List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2415877/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surface-enhanced Raman scattering (SERS) Sensing of Biomedicine and Biomolecules. , 2023, , 441-455.		1
2	Surface-enhanced Raman scattering (SERS) Sensors for Food Safety. , 2023, , 456-470.		1
3	A highly sensitive SERS platform based on small-sized Ag/GQDs nanozyme for intracellular analysis. Chemical Engineering Journal, 2022, 430, 132687.	12.7	30
4	Study of charge transfer effect in Surface-Enhanced Raman scattering (SERS) by using Antimony-doped tin oxide (ATO) nanoparticles as substrates with tunable optical band gaps and free charge carrier densities. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 264, 120288.	3.9	11
5	Dithiouracil, a highly efficient depressant for the selective separation of molybdenite from chalcopyrite by flotation: Applications and mechanism. Minerals Engineering, 2022, 175, 107287.	4.3	47
6	Enhanced charge-transfer induced by conduction band electrons in aluminum-doped zinc oxide/molecule/Ag sandwich structures observed by surface-enhanced Raman spectroscopy. Journal of Colloid and Interface Science, 2022, 610, 164-172.	9.4	9
7	An investigation of the effect of high-pressure on charge transfer in dye-sensitized solar cells based on surface-enhanced Raman spectroscopy. Nanoscale, 2022, 14, 373-381.	5.6	2
8	Observation of tunable surface plasmon resonances and surface enhanced infrared absorption (SEIRA) based on indium tin oxide (ITO) nanoparticle substrates. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 271, 120914.	3.9	9
9	One plus one greater than Two: Ultrasensitive Surface-Enhanced Raman scattering by TiO2/ZnO heterojunctions based on Electron-Hole separation. Applied Surface Science, 2022, 584, 152609.	6.1	20
10	Revealing the effect of intramolecular interactions on DNA SERS detection: SERS capability for structural analysis. Physical Chemistry Chemical Physics, 2022, 24, 10311-10317.	2.8	5
11	Putting surface-enhanced Raman spectroscopy to work for nanozyme research: Methods, materials and applications. TrAC - Trends in Analytical Chemistry, 2022, 152, 116603.	11.4	18
12	Investigation of Sulfur Doping in Mn–Co Oxide Nanotubes on Surface-Enhanced Raman Scattering Properties. Analytical Chemistry, 2022, 94, 5987-5995.	6.5	2
13	Accurate assembly and direct characterization of DNA nanogels crosslinked by G-quadruplex, i-motif and duplex with surface-enhanced Raman spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 275, 121161.	3.9	3
14	Research progress and the application of near-infrared spectroscopy in protein structure and molecular interaction analysis. Vibrational Spectroscopy, 2022, 121, 103390.	2.2	7
15	Probing the Open-Circuit Voltage Improvement of DSSC via Raman Spectroscopy: <i>In Situ</i> Dynamic Tracking Photoanode/Electrolyte Interfaces. ACS Applied Energy Materials, 2022, 5, 8391-8399.	5.1	3
16	Innovative Application of SERS in Food Quality and Safety: A Brief Review of Recent Trends. Foods, 2022, 11, 2097.	4.3	20
17	Mixed valence Ce-doped TiO2 with multiple energy levels and efficient charge transfer for boosted SERS performance. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 281, 121643.	3.9	6
18	In-situ fingerprinting phosphorylated proteins via surface-enhanced Raman spectroscopy: Single-site discrimination of Tau biomarkers in Alzheimer's disease. Biosensors and Bioelectronics, 2021, 171, 112748.	10.1	22

RINC 7H

#	Article	IF	CITATIONS
19	Accurate SERS monitoring of the plasmon mediated UV/visible/NIR photocatalytic and photothermal catalytic process involving Ag@carbon dots. Nanoscale, 2021, 13, 1006-1015.	5.6	20
20	Metal–semiconductor heterostructures for surface-enhanced Raman scattering: synergistic contribution of plasmons and charge transfer. Materials Horizons, 2021, 8, 370-382.	12.2	124
21	Charge Transfer in 4-Mercaptobenzoic Acid-Stabilized Au Nanorod@Cu ₂ O Nanostructures: Implications for Photocatalysis and Photoelectric Devices. ACS Applied Nano Materials, 2021, 4, 381-388.	5.0	15
22	The evaluation of immobilization behavior and potential ecological risk of heavy metals in bio-char with different alkaline activation. Environmental Science and Pollution Research, 2021, 28, 21396-21410.	5.3	9
23	Remediation of Cu(II) and its adsorption mechanism in aqueous system by novel magnetic biochar derived from co-pyrolysis of sewage sludge and biomass. Environmental Science and Pollution Research, 2021, 28, 16408-16419.	5.3	16
