Minchen Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2416045/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of the IES method for evaluating the color rendition of light sources. Optics Express, 2015, 23, 15888.	1.7	184
2	Review of measures for light-source color rendition and considerations for a two-measure system for characterizing color rendition. Optics Express, 2013, 21, 10393.	1.7	113
3	Color Preference under LEDs with Diminished Yellow Emission. LEUKOS - Journal of Illuminating Engineering Society of North America, 2014, 10, 119-131.	1.5	79
4	A proposed lighting-design space: circadian effect versus visual illuminance. Building and Environment, 2017, 122, 287-293.	3.0	57
5	Field study of office worker responses to fluorescent lighting of different CCT and lumen output. Journal of Environmental Psychology, 2014, 39, 62-76.	2.3	56
6	Human perceptions of colour rendition vary with average fidelity, average gamut, and gamut shape. Lighting Research and Technology, 2017, 49, 966-991.	1.2	54
7	Eye Movement and Pupil Size Constriction Under Discomfort Glare. Investigative Ophthalmology and Visual Science, 2015, 56, 1649-1656.	3.3	51
8	The impact of room surface reflectance on corneal illuminance and rule-of-thumb equations for circadian lighting design. Building and Environment, 2018, 141, 288-297.	3.0	51
9	Colour preference varies with lighting application. Lighting Research and Technology, 2017, 49, 316-328.	1.2	44
10	Colour gamut size and shape influence colour preference. Lighting Research and Technology, 2017, 49, 992-1014.	1.2	42
11	Perceptual responses to LED illumination with colour rendering indices of 85 and 97. Lighting Research and Technology, 2015, 47, 810-827.	1.2	40
12	Human perceptions of colour rendition at different chromaticities. Lighting Research and Technology, 2018, 50, 965-994.	1.2	38
13	Whiteness Perception under LED Illumination. LEUKOS - Journal of Illuminating Engineering Society of North America, 2014, 10, 165-180.	1.5	35
14	What Is the Cause of Apparent Preference for Sources with Chromaticity below the Blackbody Locus?. LEUKOS - Journal of Illuminating Engineering Society of North America, 2016, 12, 95-99.	1.5	35
15	Systematic Changes in Gamut Size Affect Color Preference. LEUKOS - Journal of Illuminating Engineering Society of North America, 2017, 13, 23-32.	1.5	35
16	Fullâ€Color Chemically Modulated gâ€C ₃ N ₄ for Whiteâ€Lightâ€Emitting Device. Advanced Optical Materials, 2019, 7, 1900775.	3.6	33
17	White appearance of a tablet display under different ambient lighting conditions. Optics Express, 2018, 26, 5018.	1.7	25
18	Effects of adapting luminance and CCT on appearance of white and degree of chromatic adaptation. Optics Express, 2019, 27, 9276.	1.7	24

#	Article	IF	CITATIONS
19	Status of Solid-State Lighting Based on Entries to the 2010 US DOE Next Generation Luminaire Competition. LEUKOS - Journal of Illuminating Engineering Society of North America, 2012, 8, 237-259.	1.5	24
20	The Role of Presented Objects in Deriving Color Preference Criteria from Psychophysical Studies. LEUKOS - Journal of Illuminating Engineering Society of North America, 2017, 13, 143-157.	1.5	21
21	Consideration of Light Level in Specifying Light Source Color Rendition. LEUKOS - Journal of Illuminating Engineering Society of North America, 2020, 16, 55-65.	1.5	21
22	Color mismatch and observer metamerism between conventional liquid crystal displays and organic light emitting diode displays. Optics Express, 2021, 29, 12292.	1.7	20
23	Observer metamerism to display white point using different primary sets. Optics Express, 2020, 28, 20305.	1.7	20
24	Optimization of a spectrally tunable <scp>LED</scp> daylight simulator. Color Research and Application, 2017, 42, 419-423.	0.8	18
25	Evaluation of whiteness formulas for FWA and non-FWA whites. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2017, 34, 640.	0.8	18
