chemistry</i> , 2020 , 8, 525	5	5
83	Intense Femtosecond Laser-Mediated Electrical Discharge Enables Preparation of Amorphous Nickel Phosphide Nanoparticles. <i>Langmuir</i> , 2018 , 34, 5712-5718	4	5
82	Sapphire-Based Dammann Gratings for UV Beam Splitting. <i>IEEE Photonics Journal</i> , 2016 , 8, 1-8	1.8	5
81	The mystical interlinks: Mechanics, religion or optics?. <i>Science China: Physics, Mechanics and Astronomy</i> , 2016 , 59, 1	3.6	5
80	Unconventional phase transition of phase-change-memory materials for optical data storage. <i>Chinese Physics B</i> , 2019 , 28, 104202	1.2	5
79	Giant lattice expansion by quantum stress and universal atomic forces in semiconductors under instant ultrafast laser excitation. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 24735-24741	3.6	5
78	Biomimetics: Bioinspired Fabrication of Superhydrophobic Graphene Films by Two-Beam Laser Interference (Adv. Funct. Mater. 29/2014). <i>Advanced Functional Materials</i> , 2014 , 24, 4720-4720	15.6	5
77	FDTD Study on the Invisibility Performance of Two-Dimensional Cylindrical Cloak With Off-Plane Incidence. <i>Journal of Lightwave Technology</i> , 2012 , 30, 1835-1842	4	5
76	Strain at Native \${rm SiO}_{2}/{rm Si}(111)\$ Interface Characterized by Strain-Scanning Second-Harmonic Generation. <i>IEEE Journal of Quantum Electronics</i> , 2011 , 47, 55-59	2	5
75	Improved Performance of ITO-Free Organic Solar Cells Using a Low-Workfunction and Periodically Corrugated Metallic Cathode. <i>IEEE Photonics Journal</i> , 2012 , 4, 1737-1743	1.8	5
74	TWO-PHOTON ABSORBING PHENYLENEVINYLENE DERIVATIVE HAVING SILYLOXY MOIETIES IN DONOR UNITS. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2004 , 13, 467-474	0.8	5
73	Axially controllable multiple orbital angular momentum beam generator. <i>Applied Physics Letters</i> , 2020 , 117, 021101	3.4	5

72	Phase-Change-Memory Process at the Limit: A Proposal for Utilizing Monolayer SbTe. <i>Advanced Science</i> , 2021 , 8, 2004185	13.6	5
71	Surface nanostructuring via femtosecond lasers. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 24262-2	4 3.6 8	5
70	Laser-induced color centers in crystals. <i>Optics and Laser Technology</i> , 2022 , 146, 107527	4.2	5
69	Curved Photodetectors Based on Perovskite Microwire Arrays via In Situ Conformal Nanoimprinting. <i>Advanced Functional Materials</i> ,2202277	15.6	5
68	Stretchable Textiles with Superwettabilities for Tunable Oil-Water Separation. <i>ChemNanoMat</i> , 2020 , 6, 1111-1118	3.5	4
67	Protein-Based Multi-Mode Interference Optical Micro-Splitters. <i>IEEE Photonics Technology Letters</i> , 2016 , 28, 629-632	2.2	4
66	Non-phase-separated 2D B-C-N alloys via molecule-like carbon doping in 2D BN: atomic structures and optoelectronic properties. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 23106-23111	3.6	4
65	Actuators: Quantum-Confined-Superfluidics-Enabled Moisture Actuation Based on Unilaterally Structured Graphene Oxide Papers (Adv. Mater. 32/2019). <i>Advanced Materials</i> , 2019 , 31, 1970231	24	4
64	The atomic and electronic structure of amorphous BP4. Journal of Alloys and Compounds, 2012, 545, 14	4 5 1 7 47	4
63	Top down fabrication of organic nanocrystals by femtosecond laser induced transfer method. <i>CrystEngComm</i> , 2012 , 14, 4596	3.3	4