24	A SERS Study of Charge Transfer Process in Au Nanorod–MBA@Cu2O Assemblies: Effect of Length to Diameter Ratio of Au Nanorods. Nanomaterials, 2021, 11, 867.	4.1	12
25	Vibrational spectroscopy and DFT analysis of 4-cyanophenylhydrazine: A potential SERS probe. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 253, 119574.	3.9	1
26	SERS Selective Enhancement on Monolayer MoS ₂ Enabled by a Pressure-Induced Shift from Resonance to Charge Transfer. ACS Applied Materials & Interfaces, 2021, 13, 26551-26560.	8.0	23
27	The Efficient Improvement of Original Magnetite in Iron Ore Reduction Reaction in Magnetization Roasting Process and Mechanism Analysis by In Situ and Continuous Image Capture. Minerals (Basel,) Tj ETQq1	1 0278431	.4 rgBT /Over
28	Surface-Enhanced Raman Scattering (SERS) on Indium-Doped CdO (ICO) Substrates: A New Charge-Transfer Enhancement Contribution from Electrons in Conduction Bands. Journal of Physical Chemistry C, 2021, 125, 17125-17132.	3.1	2
29	Surface Plasmon Resonance from Gallium-Doped Zinc Oxide Nanoparticles and Their Electromagnetic Enhancement Contribution to Surface-Enhanced Raman Scattering. ACS Applied Materials & Interfaces, 2021, 13, 35038-35045.	8.0	33
30	Modulating Mechanism of the LSPR and SERS in Ag/ITO Film: Carrier Density Effect. Journal of Physical Chemistry Letters, 2021, 12, 7612-7618.	4.6	24
31	Surface-Enhanced Raman Scattering Activity of ZrO2 Nanoparticles: Effect of Tetragonal and Monoclinic Phases. Nanomaterials, 2021, 11, 2162.	4.1	6
32	Comprehensive Strategy for Sample Preparation for the Analysis of Food Contaminants and Residues by GC–MS/MS: A Review of Recent Research Trends. Foods, 2021, 10, 2473.	4.3	25
33	Hollow Multiâ€5helled V ₂ O ₅ Microstructures Integrating Multiple Synergistic Resonances for Enhanced Semiconductor SERS. Advanced Optical Materials, 2021, 9, 2101866.	7.3	22
34	Operando Raman spectroscopic evidence of electron–phonon interactions in NiO/TiO ₂ pn junction photodetectors. Chemical Communications, 2021, 57, 12333-12336.	4.1	5
35	Surface-enhanced Raman spectroscopy. Nature Reviews Methods Primers, 2021, 1, .	21.2	183
36	Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020, 14, 28-117.	14.6	2,153

#	Article	IF	CITATIONS
37	Crocein Orange G mediated detection and modulation of amyloid fibrillation revealed by surface-enhanced Raman spectroscopy. Biosensors and Bioelectronics, 2020, 148, 111816.	10.1	13
38	Spectroscopic studies of the optical properties of carbon dots: recent advances and future prospects. Materials Chemistry Frontiers, 2020, 4, 472-488.	5.9	79
39	Redox characterisation of Erv1, a key component for protein import and folding in yeast mitochondria. FEBS Journal, 2020, 287, 2281-2291.	4.7	4
40	Preparation of Porous Biochars by the Co-Pyrolysis of Municipal Sewage Sludge and Hazelnut Shells and the Mechanism of the Nano-Zinc Oxide Composite and Cu(II) Adsorption Kinetics. Sustainability, 2020, 12, 8668.	3.2	16
41	Accurate Monitoring Platform for the Surface Catalysis of Nanozyme Validated by Surface-Enhanced Raman-Kinetics Model. Analytical Chemistry, 2020, 92, 11763-11770.	6.5	36
42	Surface-enhanced Raman scattering (SERS) and applications. , 2020, , 349-386.		5
43	Innentitelbild: Direct Dynamic Evidence of Charge Separation in a Dyeâ€Sensitized Solar Cell Obtained under Operando Conditions by Raman Spectroscopy (Angew. Chem. 27/2020). Angewandte Chemie, 2020, 132, 10758-10758.	2.0	0
44	Enhanced Raman spectroscopic analysis of protein post-translational modifications. TrAC - Trends in Analytical Chemistry, 2020, 131, 116019.	11.4	11
45	Highly efficient core–shell Ag@carbon dot modified TiO ₂ nanofibers for photocatalytic degradation of organic pollutants and their SERS monitoring. RSC Advances, 2020, 10, 26639-26645.	3.6	13
46	A Chiral‣abelâ€Free SERS Strategy for the Synchronous Chiral Discrimination and Identification of Small Aromatic Molecules. Angewandte Chemie - International Edition, 2020, 59, 19079-19086.	13.8	40
47	A Chiral‣abelâ€Free SERS Strategy for the Synchronous Chiral Discrimination and Identification of Small Aromatic Molecules. Angewandte Chemie, 2020, 132, 19241-19248.	2.0	7
48	Ultrasensitive Stimulation Effect of Fluoride Ions on a Novel Nanozyme–SERS System. ACS Sustainable Chemistry and Engineering, 2020, 8, 11906-11913.	6.7	16
49	Label-Free and Highly Sensitive Detection of Native Proteins by Ag IANPs via Surface-Enhanced Raman Spectroscopy. Analytical Chemistry, 2020, 92, 14325-14329.	6.5	24
