Jiannian Yao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/241581/publications.pdf

Version: 2024-02-01

272 papers 13,396 citations

63 h-index 100 g-index

308 all docs 308 docs citations

times ranked

308

15766 citing authors

#	Article	IF	CITATIONS
1	Scalable Fabrication of Nanoporous Carbon Fiber Films as Bifunctional Catalytic Electrodes for Flexible Znâ€Air Batteries. Advanced Materials, 2016, 28, 3000-3006.	11.1	626
2	Lowâ€Dimensional Nanomaterials Based on Small Organic Molecules: Preparation and Optoelectronic Properties. Advanced Materials, 2008, 20, 2859-2876.	11.1	384
3	Perovskite Microdisk Microlasers Selfâ€Assembled from Solution. Advanced Materials, 2015, 27, 3405-3410.	11.1	352
4	Design of Diketopyrrolopyrrole (DPP)â€Based Small Molecules for Organicâ€Solarâ€Cell Applications. Advanced Materials, 2017, 29, 1600013.	11.1	290
5	Organic Micro/Nanoscale Lasers. Accounts of Chemical Research, 2016, 49, 1691-1700.	7.6	285
6	Facile preparation of N- and O-doped hollow carbon spheres derived from poly(o-phenylenediamine) for supercapacitors. Journal of Materials Chemistry A, 2015, 3, 3409-3415.	5 . 2	245
7	Photochromic materials based on tungsten oxide. Journal of Materials Chemistry, 2007, 17, 4547.	6.7	230
8	Metalâ€Free Fluorineâ€Doped Carbon Electrocatalyst for CO ₂ Reduction Outcompeting Hydrogen Evolution. Angewandte Chemie - International Edition, 2018, 57, 9640-9644.	7.2	228
9	Ternary Blended Fullereneâ€Free Polymer Solar Cells with 16.5% Efficiency Enabled with a Higherâ€LUMOâ€Level Acceptor to Improve Film Morphology. Advanced Energy Materials, 2019, 9, 1901728.	10.2	216
10	A nonfullerene acceptor with a 1000 nm absorption edge enables ternary organic solar cells with improved optical and morphological properties and efficiencies over 15%. Energy and Environmental Science, 2019, 12, 2529-2536.	15.6	213
11	Controlling the Cavity Structures of Twoâ€Photonâ€Pumped Perovskite Microlasers. Advanced Materials, 2016, 28, 4040-4046.	11.1	207
12	2D Ruddlesden–Popper Perovskites Microring Laser Array. Advanced Materials, 2018, 30, e1706186.	11.1	190
13	Lowâ€Threshold Wavelengthâ€Switchable Organic Nanowire Lasers Based on Excitedâ€State Intramolecular Proton Transfer. Angewandte Chemie - International Edition, 2015, 54, 7125-7129.	7.2	183
14	Organic printed photonics: From microring lasers to integrated circuits. Science Advances, 2015, 1, e1500257.	4.7	172
15	New advances in non-fullerene acceptor based organic solar cells. RSC Advances, 2015, 5, 93002-93026.	1.7	157
16	Full-color laser displays based on organic printed microlaser arrays. Nature Communications, 2019, 10, 870.	5.8	153
17	Perylene–Diimide Based Non-Fullerene Solar Cells with 4.34% Efficiency through Engineering Surface Donor/Acceptor Compositions. Chemistry of Materials, 2014, 26, 2907-2914.	3.2	150
18	Output Coupling of Perovskite Lasers from Embedded Nanoscale Plasmonic Waveguides. Journal of the American Chemical Society, 2016, 138, 2122-2125.	6.6	144