62	Optical subpicosecond nonvolatile switching and electron-phonon coupling in ferroelectric materials. <i>Physical Review B</i> , 2020 , 102,	3.3	4
61	Possible n/p-type conductivity of two-dimensional graphene oxide by boron and nitrogen doping: Evaluated via constrained excitation. <i>Applied Physics Letters</i> , 2016 , 109, 203113	3.4	4
60	MicroNano-Texturing Inner Surfaces of Small-Caliber High Aspect Ratio and Superhydrophobic Artificial Vessels using Femtosecond Laser Filamenting Pulses. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1801148	4.6	4
59	Dispersion peculiarities of hybrid modes in a circular waveguide filled by a composite gyroelectromagnetic medium. <i>Journal of Electromagnetic Waves and Applications</i> , 2017 , 31, 350-362	1.3	3
58	Distinct outcomes by dynamically encircling an exceptional point along homotopic loops. <i>Physical Review A</i> , 2019 , 99,	2.6	3
57	Shape-Designable and Size-Tunable OrganicIhorganic Hybrid Perovskite Micro-Ring Resonator Arrays. <i>Advanced Materials Technologies</i> , 2020 , 5, 2000051	6.8	3
56	Transient Depolarization Spectroscopic Study on Electronic Structure and Fluorescence Origin of Graphene Oxide. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 1483-1489	6.4	3
55	Properties of conical microstructures formed on silicon surfaces via nanosecond laser ablation under vacuum. <i>Optical and Quantum Electronics</i> , 2016 , 48, 1	2.4	3

54	Role of hydrogen in the growth of boron nitride: Cubic phase versus hexagonal phase. <i>Computational Materials Science</i> , 2014 , 82, 310-313	3.2	3
53	Sub-Bandgap Photo-Response of Chromium Hyperdoped Black Silicon Photodetector Fabricated by Femtosecond Laser Pulses. <i>IEEE Sensors Journal</i> , 2021 , 1-1	4	3
52	Nanoscale amorphous interfaces in phase-change memory materials: structure, properties and design. <i>Journal Physics D: Applied Physics</i> , 2020 , 53, 114002	3	3
51	Two-Photon Polymerization Nanomanufacturing Based on the DefinitionReinforcementBolidification (DRS) Strategy. <i>Journal of Lightwave Technology</i> , 2021 , 39, 2091-	2 0 98	3
50	Linked Weyl surfaces and Weyl arcs in photonic metamaterials. <i>Science</i> , 2021 , 373, 572-576	33.3	3
49	Infrared Photodiode of Textured Silicon Irradiated Under Mixed Gas by Femtosecond Laser. <i>IEEE Sensors Journal</i> , 2016 , 1-1	4	3
48	Exploring long-wave infrared transmitting materials with AxBy form: First-principles gene-like studies. <i>Scientific Reports</i> , 2016 , 6, 21912	4.9	3
47	Observation of robust charge transfer under strain engineering in two-dimensional MoS-WSe heterostructures. <i>Nanoscale</i> , 2021 , 13, 14081-14088	7.7	3
46	Metallic Graphene Nanoribbons. <i>Nano-Micro Letters</i> , 2021 , 13, 53	19.5	3
45	Enhanced Performance of Perovskite Light-Emitting Devices With Improved Perovskite Crystallization. <i>IEEE Photonics Journal</i> , 2017 , 9, 1-8	1.8	2
44	Quantum Dot LEDs: Stretchable Organometal-Halide-Perovskite Quantum-Dot Light-Emitting Diodes (Adv. Mater. 22/2019). <i>Advanced Materials</i> , 2019 , 31, 1970157	24	2
43	Stability enhancement of the metastable cubic Sb2Te3 in supperlattice-like films. <i>Materials Letters</i> , 2019 , 243, 153-156	3.3	2
42	Aplanatic Zone Plate Embedded in Sapphire. IEEE Photonics Technology Letters, 2018, 30, 509-512	2.2	2