50	Innentitelbild: A Chiral‣abelâ€Free SERS Strategy for the Synchronous Chiral Discrimination and Identification of Small Aromatic Molecules (Angew. Chem. 43/2020). Angewandte Chemie, 2020, 132, 18982-18982.	2.0	0
51	Direct Dynamic Evidence of Charge Separation in a Dyeâ€Sensitized Solar Cell Obtained under Operando Conditions by Raman Spectroscopy. Angewandte Chemie, 2020, 132, 10872-10876.	2.0	5
52	Direct Dynamic Evidence of Charge Separation in a Dye‧ensitized Solar Cell Obtained under Operando Conditions by Raman Spectroscopy. Angewandte Chemie - International Edition, 2020, 59, 10780-10784.	13.8	16
53	Ferrous cytochrome c-nitric oxide oxidation for quantification of protein S-nitrosylation probed by resonance Raman spectroscopy. Sensors and Actuators B: Chemical, 2020, 308, 127706.	7.8	6
54	Plasmonic Molybdenum Tungsten Oxide Hybrid with Surface-Enhanced Raman Scattering Comparable to that of Noble Metals. ACS Applied Materials & Interfaces, 2020, 12, 19153-19160.	8.0	28

#	Article	IF	CITATIONS
55	Ultra-sensitive SERS detection, rapid selective adsorption and degradation of cationic dyes on multifunctional magnetic metal-organic framework-based composite. Nanotechnology, 2020, 31, 315501.	2.6	24
56	Ginsenoside compound K inhibits nuclear factor-kappa B by targeting Annexin A2. Journal of Ginseng Research, 2019, 43, 452-459.	5.7	20
57	Frequency Shifts in Surface-Enhanced Raman Spectroscopy-Based Immunoassays: Mechanistic Insights and Application in Protein Carbonylation Detection. Analytical Chemistry, 2019, 91, 9376-9381.	6.5	27
58	Enhanced Raman Scattering by ZnO Superstructures: Synergistic Effect of Charge Transfer and Mie Resonances. Angewandte Chemie - International Edition, 2019, 58, 14452-14456.	13.8	133
59	A chiral signal-amplified sensor for enantioselective discrimination of amino acids based on charge transfer-induced SERS. Chemical Communications, 2019, 55, 9697-9700.	4.1	29
60	Enhanced Raman Scattering by ZnO Superstructures: Synergistic Effect of Charge Transfer and Mie Resonances. Angewandte Chemie, 2019, 131, 14594-14598.	2.0	15
61	Enhanced Raman scattering on lead iodide film. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 223, 117336.	3.9	4
62	Redoxâ€Stateâ€Mediated Regulation of Cytochromeâ€c Release in Apoptosis Revealed by Surfaceâ€Enhanced Raman Scattering on Nickel Substrates. Angewandte Chemie, 2019, 131, 16651-16655.	2.0	0
63	Redoxâ€Stateâ€Mediated Regulation of Cytochromeâ€c Release in Apoptosis Revealed by Surfaceâ€Enhanced Raman Scattering on Nickel Substrates. Angewandte Chemie - International Edition, 2019, 58, 16499-16503.	13.8	31
64	Functional nanomaterials with unique enzyme-like characteristics for sensing applications. Journal of Materials Chemistry B, 2019, 7, 850-875.	5.8	155
65	Factors affecting 13C enrichment of vegetation and soil in temperate grasslands in Inner Mongolia, China. Journal of Soils and Sediments, 2019, 19, 2190-2199.	3.0	12
66	Surface-enhanced Raman scattering (SERS) as a probe for detection of charge-transfer between TiO ₂ and CdS nanoparticles. New Journal of Chemistry, 2019, 43, 230-237.	2.8	32
67	Direct Approach toward Label-Free DNA Detection by Surface-Enhanced Raman Spectroscopy: Discrimination of a Single-Base Mutation in 50 Base-Paired Double Helixes. Analytical Chemistry, 2019, 91, 7980-7984.	6.5	36
68	Surface-Enhanced Raman Scattering for Direct Protein Function Investigation: Controlled Immobilization and Orientation. Analytical Chemistry, 2019, 91, 8767-8771.	6.5	37
69	Metal-free SERS substrate based on rGO–TiO ₂ –Fe ₃ O ₄ nanohybrid: contribution from interfacial charge transfer and magnetic controllability. Physical Chemistry Chemical Physics, 2019, 21, 12850-12858.	2.8	16
70	Revealing interfacial charge transfer in TiO2/reduced graphene oxide nanocomposite by surface-enhanced Raman scattering (SERS): Simultaneous a superior SERS-active substrate. Applied Surface Science, 2019, 487, 938-944.	6.1	36
71	Base-Pair Contents and Sequences of DNA Double Helices Differentiated by Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry Letters, 2019, 10, 3013-3018.	4.6	19
72	Effect of TiO 2 on Altering Direction of Interfacial Charge Transfer in a TiO 2 â€Agâ€MPYâ€FePc System by SERS. Angewandte Chemie, 2019, 131, 8256-8260.	2.0	12