#	Article	IF	CITATIONS
19	Broadband Tunable Microlasers Based on Controlled Intramolecular Charge-Transfer Process in Organic Supramolecular Microcrystals. Journal of the American Chemical Society, 2016, 138, 1118-1121.	6.6	139
20	Two-State Reactivity in Low-Valent Iron-Mediated Câ€"H Activation and the Implications for Other First-Row Transition Metals. Journal of the American Chemical Society, 2016, 138, 3715-3730.	6.6	136
21	Amplified Spontaneous Emission Based on 2D Ruddlesden–Popper Perovskites. Advanced Functional Materials, 2018, 28, 1707006.	7.8	129
22	A Twoâ€Dimensional Holeâ€Transporting Material for Highâ€Performance Perovskite Solar Cells with 20 % Average Efficiency. Angewandte Chemie - International Edition, 2018, 57, 10959-10965.	7.2	127
23	Dual-color single-mode lasing in axially coupled organic nanowire resonators. Science Advances, 2017, 3, e1700225.	4.7	122
24	Enhancing multiphoton upconversion through interfacial energy transfer in multilayered nanoparticles. Nature Communications, 2020, 11, 1174.	5.8	118
25	Assessment of Theoretical Methods for Complexes of Gold(I) and Gold(III) with Unsaturated Aliphatic Hydrocarbon: Which Density Functional Should We Choose?. Journal of Chemical Theory and Computation, 2011, 7, 4002-4011.	2.3	113
26	Single Crystalline Submicrotubes from Small Organic Molecules. Chemistry of Materials, 2005, 17, 6430-6435.	3.2	110
27	3D Laser Displays Based on Circularly Polarized Lasing from Cholesteric Liquid Crystal Arrays. Advanced Materials, 2021, 33, e2104418.	11.1	109
28	Reversible Aqueous Zinc–CO ₂ Batteries Based on CO ₂ –HCOOH Interconversion. Angewandte Chemie - International Edition, 2018, 57, 16996-17001.	7.2	108
29	Phase- and Shape-Controlled Synthesis of Single Crystalline Perylene Nanosheets and Its Optical Properties. Journal of Physical Chemistry C, 2009, 113, 10038-10043.	1.5	107
30	Cobalt layered double hydroxide nanosheets synthesized in water–methanol solution as oxygen evolution electrocatalysts. Journal of Materials Chemistry A, 2018, 6, 5999-6006.	5.2	103
31	"Capillaryâ€Bridge Lithography―for Patterning Organic Crystals toward Modeâ€Tunable Microlaser Arrays. Advanced Materials, 2017, 29, 1603652.	11.1	96
32	Flat-Panel Laser Displays Based on Liquid Crystal Microlaser Arrays. CCS Chemistry, 2020, 2, 369-375.	4.6	95
33	Silver Nanoparticles Stabilized by Thermoresponsive Microgel Particles: Synthesis and Evidence of an Electron Donorâ€Acceptor Effect. Macromolecular Rapid Communications, 2007, 28, 2339-2345.	2.0	94
34	Chemical redox modulated fluorescence of nitrogen-doped graphene quantum dots for probing the activity of alkaline phosphatase. Biosensors and Bioelectronics, 2017, 94, 271-277.	5.3	94
35	In Situ Visualization of Assembly and Photonic Signal Processing in a Triplet Light-Harvesting Nanosystem. Journal of the American Chemical Society, 2018, 140, 4269-4278.	6.6	93
36	A Molecular Platform for Multistate Nearâ€Infrared Electrochromism and Flipâ€Flop, Flipâ€Flapâ€Flop, and Ternary Memory. Angewandte Chemie - International Edition, 2015, 54, 9192-9197.	7.2	92

