Thomas Schmidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2415981/publications.pdf

Version: 2024-02-01

90 papers

4,154 citations

38 h-index 62 g-index

99 all docs 99 docs citations 99 times ranked 5665 citing authors

#	Article	IF	CITATIONS
1	Substrate rigidity modulates traction forces and stoichiometry of cell–matrix adhesions. Journal of Chemical Physics, 2022, 156, 085101.	1.2	5
2	Impact of neurite alignment on organelle motion. Journal of the Royal Society Interface, 2022, 19, 20210617.	1.5	2
3	Analysis of the H-Ras mobility pattern <i>in vivo</i> shows cellular heterogeneity inside epidermal tissue. DMM Disease Models and Mechanisms, 2022, 15, .	1.2	2
4	Characterization of cell-induced astigmatism in high-resolution imaging. Biomedical Optics Express, 2022, 13, 464.	1.5	4
5	Holding it together: when cadherin meets cadherin. Biophysical Journal, 2021, 120, 4182-4192.	0.2	34
6	Hypergravity affects cell traction forces of fibroblasts. Biophysical Journal, 2021, 120, 773-780.	0.2	7
7	Single Cell Micro-Pillar-Based Characterization of Endothelial and Fibroblast Cell Mechanics. Micro, 2021, 1, 242-249.	0.9	2
8	Fibronectin Patches as Anchoring Points for Force Sensing and Transmission in Human Induced Pluripotent Stem Cell-Derived Pericytes. Stem Cell Reports, 2020, 14, 1107-1122.	2.3	7
9	Mechanical interplay between cell shape and actin cytoskeleton organization. Soft Matter, 2020, 16, 6328-6343.	1.2	30
10	Hemidesmosomes modulate force generation via focal adhesions. Journal of Cell Biology, 2020, 219, .	2.3	87
11	Repetitive switching between DNA binding modes enables target finding by the glucocorticoid receptor. Journal of Cell Science, 2019, 132, .	1.2	8
12	The Activity of Kv 11.1 Potassium Channel Modulates F-Actin Organization During Cell Migration of Pancreatic Ductal Adenocarcinoma Cells. Cancers, 2019, 11, 135.	1.7	37
13	Role of c-MET Inhibitors in Overcoming Drug Resistance in Spheroid Models of Primary Human Pancreatic Cancer and Stellate Cells. Cancers, 2019, 11, 638.	1.7	57
14	Quantifying cellular forces and biomechanical properties by correlative micropillar traction force and Brillouin microscopy. Biomedical Optics Express, 2019, 10, 2202.	1.5	16
15	Cytoskeletal Anisotropy Controls Geometry and Forces of Adherent Cells. Physical Review Letters, 2018, 121, 178101.	2.9	17
16	Abstract 175: Mechanical transduction mediated by Integrin-ILK dependent actin dynamics drives stem-plasticity leading experimental metastatic colonization of prostate cancer leading experimental metastatic colonization of prostate cancer. , 2018, , .		0
17	Abstract 183: HERG1 potassium channels perturb the \hat{l}^21 integrins mediated force transduction machinery in pancreatic cancer. , 2018, , .		0
18	Abstract 4040: $\hat{l}\pm2\hat{l}^21$ integrins are potential regulators of chemoresistance through modulation of biomechanical cues in pancreatic cancer. , 2018, , .		1

#	Article	IF	Citations
19	Water-Dispersible Silica-Coated Upconverting Liposomes: Can a Thin Silica Layer Protect TTA-UC against Oxygen Quenching?. ACS Biomaterials Science and Engineering, 2017, 3, 322-334.	2.6	36
20	The conformational state of hERG1 channels determines integrin association, downstream signaling, and cancer progression. Science Signaling, 2017, 10, .	1.6	49
21	Ligand-induced type II interleukin-4 receptor dimers are sustained by rapid re-association within plasma membrane microcompartments. Nature Communications, 2017, 8, 15976.	5.8	34
22	A mechanopharmacology approach to overcome chemoresistance in pancreatic cancer. Drug Resistance Updates, 2017, 31, 43-51.	6. 5	43
23	Inhibition of cross-species CXCR4 signaling by the small molecule IT1t impairs triple negative breast cancer early metastases in zebrafish. DMM Disease Models and Mechanisms, 2016, 9, 141-53.	1.2	45
24	GFAP isoforms control intermediate filament network dynamics, cell morphology, and focal adhesions. Cellular and Molecular Life Sciences, 2016, 73, 4101-4120.	2.4	46
25	Imaging Upconverting Polymersomes in Cancer Cells: Biocompatible Antioxidants Brighten Triplet–Triplet Annihilation Upconversion. Small, 2016, 12, 5579-5590.	5.2	66
26	CXCR4 signaling is controlled by immobilization at the plasma membrane. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 607-616.	1.9	5
27	Direct Observation of α-Synuclein Amyloid Aggregates in Endocytic Vesicles of Neuroblastoma Cells. PLoS ONE, 2016, 11, e0153020.	1.1	34
28	A guide to mechanobiology: Where biology and physics meet. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 3043-3052.	1.9	248
29	The integrin expression profile modulates orientation and dynamics of force transmission at cell–matrix adhesions. Journal of Cell Science, 2015, 128, 1316-1326.	1.2	82
30	Imaging the lipid bilayer of giant unilamellar vesicles using red-to-blue light upconversion. Chemical Communications, 2015, 51, 9137-9140.	2.2	41
31	Visualization of HRas Domains in the Plasma Membrane of Fibroblasts. Biophysical Journal, 2015, 108, 1870-1877.	0.2	8
32	Depth-of-Focus Correction in Single-Molecule Data Allows Analysis of 3D Diffusion of the Glucocorticoid Receptor in the Nucleus. PLoS ONE, 2015, 10, e0141080.	1.1	3
33	Quantitation of Glucocorticoid Receptor DNA-Binding Dynamics by Single-Molecule Microscopy and FRAP. PLoS ONE, 2014, 9, e90532.	1.1	55
34	Androgen receptor complexes probe DNA for recognition sequences by short random interactions. Journal of Cell Science, 2014, 127, 1406-16.	1.2	18
35	Membrane protein synthesis in cellâ€free systems: From bioâ€mimetic systems to bioâ€membranes. FEBS Letters, 2014, 588, 2774-2781.	1.3	120
36	The Nanoscale Architecture of Force-Bearing Focal Adhesions. Nano Letters, 2014, 14, 4257-4262.	4. 5	65