26	Preference among light sources with different Duv but similar colour rendition: A pilot study. Lighting Research and Technology, 2018, 50, 1013-1023.	1.2	17
27	The prediction of perceived colour differences by colour fidelity metrics. Lighting Research and Technology, 2017, 49, 805-817.	1.2	16
28	Experimental validation of colour rendition specification criteria based on ANSI/IES TM-30-18. Lighting Research and Technology, 2020, 52, 323-349.	1.2	15
29	Illuminance Uniformity of Outdoor Sports Lighting. LEUKOS - Journal of Illuminating Engineering Society of North America, 2011, 7, 221-235.	1.5	13
30	An experimental study on achieving even-frosting for an air source heat pump using a novel dual-fan outdoor coil. Energy and Buildings, 2022, 255, 111695.	3.1	13
31	Effect of textâ€background lightness combination on visual comfort for reading on a tablet display under different surrounds. Color Research and Application, 2019, 44, 54-64.	0.8	12
32	Developing condensing-frosting performance maps for a variable speed air source heat pump (ASHP) for frosting suppression. Applied Thermal Engineering, 2022, 211, 118397.	3.0	12
33	Evaluation of whiteness metrics. Lighting Research and Technology, 2018, 50, 429-445.	1.2	11
34	Characterization of the acceptable daylight quality in typical residential buildings in Hong Kong. Building and Environment, 2020, 182, 107094.	3.0	11
35	Chromaticity and characterization of whiteness for surface colors. Optics Express, 2017, 25, 27981.	1.7	10
36	Does typical weather data allow accurate predictions of daylight quality and daylight-responsive control system performance. Energy and Buildings, 2019, 184, 72-87.	3.1	10

#	Article	IF	CITATIONS
37	Change of Gamut Size for Producing Preferred Color Appearance from 20 to 15000 lux. LEUKOS - Journal of Illuminating Engineering Society of North America, 2021, 17, 21-42.	1.5	10
38	Investigation on effects of adapting chromaticities and luminance on color appearance on computer displays using memory colors. Color Research and Application, 2020, 45, 612-621.	0.8	9
39	Chromaticities for Producing White Stimuli Depend on Viewing Mode Rather Than Viewing Medium: A Pilot Study. LEUKOS - Journal of Illuminating Engineering Society of North America, 2020, 16, 255-265.	1.5	8
40	Comparison of daylight simulation methods for reflected sunlight from curtain walls. Building Simulation, 2021, 14, 549-564.	3.0	8
41	Recommended methods for conducting human factors experiments on the subjective evaluation of colour rendition. Lighting Research and Technology, 2022, 54, 199-236.	1.2	8
42	Impact of spectral power distribution of daylight simulators on whiteness specification for surface colors. Color Research and Application, 2018, 43, 27-33.	0.8	7
43	Perceived colour fidelity under LEDs with similar Rf but different Ra. Lighting Research and Technology, 2019, 51, 858-869.	1.2	7
44	Color mismatch and observer metamerism between conventional liquid crystal displays and organic light emitting diode displays, Part II: Adjacent stimuli with a larger field of view. Optics Express, 2021, 29, 41731.	1.7	7
45	Development of a whiteness formula for surface colors under an arbitrary light source. Optics Express, 2018, 26, 18171.	1.7	6
46	Estimation of Possible Suppression of Melatonin Production Caused by Exterior Lighting in Commercial Business Districts in Metropolises. LEUKOS - Journal of Illuminating Engineering Society of North America, 2020, 16, 137-144.	1.5	6
47	Effect of primary peak wavelength on color matching and color matching function performance. Optics Express, 2021, 29, 40447.	1.7	6
48	LED Illumination and Color Appearance of White-Balanced Images. LEUKOS - Journal of Illuminating Engineering Society of North America, 2020, 16, 203-215.	1.5	4
49	Effect of Stimulus Luminance and Adapting Luminance on Viewing Mode and Display White Appearance. Color and Imaging Conference, 2018, 26, 308-312.	0.1	4
50	Assessing the temporal uniformity of CIELAB hue angle. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2020, 37, 521.	0.8	4