#	Article	IF	CITATIONS
73	Effect of TiO ₂ on Altering Direction of Interfacial Charge Transfer in a TiO ₂ â€Agâ€MPYâ€FePc System by SERS. Angewandte Chemie - International Edition, 2019, 58, 8172-8176.	13.8	66
74	Investigation of the Charge-Transfer Between Ga-Doped ZnO Nanoparticles and Molecules Using Surface-Enhanced Raman Scattering: Doping Induced Band-Gap Shrinkage. Frontiers in Chemistry, 2019, 7, 144.	3.6	25
75	Recent Development of SERS Technology: Semiconductor-Based Study. ACS Omega, 2019, 4, 20101-20108.	3.5	105
76	New Insight into Charge-Transfer Enhancement for SERS in Cosputtering (Ag) _{<i>x</i>} (ZnS) _{<i>y</i>} System: The Carrier Density Effect. Journal of Physical Chemistry C, 2019, 123, 28846-28851.	3.1	12
77	Pressure-induced SERS enhancement in a MoS ₂ /Au/R6G system by a two-step charge transfer process. Nanoscale, 2019, 11, 21493-21501.	5.6	48
78	Investigation of the binding sites and orientation of Norfloxacin on bovine serum albumin by surface enhanced Raman scattering and molecular docking. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 207, 307-312.	3.9	14
79	Electrospun nanofibrous materials: A versatile platform for enzyme mimicking and their sensing applications. Composites Communications, 2019, 12, 1-13.	6.3	40
80	Nickel Nanowires Combined with Surface-Enhanced Raman Spectroscopy: Application in Label-Free Detection of Cytochrome c-Mediated Apoptosis. Analytical Chemistry, 2019, 91, 1213-1216.	6.5	24
81	Investigation of compositionally tunable localized surface plasmon resonances (LSPRs) of a series of indium tin oxide nanocrystals prepared by one-step solvothermal synthesis. Journal of Materials Science, 2019, 54, 2918-2927.	3.7	5
82	In situ semi-quantitative assessment of single-cell viability by resonance Raman spectroscopy. Chemical Communications, 2018, 54, 7135-7138.	4.1	10
83	Micro-nano zinc oxide film fabricated by biomimetic mineralization: Designed architectures for SERS substrates. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 197, 83-87.	3.9	6
84	A reagent-assisted method in SERS detection of methyl salicylate. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 195, 172-175.	3.9	13
85	Investigation of charge transfer at the TiO ₂ –MBA–Au interface based on surface-enhanced Raman scattering: SPR contribution. Physical Chemistry Chemical Physics, 2018, 20, 5666-5673.	2.8	25
86	Indirect glyphosate detection based on ninhydrin reaction and surface-enhanced Raman scattering spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 197, 78-82.	3.9	30
87	Label-Free Detection of Tetramolecular i-Motifs by Surface-Enhanced Raman Spectroscopy. Analytical Chemistry, 2018, 90, 2996-3000.	6.5	39
88	Surface-enhanced Raman scattering on organic–inorganic hybrid perovskites. Chemical Communications, 2018, 54, 2134-2137.	4.1	30
89	A Ag synchronously deposited and doped TiO ₂ hybrid as an ultrasensitive SERS substrate: a multifunctional platform for SERS detection and photocatalytic degradation. Physical Chemistry Chemical Physics, 2018, 20, 15149-15157.	2.8	52
90	Kinetics evaluation and thermal decomposition characteristics of co-pyrolysis of municipal sewage sludge and hazelnut shell. Bioresource Technology, 2018, 247, 21-29.	9.6	74

#	Article	IF	CITATIONS
91	Antibody-Free Discrimination of Protein Biomarkers in Human Serum Based on Surface-Enhanced Raman Spectroscopy. Analytical Chemistry, 2018, 90, 12342-12346.	6.5	22
92	Investigation of charge-transfer between a 4-mercaptobenzoic acid monolayer and TiO ₂ nanoparticles under high pressure using surface-enhanced Raman scattering. Chemical Communications, 2018, 54, 6280-6283.	4.1	27
93	Structural Features of DNA G-Quadruplexes Revealed by Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry Letters, 2018, 9, 3245-3252.	4.6	41
94	A dual colorimetric and SERS detection of Hg2+ based on the stimulus of intrinsic oxidase-like catalytic activity of Ag-CoFe2O4/reduced graphene oxide nanocomposites. Chemical Engineering Journal, 2018, 350, 120-130.	12.7	87
95	Identification of native charge-transfer status of p-aminothiolphenol adsorbed on noble metallic substrates by surface-enhanced infrared absorption (SEIRA) spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 204, 532-536.	3.9	3
96	Controllable Synthesis of SERS-Active Magnetic Metal–Organic Framework-Based Nanocatalysts and Their Application in Photoinduced Enhanced Catalytic Oxidation. ACS Applied Materials & Interfaces, 2018, 10, 25726-25736.	8.0	79