3

#	Article	IF	Citations
37	Cell-free synthesis of membrane proteins: Tailored cell models out of microsomes. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1382-1388.	1.4	43
38	Highâ€Fidelity Protein Targeting into Membrane Lipid Microdomains in Living Cells. Angewandte Chemie - International Edition, 2014, 53, 1311-1315.	7.2	22
39	Single-Molecule Imaging Technique to Study the Dynamic Regulation of GPCR Function at the Plasma Membrane. Methods in Enzymology, 2013, 521, 47-67.	0.4	12
40	Quantitative Imaging of Morphogen Gradients in <i>Drosophila</i> Imaginal Discs. Cold Spring Harbor Protocols, 2013, 2013, pdb.top074237.	0.2	4
41	Quantification of GPCR internalization by single-molecule microscopy in living cells. Integrative Biology (United Kingdom), 2011, 3, 675.	0.6	26
42	Microsecond Single-Molecule Tracking (μsSMT). Biophysical Journal, 2011, 100, L19-L21.	0.2	13
43	Quantification of Biological Interactions with Particle Image Cross-Correlation Spectroscopy (PICCS). Biophysical Journal, 2011, 100, 1810-1818.	0.2	37
44	Probing Structure and Dynamics of the Cell Membrane with Single Fluorescent Proteins. Springer Series on Fluorescence, 2011, , 185-212.	0.8	2
45	Robust assessment of protein complex formation in vivo via single-molecule intensity distributions of autofluorescent proteins. Journal of Biomedical Optics, 2011, 16, 076016.	1.4	10
46	Protein Incorporation in Giant Lipid Vesicles under Physiological Conditions. ChemBioChem, 2010, 11, 175-179.	1.3	42
47	Mobility of G proteins is heterogeneous and polarized during chemotaxis. Journal of Cell Science, 2010, 123, 2922-2930.	1.2	16
48	Nonprocessive Motor Dynamics at the Microtubule Membrane Tube Interface. Biophysical Journal, 2010, 98, 93-100.	0.2	10
49	Kinesin Recycling in Stationary Membrane Tubes. Biophysical Journal, 2010, 99, 1835-1841.	0.2	3
50	Membrane Mediated Sorting. Physical Review Letters, 2010, 104, 198102.	2.9	14
51	Membrane lysis by gramicidin S visualized in red blood cells and giant vesicles. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 2033-2039.	1.4	20
52	Photothermal Correlation Spectroscopy of Gold Nanoparticles in Solution. Journal of Physical Chemistry C, 2009, 113, 11451-11457.	1.5	51
53	Single-Molecule Analysis of Biomembranes. , 2009, , 19-42.		3
54	Mannan-Binding Lectin: Structure, Oligomerization, and Flexibility Studied by Atomic Force Microscopy. Journal of Molecular Biology, 2009, 391, 246-259.	2.0	54