#	Article	IF	Citations
37	Photoluminescent Anisotropy Amplification in Polymorphic Organic Nanocrystals by Light-Harvesting Energy Transfer. Journal of the American Chemical Society, 2019, 141, 6157-6161.	6.6	92
38	Electronic coupling in cyclometalated ruthenium complexes. Coordination Chemistry Reviews, 2016, 312, 22-40.	9.5	89
39	Self-Assembled Microdisk Lasers of Perylenediimides. Journal of the American Chemical Society, 2015, 137, 15105-15111.	6.6	88
40	Rechargeable Zn–CO ₂ Electrochemical Cells Mimicking Twoâ€5tep Photosynthesis. Advanced Materials, 2019, 31, e1807807.	11,1	87
41	Roomâ€Temperature Phosphorescence in Pure Organic Materials: Halogen Bonding Switching Effects. Chemistry - A European Journal, 2018, 24, 1801-1805.	1.7	86
42	Chemically responsive luminescent switching in transparent flexible self-supporting [EuW ₁₀ O ₃₆] ^{9â~} -agarose nanocomposite thin films. Journal of Materials Chemistry, 2010, 20, 271-277.	6.7	85
43	Three-State Near-Infrared Electrochromism at the Molecular Scale. Journal of the American Chemical Society, 2015, 137, 4058-4061.	6.6	85
44	Green chemical decoration of multiwalled carbon nanotubes with polyoxometalate-encapsulated gold nanoparticles: visible light photocatalytic activities. Journal of Materials Chemistry, 2011, 21, 2282-2287.	6.7	82
45	Facile synthesis of a Ag nanoparticle/polyoxometalate/carbon nanotube tri-component hybrid and its activity in the electrocatalysis of oxygen reduction. Journal of Materials Chemistry, 2011, 21, 14917.	6.7	78
46	Why Is Cobalt the Best Transition Metal in Transition-Metal Hangman Corroles for O–O Bond Formation during Water Oxidation?. Journal of Physical Chemistry Letters, 2012, 3, 2315-2319.	2.1	78
47	Impact of Intermolecular Distance on Singlet Fission in a Series of TIPS Pentacene Compounds. Journal of Physical Chemistry Letters, 2014, 5, 3451-3455.	2.1	77
48	Photonic applications of one-dimensional organic single-crystalline nanostructures: optical waveguides and optically pumped lasers. Journal of Materials Chemistry, 2012, 22, 4136-4140.	6.7	76
49	Electropolymerized films as a molecular platform for volatile memory devices with two near-infrared outputs and long retention time. Chemical Science, 2014, 5, 932-941.	3.7	7 5
50	A general green strategy for fabricating metal nanoparticles/polyoxometalate/graphene tri-component nanohybrids: enhanced electrocatalytic properties. Journal of Materials Chemistry, 2012, 22, 3319.	6.7	73
51	Accessing the Triplet State in Heavyâ€Atomâ€Free Perylene Diimides. Chemistry - A European Journal, 2016, 22, 4717-4722.	1.7	72
52	A Twoâ€Dimensional Ruddlesden–Popper Perovskite Nanowire Laser Array based on Ultrafast Lightâ€Harvesting Quantum Wells. Angewandte Chemie - International Edition, 2018, 57, 7748-7752.	7.2	72
53	Atomic iridium@cobalt nanosheets for dinuclear tandem water oxidation. Journal of Materials Chemistry A, 2019, 7, 8376-8383.	5.2	72
54	2,4,5-Triphenylimidazole Nanowires with Fluorescence Narrowing Spectra Prepared through the Adsorbent-Assisted Physical Vapor Deposition Method. Chemistry of Materials, 2006, 18, 2302-2306.	3.2	71