51	Effects of adapting luminance and CCT on appearance of white and degree of chromatic adaptation, part II: extremely high adapting luminance. Optics Express, 2021, 29, 42319.	1.7	4
52	Testing the performance of <scp>CIECAM02</scp> from 100 to 3500 cd/m ² . Color Research and Application, 2020, 45, 992-1004.	0.8	3
53	Road lighting: A pilot study investigating improvement of visual performance using light sources with a larger gamut area. Lighting Research and Technology, 2020, 52, 895-905.	1.2	3
54	White appearance of virtual stimuli produced by augmented reality. Color Research and Application, 2021, 46, 294-302.	0.8	3

#	Article	IF	CITATIONS
55	Investigating unique hues at different chroma levels with a smaller hue angle step. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2020, 37, 671.	0.8	3
56	Effect of observer age and stimulus size on the performance of CIE color matching functions. Optics Express, 2022, 30, 16973.	1.7	3
57	Office Worker Response to Fluorescent Lamps of Different CCT and Lumen Output. , 2013, , .		2
58	Unique hue judgments using saturated and desaturated Munsell samples under different light sources. Color Research and Application, 2019, 44, 419-425.	0.8	2
59	Consideration of degree of chromatic adaptation for reproducing illuminated scenes. Color Research and Application, 0, , .	0.8	2
60	Research on a method to measure the optical parameters of a precision approach path indicator. Applied Optics, 2008, 47, 4762.	2.1	1
61	Psychological and physiological influences of CCTs on young people before sleep. , 2017, , .		1
62	Real-world environment affects the color appearance of virtual stimuli produced by augmented reality. Color and Imaging Conference, 2019, 2019, 237-242.	0.1	1
63	Change of color appearance due to extremely high light level: corresponding colors under 100 and 3000 cd/m ² . Color and Imaging Conference, 2019, 27, 320-325.	0.1	1
64	New Spectral Data for Skin Colours. Color and Imaging Conference, 2016, 2016, 266-270.	0.1	1
65	Opinion: Consider colorimetric quantities when evaluating obtrusive light. Lighting Research and Technology, 2017, 49, 4-4.	1.2	0
66	Impact of fluorescent whitening agent excitation on White Balance Algorithms. Color Research and Application, 2018, 43, 685-696.	0.8	0
67	Judgment of White Appearance for Surface Colors under Individual and Simultaneous Observations. LEUKOS - Journal of Illuminating Engineering Society of North America, 2018, 14, 245-257.	1.5	0
68	The optimal number of sensors for a digital imaging system from the perspective of metamer mismatching. Color Research and Application, 2020, 45, 275-289.	0.8	0
69	Visual Comfort of Tablet Devices under a Wide Range of Ambient Light Levels. Applied Sciences (Switzerland), 2021, 11, 8679.	1.3	0
70	Perception of White for Stimuli with Luminance Beyond the Diffuse White. Journal of Imaging Science and Technology, 2021, 65, 50405-1-50405-7.	0.3	0
71	Considerations in LED spectral design for enhanced color quality. , 2016, , .		0
72	The Necessity of a Whiteness Scale for FWA-enhanced Whites. Color and Imaging Conference, 2016, 2016, 2016, 237-241.	0.1	0

#	Article	IF	CITATIONS
73	Optimal Text-background Lightness Combination for Enhancing Visual Comfort When Using a Tablet under Different Surrounds. Color and Imaging Conference, 2018, 2018, 259-263.	0.1	0
74	Effective Boundary for White Surface Colour. Color and Imaging Conference, 2018, 2018, 231-236.	0.1	0
75	White Balance under White-light LED Illumination. Color and Imaging Conference, 2018, 2018, 140-144.	0.1	0
76	Light Sources with a Larger Gamut Area Can Enhance Color Preference under a Lower Light Level. Color and Imaging Conference, 2018, 2018, 354-358.	0.1	0
77	Degree of chromatic adaptation under adapting conditions with different luminance and chromaticities. Color and Imaging Conference, 2019, 27, 19-22.	0.1	0
78	New Metrics for Evaluating Whiteness of Fluorescent Samples. Color and Imaging Conference, 2019, 27, 247-251.	0.1	0