97	Facile Synthesis of C3N4/Ag Composite Nanosheets as SERS Substrate for Monitoring the Catalytic Degradation of Methylene Blue. Chemical Research in Chinese Universities, 2018, 34, 290-295.	2.6	11
98	The hierarchical porous structure bio-char assessments produced by co-pyrolysis of municipal sewage sludge and hazelnut shell and Cu(II) adsorption kinetics. Environmental Science and Pollution Research, 2018, 25, 19423-19435.	5.3	48
99	Reduced Charge-Transfer Threshold in Dye-Sensitized Solar Cells with an Au@Ag/N3/ <i>n</i> -TiO ₂ Structure As Revealed by Surface-Enhanced Raman Scattering. Journal of Physical Chemistry C, 2018, 122, 12748-12760.	3.1	13
100	Interfacial Charge Transfer in TiO2/PTCA/Ag Revealed by Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 15208-15213.	3.1	10
101	Semiconductor-enhanced Raman scattering: active nanomaterials and applications. Nanoscale, 2017, 9, 4847-4861.	5.6	289
102	Charge Transfer at the TiO ₂ /N3/Ag Interface Monitored by Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 5145-5153.	3.1	11
103	Facile synthesis of silver nanoparticles/carbon dots for a charge transfer study and peroxidase-like catalytic monitoring by surface-enhanced Raman scattering. Applied Surface Science, 2017, 410, 42-50.	6.1	34
104	Co-pyrolysis characteristics of municipal sewage sludge and hazelnut shell by TG-DTG-MS and residue analysis. Waste Management, 2017, 62, 91-100.	7.4	74
105	Double Metal Co-Doping of TiO ₂ Nanoparticles for Improvement of their SERS Activity and Ultrasensitive Detection of Enrofloxacin: Regulation Strategy of Energy Levels. ChemistrySelect, 2017, 2, 3099-3105.	1.5	17
106	Fabrication of Ag–Cu ₂ O/Reduced Graphene Oxide Nanocomposites as Surface-Enhanced Raman Scattering Substrates for in Situ Monitoring of Peroxidase-Like Catalytic Reaction and Biosensing. ACS Applied Materials & Interfaces, 2017, 9, 19074-19081.	8.0	115
107	Self-assembly directed synthesis of Au nanorices induced by polyaniline and their enhanced peroxidase-like catalytic properties. Journal of Materials Chemistry C, 2017, 5, 7465-7471.	5.5	72
108	Electron Transfer of Cytochromeâ€ <i>c</i> on Surfaceâ€Enhanced Raman Scattering–Active Substrates: Material Dependence and Biocompatibility. Chemistry - A European Journal, 2017, 23, 9034-9038.	3.3	15

#	Article	IF	CITATIONS
109	Recyclable Au–TiO ₂ nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect. Physical Chemistry Chemical Physics, 2017, 19, 11212-11219.	2.8	67
110	Functionalization of magnetic titanium dioxide for targeted drug delivery and UV-induced release. Chemical Research in Chinese Universities, 2017, 33, 294-297.	2.6	5
111	Electrospun magnetic CoFe ₂ O ₄ /Ag hybrid nanotubes for sensitive SERS detection and monitoring of the catalytic degradation of organic pollutants. RSC Advances, 2017, 7, 40334-40341.	3.6	17
112	SERS as a probe for the charge-transfer process in a coupled semiconductor nanoparticle system TiO2/MBA/PbS. RSC Advances, 2017, 7, 42138-42145.	3.6	6
113	Bi-functional reduced graphene oxide/AgCo composite nanosheets: an efficient catalyst and SERS substrate for monitoring the catalytic reactions. RSC Advances, 2017, 7, 41962-41969.	3.6	11
114	An enhanced degree of charge transfer in dye-sensitized solar cells with a ZnO-TiO ₂ /N3/Ag structure as revealed by surface-enhanced Raman scattering. Nanoscale, 2017, 9, 15303-15313.	5.6	36
115	Multiplex Immunochips for High-Accuracy Detection of AFP-L3% Based on Surface-Enhanced Raman Scattering: Implications for Early Liver Cancer Diagnosis. Analytical Chemistry, 2017, 89, 8877-8883.	6.5	88
116	Ultrasensitive Detection of Capsaicin in Oil for Fast Identification of Illegal Cooking Oil by SERRS. ACS Omega, 2017, 2, 8401-8406.	3.5	23
117	Probing the Interfacial Charge-Transfer Process of Uniform ALD Semiconductor–Molecule–Metal Models: A SERS Study. Journal of Physical Chemistry C, 2017, 121, 26939-26948.	3.1	16
118	Integrated plasmon-enhanced Raman scattering (iPERS) spectroscopy. Scientific Reports, 2017, 7, 14630.	3.3	11
119	Controlling the orientation of probe molecules on surface-enhanced Raman scattering substrates: A novel strategy to improve sensitivity. Analytica Chimica Acta, 2017, 994, 65-72.	5.4	16
120	Surface characteristics and potential ecological risk evaluation of heavy metals in the bio-char produced by co-pyrolysis from municipal sewage sludge and hazelnut shell with zinc chloride. Bioresource Technology, 2017, 243, 375-383.	9.6	96