#	Article	IF	CITATIONS
55	Significant improvement of photovoltaic performance by embedding thiophene in solution-processed star-shaped TPA-DPP backbone. Journal of Materials Chemistry A, 2013, 1, 5747.	5.2	69
56	Tunable Nearâ€Infrared Organic Nanowire Nanolasers. Advanced Functional Materials, 2017, 27, 1703470.	7.8	69
57	Metalâ€Free Fluorineâ€Doped Carbon Electrocatalyst for CO ₂ Reduction Outcompeting Hydrogen Evolution. Angewandte Chemie, 2018, 130, 9788-9792.	1.6	69
58	Latticeâ€Matched Epitaxial Growth of Organic Heterostructures for Integrated Optoelectronic Application. Angewandte Chemie - International Edition, 2017, 56, 3616-3620.	7.2	68
59	Fusedâ€Ring Nonfullerene Acceptor Forming Interpenetrating <i>J</i> à€Architecture for Fullereneâ€Free Polymer Solar Cells. Advanced Energy Materials, 2018, 8, 1800204.	10.2	68
60	Highly Efficient Room-Temperature Phosphorescence from Halogen-Bonding-Assisted Doped Organic Crystals. Journal of Physical Chemistry A, 2017, 121, 8652-8658.	1.1	67
61	Benzodithiophene bridged dimeric perylene diimide amphiphiles as efficient solution-processed non-fullerene small molecules. Polymer Chemistry, 2013, 4, 4631.	1.9	66
62	Multishelled Co3O4-Fe3O4 hollow spheres with even magnetic phase distribution: Synthesis, magnetic properties and their application in water treatment. Journal of Materials Chemistry, 2011, 21, 17680.	6.7	65
63	Self-assembly of CdS quantum dots with polyoxometalate encapsulated gold nanoparticles: enhanced photocatalytic activities. Journal of Materials Chemistry A, 2013, 1, 1488-1494.	5.2	64
64	Tuning of resistive memory switching in electropolymerized metallopolymeric films. Chemical Science, 2015, 6, 1308-1315.	3.7	64
65	Design and Fabrication of Rocketlike Tetrapodal CdS Nanorods by Seed-Epitaxial Metalâ^'Organic Chemical Vapor Deposition. Crystal Growth and Design, 2007, 7, 488-491.	1.4	63
66	Dual-Wavelength Switchable Vibronic Lasing in Single-Crystal Organic Microdisks. Nano Letters, 2017, 17, 91-96.	4.5	63
67	Two-Dimensional Pyramid-like WS ₂ Layered Structures for Highly Efficient Edge Second-Harmonic Generation. ACS Nano, 2018, 12, 689-696.	7.3	63
68	An Optically Reconfigurable Förster Resonance Energy Transfer Process for Broadband Switchable Organic Single-Mode Microlasers. CCS Chemistry, 2022, 4, 250-258.	4.6	63
69	Lanthanide MOFs for inducing molecular chirality of achiral stilbazolium with strong circularly polarized luminescence and efficient energy transfer for color tuning. Chemical Science, 2020, 11, 9154-9161.	3.7	62
70	Ir(ppy) ₃ phosphorescent microrods and nanowires: promising micro-phosphors. Journal of Materials Chemistry, 2009, 19, 89-96.	6.7	61
71	A facile synthesis and lithium storage properties of Co3O4–C hybrid core-shell and hollow spheres. Journal of Materials Chemistry, 2011, 21, 17998.	6.7	60
72	How Accurate Can a Local Coupled Cluster Approach Be in Computing the Activation Energies of Late-Transition-Metal-Catalyzed Reactions with Au, Pt, and Ir?. Journal of Chemical Theory and Computation, 2012, 8, 3119-3127.	2.3	60