41	Slide fastener reduction of graphene-oxide edges by calcium: insight from ab initio molecular dynamics. <i>ChemPhysChem</i> , 2014 , 15, 2707-11	3.2	2
40	Truncated Lorch-window method revealing the off-octahedral Ge in nanocrystalline Ge2Sb2Te5. <i>Physica Status Solidi (B): Basic Research</i> , 2012 , 249, 1914-1918	1.3	2
39	Tapered and Tip-Grounded Waveguide Electrooptical Microsensors. <i>IEEE Photonics Journal</i> , 2011 , 3, 57-	63 8	2
38	Highly transparent and conductive metal oxide/metal/polymer composite electrodes for high-efficiency flexible organic light-emitting devices. <i>Nanophotonics</i> , 2020 , 9, 3567-3573	6.3	2
37	Evaluation of Charged Defect Energy in Two-Dimensional Semiconductors for Nanoelectronics: The WLZ Extrapolation Method. <i>Annalen Der Physik</i> , 2020 , 532, 1900318	2.6	2

36	Polarization Independent Quantum Devices With Ultra-Low Birefringence Glass Waveguides. Journal of Lightwave Technology, 2021 , 39, 1451-1457	4	2	
35	Free-Form Micro-Optics Out of Crystals: Femtosecond Laser 3D Sculpturing. <i>Advanced Functional Materials</i> ,2200255	15.6	2	
34	Broad-Bandwidth Micro-Diffractive Optical Elements. Laser and Photonics Reviews, 2022, 16, 2100537	8.3	2	
33	General Rules Governing the Dynamical Encircling of an Arbitrary Number of Exceptional Points <i>Physical Review Letters</i> , 2021 , 127, 253901	7.4	2	
32	High-Order-Tilted Fiber Bragg Gratings With Superposed Refractive Index Modulation. <i>IEEE Photonics Journal</i> , 2018 , 10, 1-8	1.8	1	
31	Study of textured ZnS irradiated by femtosecond laser pulses. <i>Optical and Quantum Electronics</i> , 2016 , 48, 1	2.4	1	
30	Plasmon-Photon Coupled Modes Lasing in a Silver-Coated Hemisphere. <i>IEEE Photonics Technology Letters</i> , 2016 , 28, 351-354	2.2	1	
29	Organic Single Crystalline Lasers: Distributed Feedback Lasers Based on Thiophene/Phenylene Co-Oligomer Single Crystals (Adv. Funct. Mater. 1/2012). <i>Advanced Functional Materials</i> , 2012 , 22, 32-32	15.6	1	
28	Electronic excitation induced hydrogen-bond adjustment and lattice control in organic-inorganic hybrid cubic perovskites: a fixed occupation molecular dynamics study. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 26164-26168	3.6	1	
27	Liu et al. Reply:. <i>Physical Review Letters</i> , 2012 , 108,	7.4	1	
26	Precise measurement of weak strain by second-harmonic generation from silicon (111) surface. Journal of the Optical Society of America B: Optical Physics, 2013 , 30, 1200	1.7	1	
25	Anomalous Electro-Optic Effect in Polar Liquid Films. IEEE Journal of Quantum Electronics, 2012, 48, 131	I Q -131	31	
24	Micro/nanofabrication of two and three dimensional structures by two-photon polymerization		1	
23	Parallel-Integrated Sapphire Fiber Bragg Gratings Probe Sensor for High Temperature Sensing. <i>IEEE Sensors Journal</i> , 2022 , 1-1	4	1	
22	Stretchable Organic Light-Emitting Devices with Invisible Orderly Wrinkles by using a Transfer-Free Technique. <i>Advanced Materials Technologies</i> ,2101263	6.8	1	
21	Strong Coupling: Dynamics of Strong Coupling between J-Aggregates and Surface Plasmon Polaritons in Subwavelength Hole Arrays (Adv. Funct. Mater. 34/2016). <i>Advanced Functional Materials</i> , 2016 , 26, 6197-6197	15.6	1	
20	Nucleation Dynamics of Phase-Change Memory Materials: Atomic Motion and Property Evolution. <i>Physica Status Solidi - Rapid Research Letters</i> , 2021 , 15, 2000441	2.5	1	