121	Mesoporous semiconducting TiO ₂ with rich active sites as a remarkable substrate for surface-enhanced Raman scattering. Physical Chemistry Chemical Physics, 2017, 19, 18731-18738.	2.8	35
122	Charge-Transfer-Induced Enantiomer Selective Discrimination of Chiral Alcohols by SERS. Journal of Physical Chemistry C, 2016, 120, 29374-29381.	3.1	28
123	Charge transfer process at the Ag/MPH/TiO ₂ interface by SERS: alignment of the Fermi level. Physical Chemistry Chemical Physics, 2016, 18, 30053-30060.	2.8	20
124	The mechanism of an enzymatic reaction-induced SERS transformation for the study of enzyme–molecule interfacial interactions. Physical Chemistry Chemical Physics, 2016, 18, 31787-31795.	2.8	11
125	Synthesis of bifunctional reduced graphene oxide/CuS/Au composite nanosheets for in situ monitoring of a peroxidase-like catalytic reaction by surface-enhanced Raman spectroscopy. RSC Advances, 2016, 6, 54456-54462.	3.6	45
126	Precisely Controllable Core–Shell Ag@Carbon Dots Nanoparticles: Application to in Situ Super-Sensitive Monitoring of Catalytic Reactions. ACS Applied Materials & Interfaces, 2016, 8, 27956-27965.	8.0	98

#	Article	IF	CITATIONS
127	Nickel electrodes as a cheap and versatile platform for studying structure and function of immobilized redox proteins. Analytica Chimica Acta, 2016, 941, 35-40.	5.4	17
128	Semiconductor materials in analytical applications of surfaceâ€enhanced Raman scattering. Journal of Raman Spectroscopy, 2016, 47, 51-58.	2.5	127
129	Investigation of Charge Transfer in Ag/N719/TiO2 Interface by Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 13078-13086.	3.1	43
130	Mercury species induced frequency-shift of molecular orientational transformation based on SERS. Analyst, The, 2016, 141, 4782-4788.	3.5	24
131	Fabrication of a highly sensitive surface-enhanced Raman scattering substrate for monitoring the catalytic degradation of organic pollutants. Journal of Materials Chemistry A, 2015, 3, 13556-13562.	10.3	46
132	Three-dimensional superhydrophobic surface-enhanced Raman spectroscopy substrate for sensitive detection of pollutants in real environments. Journal of Materials Chemistry A, 2015, 3, 4330-4337.	10.3	88
133	Vibrational spectroscopy and density functional theory study of 4-mercaptobenzoic acid. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 148, 369-374.	3.9	45
134	Semiconductor-enhanced Raman scattering for highly robust SERS sensing: the case of phosphate analysis. Chemical Communications, 2015, 51, 7641-7644.	4.1	56
135	Charge-Transfer Effect on Surface-Enhanced Raman Scattering (SERS) in an Ordered Ag NPs/4-Mercaptobenzoic Acid/TiO ₂ System. Journal of Physical Chemistry C, 2015, 119, 22439-22444.	3.1	100
136	Anatase TiO ₂ nanoparticles with controllable crystallinity as a substrate for SERS: improved charge-transfer contribution. RSC Advances, 2015, 5, 80269-80275.	3.6	23
137	Preparation of a Superhydrophobic and Peroxidase-like Activity Array Chip for H ₂ O ₂ Sensing by Surface-Enhanced Raman Scattering. ACS Applied Materials & Interfaces, 2015, 7, 23472-23480.	8.0	59
138	Semiconductor-driven "turn-off―surface-enhanced Raman scattering spectroscopy: application in selective determination of chromium(<scp>vi</scp>) in water. Chemical Science, 2015, 6, 342-348.	7.4	92
139	Enantioselective Discrimination of Alcohols by Hydrogen Bonding: A SERS Study. Angewandte Chemie - International Edition, 2014, 53, 13866-13870.	13.8	83
140	A SERSâ€active enzymatic product used for the quantification of diseaseâ€related molecules. Journal of Raman Spectroscopy, 2014, 45, 75-81.	2.5	35
141	Exploring the Effect of Intermolecular H-Bonding: A Study on Charge-Transfer Contribution to Surface-Enhanced Raman Scattering of <i>p</i> -Mercaptobenzoic Acid. Journal of Physical Chemistry C, 2014, 118, 10191-10197.	3.1	91
142	Contribution of hydrogen bonding to charge-transfer induced surface-enhanced Raman scattering of an intermolecular system comprising p-aminothiophenol and benzoic acid. Physical Chemistry Chemical Physics, 2014, 16, 3153.	2.8	49
143	Design of an anti-aggregated SERS sensing platform for metal ion detection based on bovine serum albumin-mediated metal nanoparticles. Chemical Communications, 2013, 49, 7334.	4.1	22
144	Predictive Value of the Surface-Enhanced Resonance Raman Scattering-Based MTT Assay: A Rapid and Ultrasensitive Method for Cell Viability in Situ. Analytical Chemistry, 2013, 85, 7361-7368.	6.5	33

#	Article	IF	CITATIONS
145	Immune recognition construct plasmonic dimer for SERSâ€based bioassay. Journal of Raman Spectroscopy, 2013, 44, 1253-1258.	2.5	5