#	Article	lF	CITATIONS
73	Origin of Effects of Additive Solvent on Film-Morphology in Solution-Processed Nonfullerene Solar Cells. ACS Applied Materials & Samp; Interfaces, 2015, 7, 6462-6471.	4.0	58
74	Understanding the Effects of Bidentate Directing Groups: A Unified Rationale for sp2 and sp3 C–H Bond Activations. Journal of Organic Chemistry, 2015, 80, 4672-4682.	1.7	58
75	Asymmetric photon transport in organic semiconductor nanowires through electrically controlled exciton diffusion. Science Advances, 2018, 4, eaap9861.	4.7	56
76	Organic Janus Microspheres: A General Approach to All-Color Dual-Wavelength Microlasers. Journal of the American Chemical Society, 2019, 141, 5116-5120.	6.6	55
77	Morphology-tunable In2Se3 nanostructures with enhanced electrical and photoelectrical performances via sulfur doping. Journal of Materials Chemistry, 2010, 20, 6630.	6.7	54
78	Engineering Platinum–Oxygen Dual Catalytic Sites via Charge Transfer towards Highly Efficient Hydrogen Evolution. Angewandte Chemie - International Edition, 2020, 59, 17712-17718.	7.2	53
79	Fullâ€Color and White Circularly Polarized Luminescence of Hydrogenâ€Bonded Ionic Organic Microcrystals. Angewandte Chemie - International Edition, 2021, 60, 14595-14600.	7.2	51
80	Organic composite nanomaterials: energy transfers and tunable luminescent behaviors. New Journal of Chemistry, 2011, 35, 973.	1.4	50
81	Excimer Emission in Selfâ€Assembled Organic Spherical Microstructures: An Effective Approach to Wavelength Switchable Microlasers. Advanced Optical Materials, 2016, 4, 1009-1014.	3.6	50
82	Molecular Interaction between a Gadolinium–Polyoxometalate and Human Serum Albumin. European Journal of Inorganic Chemistry, 2009, 2009, 5189-5193.	1.0	49
83	Synthesis and applications of organic nanorods, nanowires and nanotubes. Annual Reports on the Progress of Chemistry Section C, 2013, 109, 211.	4.4	49
84	Self-Assembly of Perylenediimide Nanobelts and Their Size-Tunable Exciton Dynamic Properties. Journal of Physical Chemistry Letters, 2011, 2, 2163-2167.	2.1	48
85	Room temperature exciton–polariton Bose–Einstein condensation in organic single-crystal microribbon cavities. Nature Communications, 2021, 12, 3265.	5.8	48
86	Transparent and flexible phosphomolybdate–agarose composite thin films with visible-light photochromism. Journal of Materials Chemistry, 2010, 20, 1107-1111.	6.7	47
87	Stimulated Emission-Controlled Photonic Transistor on a Single Organic Triblock Nanowire. Journal of the American Chemical Society, 2018, 140, 13147-13150.	6.6	47
88	Perferryl Fe ^V –Oxo Nonheme Complexes: Do They Have High-Spin or Low-Spin Ground States?. Journal of Chemical Theory and Computation, 2011, 7, 3049-3053.	2.3	46
89	High photocatalytic activity of carbon doped TiO ₂ prepared by fast combustion of organic capping ligands. RSC Advances, 2015, 5, 93635-93643.	1.7	46
90	All-Color Subwavelength Output of Organic Flexible Microlasers. Journal of the American Chemical Society, 2017, 139, 11329-11332.	6.6	46