19	Capillary Force-Induced Printing of Stretchable and Mechanically Stable Silver Nanowire Electrodes With Highly Ordered Alignment For Ultra-Flexible Organic Light-Emitting Devices. <i>IEEE Nanotechnology Magazine</i> , 2021 , 20, 99-103	2.6	1	

18	Mexican-hat potential energy surface in two-dimensional III2-VI3 materials and the importance of entropy barrier in ultrafast reversible ferroelectric phase change. <i>Applied Physics Reviews</i> , 2021 , 8, 0314	113.3	1
17	Direct Observation of Room-Temperature Intravalley Coherent Coupling Processes in Monolayer MoS 2. <i>Laser and Photonics Reviews</i> , 2022 , 16, 2100343	8.3	1
16	Eliminating Angular Dispersion in Microcavity by Employing Metamaterials With Hyperbolic Dispersion as Reflectors. <i>IEEE Journal of Quantum Electronics</i> , 2014 , 50, 348-353	2	0
15	Atomic-scale observation of strain-induced local amorphization in face-centered cubic metals. <i>Scripta Materialia</i> , 2022 , 212, 114553	5.6	O
14	Electronic structure evolution and exciton energy shifting dynamics in WSe2: from monolayer to bulk. <i>Journal Physics D: Applied Physics</i> , 2021 , 54, 354002	3	0
13	Exceptional point protected robust on-chip optical logic gates. <i>Exploration</i> ,20210243		O
12	Control of single-mode operation in a circular waveguide filled by a longitudinally magnetized gyroelectromagnetic medium. <i>Journal of Electromagnetic Waves and Applications</i> , 2017 , 31, 1265-1276	1.3	
11	Study on optical and electrical properties of gold-doped silicon fabricated by femtosecond laser. <i>Optical and Quantum Electronics</i> , 2017 , 49, 1	2.4	
10	Graphene: Moisture-Responsive Graphene Paper Prepared by Self-Controlled Photoreduction (Adv. Mater. 2/2015). <i>Advanced Materials</i> , 2015 , 27, 190-190	24	
9	SERS Substrates: Silver-Coated Rose Petal: Green, Facile, Low-Cost and Sustainable Fabrication of a SERS Substrate with Unique Superhydrophobicity and High Efficiency (Advanced Optical Materials 1/2013). <i>Advanced Optical Materials</i> , 2013 , 1, 55-55	8.1	
8	Regular arrays of triangular-microstructure formed on silicon (111) surface via ultrafast laser irradiation in KOH solution. <i>Surface and Interface Analysis</i> , 2013 , 45, 1667-1672	1.5	
7	Time-Resolved Spectroscopic Study of the Aggregation-Induced Emission Mechanism 2013 , 337-355		
6	Excited State Dynamics of 2-MPT-Derived Fluorescent Molecular Switches. <i>IEEE Journal of Quantum Electronics</i> , 2011 , 47, 1163-1170	2	
5	Electronic Excitation Induced Solid-State Amorphization in Ge-Sb-Te Alloy. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1370, 77		
4	Two-Photon Laser Micro-Nano Fabrication; Understanding from Single-Voxel Level. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 758, 461		
3	Creation of a Micro-Nanoworld with Photons. <i>Seikei-Kakou</i> , 2005 , 17, 524-527	Ο	
2	Erratum to MetalInsulator Transition of GeBbITe Superlattice: An Electron Counting Model Study[[Jan 18 140-146]. <i>IEEE Nanotechnology Magazine</i> , 2018 , 17, 614-614	2.6	
1	Femtosecond transient absorption spectroscopic study on the electronic structures of graphene oxides, graphene oxide nanoribbons and graphene quantum dots. <i>Optical Materials Express</i> , 2021 , 11, 3486	2.6	