146	Simultaneous enhancement of phonons modes with molecular vibrations due to Mg doping of a TiO2 substrate. RSC Advances, 2013, 3, 20891.	3.6	15
147	Organoruthenium-Supported Polyoxotungstate - Synthesis, Structure and Oxidation ofn-Hexadecane with Air. European Journal of Inorganic Chemistry, 2013, 2013, 1935-1942.	2.0	15
148	Quantitative analysis of catalpol in chinese patent medicine Lixin pill by near-infrared diffuse reflectance spectroscopy. Chemical Research in Chinese Universities, 2013, 29, 1059-1062.	2.6	1
149	pH-Dependent SERS by Semiconductor-Controlled Charge-Transfer Contribution. Journal of Physical Chemistry C, 2012, 116, 24829-24836.	3.1	32
150	Multiphonon Resonant Raman Scattering and Photoinduced Charge-Transfer Effects at ZnO–Molecule Interfaces. Journal of Physical Chemistry C, 2012, 116, 26908-26918.	3.1	37
151	Interfacial Charge-Transfer Effects in Semiconductor–Molecule–Metal Structures: Influence of Contact Variation. Journal of Physical Chemistry C, 2012, 116, 14701-14710.	3.1	40
152	pH-Response Mechanism of <i>p</i> -Aminobenzenethiol on Ag Nanoparticles Revealed By Two-Dimensional Correlation Surface-Enhanced Raman Scattering Spectroscopy. Journal of Physical Chemistry Letters, 2012, 3, 3204-3209.	4.6	60
153	Label-free detection in biological applications of surface-enhanced Raman scattering. TrAC - Trends in Analytical Chemistry, 2012, 38, 67-78.	11.4	100
154	Surface-Enhanced Raman Scattering from Synergistic Contribution of Metal and Semiconductor in TiO ₂ /MBA/Ag(Au) and Ag(Au)/MBA/TiO ₂ Assemblies. Journal of Physical Chemistry C, 2012, 116, 14650-14655.	3.1	78
155	Generation of Pronounced Resonance Profile of Charge-Transfer Contributions to Surface-Enhanced Raman Scattering. Journal of Physical Chemistry C, 2012, 116, 2515-2520.	3.1	32
156	Raman Investigation of Nanosized TiO ₂ : Effect of Crystallite Size and Quantum Confinement. Journal of Physical Chemistry C, 2012, 116, 8792-8797.	3.1	269
157	SERS spectroscopy of kaempferol and galangin under the interaction of human serum albumin with adsorbed silver nanoparticles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 92, 234-237.	3.9	14
158	Effects of Mn doping on surface enhanced Raman scattering properties of TiO2 nanoparticles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 95, 213-217.	3.9	40
159	Surfaceâ€enhanced Raman scattering of molecules adsorbed on Coâ€doped ZnO nanoparticles. Journal of Raman Spectroscopy, 2012, 43, 61-64.	2.5	48
160	Scanned chemical enhancement of surface-enhanced Raman scattering using a charge-transfer complex. Chemical Communications, 2011, 47, 2426-2428.	4.1	75
161	Enhanced Raman Spectroscopy of Nanostructured Semiconductor Phonon Modes. Journal of Physical Chemistry Letters, 2011, 2, 671-674.	4.6	48
162	Coupling Reaction-Based Ultrasensitive Detection of Phenolic Estrogens Using Surface-Enhanced Resonance Raman Scattering. Analytical Chemistry, 2011, 83, 8582-8588.	6.5	56

#	Article	IF	CITATIONS
163	Metal–Semiconductor Contacts Induce the Charge-Transfer Mechanism of Surface-Enhanced Raman Scattering. Journal of Physical Chemistry C, 2011, 115, 18378-18383.	3.1	67
164	Selective SERS detection of each polycyclic aromatic hydrocarbon (PAH) in a mixture of five kinds of PAHs. Journal of Raman Spectroscopy, 2011, 42, 945-950.	2.5	63
165	SERS detection of proteins on micropatterned proteinâ€mediated sandwich substrates. Journal of Raman Spectroscopy, 2011, 42, 1492-1496.	2.5	16
166	Zincon as resonance Raman probe for quantitative evaluation of proteins. Journal of Raman Spectroscopy, 2011, 42, 1963-1966.	2.5	11
167	Improved surfaceâ€enhanced Raman scattering properties of TiO ₂ nanoparticles by Zn dopant. Journal of Raman Spectroscopy, 2010, 41, 721-726.	2.5	50
168	Siteâ€specific deposition of Ag nanoparticles on ZnO nanorod arrays via galvanic reduction and their SERS applications. Journal of Raman Spectroscopy, 2010, 41, 907-913.	2.5	54
169	Sensing of polycyclic aromatic hydrocarbons with cyclodextrin inclusion complexes on silver nanoparticles by surface-enhanced Raman scattering. Analyst, The, 2010, 135, 1389.	3.5	118
170	Preparation of Nanoscale Ag Semishell Array with Tunable Interparticle Distance and Its Application in Surface-Enhanced Raman Scattering. Journal of Physical Chemistry C, 2010, 114, 2886-2890.	3.1	56