#	Article	IF	CITATIONS
55	Membrane-Mediated Interactions Measured Using Membrane Domains. Biophysical Journal, 2009, 96, 4906-4915.	0.2	76
56	spFRET Using Alternating Excitation and FCS Reveals Progressive DNA Unwrapping in Nucleosomes. Biophysical Journal, 2009, 97, 195-204.	0.2	108
57	Single-Molecule Microscopy Reveals Membrane Microdomain Organization of Cells in a Living Vertebrate. Biophysical Journal, 2009, 97, 1206-1214.	0.2	53
58	Membrane heterogeneity – from lipid domains to curvature effects. Soft Matter, 2009, 5, 3174.	1,2	92
59	Photothermal Detection of Individual Gold Nanoparticles: Perspectives for Highâ€₹hroughput Screening. ChemPhysChem, 2008, 9, 1761-1766.	1.0	20
60	Nucleosome Immobilization Strategies for Singleâ€Pair FRET Microscopy. ChemPhysChem, 2008, 9, 2002-2009.	1.0	23
61	Distinct functions for ERK1 and ERK2 in cell migration processes during zebrafish gastrulation. Developmental Biology, 2008, 319, 370-383.	0.9	61
62	Accurate Determination of Elastic Parameters for Multicomponent Membranes. Physical Review Letters, 2008, 100, 088101.	2.9	116
63	A spatially restricted increase in receptor mobility is involved in directional sensing during <i>Dictyostelium discoideum </i> chemotaxis. Journal of Cell Science, 2008, 121, 1750-1757.	1.2	33
64	Bidirectional membrane tube dynamics driven by nonprocessive motors. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7993-7997.	3.3	37
65	Single-Molecule Imaging of Cellular Signaling. Springer Series in Biophysics, 2008, , 107-129.	0.4	2
66	Nanometric three-dimensional tracking of individual quantum dots in cells. Applied Physics Letters, 2007, 90, 053902.	1.5	221
67	Asymmetric Elastic Properties of <i>Dictyostelium </i> discoideum in Relation to Chemotaxis. Langmuir, 2007, 23, 9352-9357.	1.6	7
68	Particle Image Correlation Spectroscopy (PICS): Retrieving Nanometer-Scale Correlations from High-Density Single-Molecule Position Data. Biophysical Journal, 2007, 92, 613-621.	0.2	77
69	Single-Pair FRET Microscopy Reveals Mononucleosome Dynamics. Journal of Fluorescence, 2007, 17, 785-795.	1.3	105
70	Single-Molecule Diffusion Reveals Similar Mobility for the Lck, H-Ras, and K-Ras Membrane Anchors. Biophysical Journal, 2006, 91, 1090-1097.	0.2	72
71	The Oxidation State of a Protein Observed Molecule-by-Molecule. ChemPhysChem, 2005, 6, 1381-1386.	1.0	13
72	Sensitive detection of the redox state of copper proteins using fluorescence. Journal of Biological Inorganic Chemistry, 2005, 10, 683-687.	1.1	20

#	Article	IF	Citations
73	Single-molecule diffusion measurements of H-Ras at the plasma membrane of live cells reveal microdomain localization upon activation. Journal of Cell Science, 2005, 118, 1799-1809.	1.2	109
74	Simultaneous atomic-force and two-photon fluorescence imaging of biological specimens in vivo. Ultramicroscopy, 2004, 99, 235-245.	0.8	33
75	Isoform-specific differences in rapid nucleocytoplasmic shuttling cause distinct subcellular distributions of $14-3-3$ and $14-3-3$. Journal of Cell Science, 2004, 117 , $1411-1420$.	1.2	59
76	Homogeneous Detection of Single Rolling Circle Replication Products. Analytical Chemistry, 2004, 76, 495-498.	3.2	63
77	In vivo plasma membrane organization: results of biophysical approaches. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1664, 119-131.	1.4	85
78	Simultaneous wide-field imaging and spectroscopy of localized fluorophores. Optics Letters, 2004, 29, 727.	1.7	11
79	Single-Molecule Imaging of the H-Ras Membrane-Anchor Reveals Domains in the Cytoplasmic Leaflet of the Cell Membrane. Biophysical Journal, 2004, 86, 609-616.	0.2	140
80	Screening crystallisation conditions using fluorescence correlation spectroscopy. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 1536-1541.	2.5	3
81	Single-Molecule Imaging of L-Type Ca2+ Channels in Live Cells. Biophysical Journal, 2001, 81, 2639-2646.	0.2	179
82	Autofluorescent Proteins in Single-Molecule Research: Applications to Live Cell Imaging Microscopy. Biophysical Journal, 2001, 80, 2396-2408.	0.2	219
83	Statistical Analysis of Single-Molecule Colocalization Assays. Analytical Chemistry, 2001, 73, 1100-1105.	3.2	31
84	S2D04Single-molecule imaging for the study of biological membranes. Seibutsu Butsuri, 2001, 41, S13.	0.0	0
85	Two-photon excitation action cross-sections of the autofluorescent proteins. Chemical Physics Letters, 2001, 350, 71-77.	1.2	122
86	A sequence in the carboxy-terminus of the $\hat{l}\pm 1C$ subunit important for targeting, conductance and open probability of L-type Ca2+ channels. FEBS Letters, 2000, 477, 161-169.	1.3	27
87	Simultaneous dual-color and dual-polarization imaging of single molecules. Applied Physics Letters, 2000, 77, 4052-4054.	1.5	76
88	Detection of Individual Oligonucleotide Pairing by Single-Molecule Microscopy. Analytical Chemistry, 1999, 71, 279-283.	3.2	49
89	Local Stoichiometries Determined by Counting Individual Molecules. Analytical Chemistry, 1996, 68, 4397-4401.	3.2	106
90	The Tracking of Individual Molecules in Cells and Tissues. , 0, , 25-42.		2