171	Size and Wavelength Dependence of the Charge-Transfer Contributions to Surface-Enhanced Raman Spectroscopy in Ag/PATP/ZnO Junctions. Journal of Physical Chemistry C, 2010, 114, 1610-1614.	3.1	63
172	Direct observation of surfaceâ€enhanced Raman scattering in ZnO nanocrystals. Journal of Raman Spectroscopy, 2009, 40, 1072-1077.	2.5	220
173	Adsorption study of 4â€MBA on TiO ₂ nanoparticles by surfaceâ€enhanced Raman spectroscopy. Journal of Raman Spectroscopy, 2009, 40, 2004-2008.	2.5	54
174	Surface-enhanced Raman scattering for protein detection. Analytical and Bioanalytical Chemistry, 2009, 394, 1719-1727.	3.7	317
175	Contribution of ZnO to Charge-Transfer Induced Surface-Enhanced Raman Scattering in Au/ZnO/PATP Assembly. Journal of Physical Chemistry C, 2009, 113, 117-120.	3.1	62
176	Label-Free Highly Sensitive Detection of Proteins in Aqueous Solutions Using Surface-Enhanced Raman Scattering. Analytical Chemistry, 2009, 81, 3329-3333.	6.5	203
177	Charge-Transfer-Induced Surface-Enhanced Raman Scattering on Agâ^'TiO ₂ Nanocomposites. Journal of Physical Chemistry C, 2009, 113, 16226-16231.	3.1	228
178	Protein-Mediated Sandwich Strategy for Surface-Enhanced Raman Scattering: Application to Versatile Protein Detection. Analytical Chemistry, 2009, 81, 3350-3355.	6.5	112
179	Mercaptopyridine Surface-Functionalized CdTe Quantum Dots with Enhanced Raman Scattering Properties. Journal of Physical Chemistry C, 2008, 112, 996-1000.	3.1	94
180	Observation of Enhanced Raman Scattering for Molecules Adsorbed on TiO ₂ Nanoparticles: Charge-Transfer Contribution. Journal of Physical Chemistry C, 2008, 112, 20095-20098.	3.1	314

#	Article	IF	CITATIONS
181	Nanoparticle Metalâ^'Semiconductor Charge Transfer in ZnO/PATP/Ag Assemblies by Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2008, 112, 6093-6098.	3.1	117
182	Analytical Technique for Label-Free Multi-Protein Detection Based on Western Blot and Surface-Enhanced Raman Scattering. Analytical Chemistry, 2008, 80, 2799-2804.	6.5	150
183	Enhanced Raman Scattering as a Probe for 4-Mercaptopyridine Surface-modified Copper Oxide Nanocrystals. Analytical Sciences, 2007, 23, 787-791.	1.6	97
184	Surface-Enhanced Raman Scattering of 4-Mercaptopyridine on the Surface of TiO ₂ Nanofibers Coated with Ag Nanoparticles. Journal of Physical Chemistry C, 2007, 111, 12786-12791.	3.1	101
185	ZnO nanoparticle size-dependent excitation of surface Raman signal from adsorbed molecules: Observation of a charge-transfer resonance. Applied Physics Letters, 2007, 91, 221106.	3.3	107
186	Laser-Induced Growth of Monodisperse Silver Nanoparticles with Tunable Surface Plasmon Resonance Properties and a Wavelength Self-Limiting Effect. Journal of Physical Chemistry C, 2007, 111, 14962-14967.	3.1	114
187	Raman scattering study of molecules adsorbed on ZnS nanocrystals. Journal of Raman Spectroscopy, 2007, 38, 34-38.	2.5	190
188	Fabrication of surface-enhanced Raman scattering-active ZnO/Ag composite microspheres. Journal of Raman Spectroscopy, 2007, 38, 1320-1325.	2.5	58
189	Surface-enhanced Raman scattering on mercaptopyridine-capped CdS microclusters. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2007, 66, 1199-1203.	3.9	60
190	Fabrication of large-scale nanostructure by Langmuir—Blodgett technique. Journal of Bionic Engineering, 2006, 3, 59-62.	5.0	8
191	Surface enhanced Raman scattering from a hierarchical substrate of micro/nanostructured silver. Journal of Raman Spectroscopy, 2006, 37, 755-761.	2.5	29
192	Anin situ reduction method for preparing novel surface-enhanced Raman scattering substrates. Journal of Raman Spectroscopy, 2005, 36, 635-639.	2.5	13
193	Investigation of Spontaneous Polycondensation of N-(O, O-Ditetradecyl) Phosphorylalanine in Highly Ordered Films by Ftir Spectroscopy. Journal of Chemical Research, 2004, 2004, 143-144.	1.3	2
194	Spectroscopy of mass-selected VCo and VFe in argon matrices. Journal of Chemical Physics, 2003, 118, 9704-9709.	3.0	4
195	Simple Method for Preparing Controllably Aggregated Silver Particle Films Used as Surface-Enhanced Raman Scattering Active Substrates. Langmuir, 2002, 18, 6839-6844.	3.5	95
196	Seed-mediated growth of large, monodisperse core–shell gold–silver nanoparticles with Ag-like optical properties. Chemical Communications, 2002, , 144-145.	4.1	179
197	Surface-enhanced Raman spectroscopy study on the structure changes of 4-mercaptopyridine adsorbed on silver substrates and silver colloids. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2002, 58, 2827-2834.	3.9	152