#	Article	IF	CITATIONS
91	Single-molecule level control of host-guest interactions in metallocycle-C60 complexes. Nature Communications, 2019, 10, 4599.	5.8	44
92	Regulating Charge Transfer of Lattice Oxygen in Singleâ€Atomâ€Doped Titania for Hydrogen Evolution. Angewandte Chemie - International Edition, 2020, 59, 15855-15859.	7.2	44
93	Are DFT Methods Accurate in Mononuclear Ruthenium-Catalyzed Water Oxidation? An ab Initio Assessment. Journal of Chemical Theory and Computation, 2013, 9, 1872-1879.	2.3	43
94	Lowâ€Threshold Wavelengthâ€Switchable Organic Nanowire Lasers Based on Excitedâ€State Intramolecular Proton Transfer. Angewandte Chemie, 2015, 127, 7231-7235.	1.6	42
95	Comparative Study of Effects of Terminal Nonâ€Alkyl Aromatic and Alkyl Groups on Smallâ€Molecule Solar Cell Performance. Advanced Energy Materials, 2015, 5, 1500059.	10.2	42
96	Guest-dependent directional complexation based on triptycene derived oxacalixarene: formation of oriented rotaxanes. Chemical Science, 2016, 7, 469-474.	3.7	42
97	Proton-Controlled Organic Microlaser Switch. ACS Nano, 2018, 12, 5734-5740.	7.3	42
98	Photonic skins based on flexible organic microlaser arrays. Science Advances, 2021, 7, .	4.7	42
99	Effect of PVA on the growth and the optical properties of perylene nanocrystals. New Journal of Chemistry, 2001, 25, 1362-1364.	1.4	41
100	Effects of structure-manipulated molecular stacking on solid-state optical properties and device performances. Polymer Chemistry, 2012, 3, 2832.	1.9	41
101	Tailoring the structures and compositions of one-dimensional organic nanomaterials towards chemical sensing applications. Chemical Science, 2014, 5, 52-57.	3.7	41
102	Tuneable red, green, and blue single-mode lasing in heterogeneously coupled organic spherical microcavities. Light: Science and Applications, 2020, 9, 151.	7.7	41
103	Rapid room-temperature synthesis of silver nanoplates with tunable in-plane surface plasmon resonance from visible to near-IR. Journal of Materials Chemistry, 2008, 18, 2673.	6.7	40
104	Which Density Functional Is the Best in Computing Câ€"H Activation Energies by Pincer Complexes of Late Platinum Group Metals?. Journal of Chemical Theory and Computation, 2012, 8, 2991-2996.	2.3	40
105	Construction of Nanowire Heterojunctions: Photonic Functionâ€Oriented Nanoarchitectonics. Advanced Materials, 2016, 28, 1319-1326.	11.1	40
106	Complex assembly from planar and twisted π-conjugated molecules towards alloy helices and core-shell structures. Nature Communications, 2018, 9, 4358.	5.8	40
107	Electrospinning fabrication of flexible, foldable, and twistable Sb2S3/TiO2/C nanofiber anode for lithium ion batteries. Chemical Engineering Journal, 2021, 413, 127400.	6.6	40
108	Excitation-Wavelength-Dependent Organic Long-Persistent Luminescence Originating from Excited-State Long-Range Proton Transfer. Journal of the American Chemical Society, 2022, 144, 12652-12660.	6.6	40

#	Article	IF	CITATIONS
109	Cooperatively Tuning Phase Size and Absorption of Near IR Photons in P3HT:Perylene Diimide Solar Cells by Bay-Modifications on the Acceptor. Journal of Physical Chemistry C, 2014, 118, 24212-24220.	1.5	39
110	Synthesis and Cathodoluminescence of Morphology-Tunable SiO ₂ Nanotubes and ZnS/SiO ₂ Coreâ^'Shell Structures Using CdSe Nanocrystals as the Seeds. Journal of Physical Chemistry C, 2007, 111, 11604-11611.	1.5	38
111	Controlled synthesis of double-shelled CeO2 hollow spheres and enzyme-free electrochemical bio-sensing properties for uric acid. Journal of Materials Chemistry, 2012, 22, 17079.	6.7	38
112	Tuning the organic microcrystal laser wavelength of ESIPT-active compounds <i>via</i> controlling the excited enol* and keto* emissions. Journal of Materials Chemistry C, 2017, 5, 12235-12240.	2.7	38
113	High-Performance Solution-Processed Single-Junction Polymer Solar Cell Achievable by Post-Treatment of PEDOT:PSS Layer with Water-Containing Methanol. ACS Applied Materials & Samp; Interfaces, 2017, 9, 1446-1452.	4.0	37
114	Thermalâ€Responsive Phosphorescent Nanoamplifiers Assembled from Two Metallophosphors. Angewandte Chemie - International Edition, 2018, 57, 7820-7825.	7.2	37
115	Exciton funneling in light-harvesting organic semiconductor microcrystals for wavelength-tunable lasers. Science Advances, 2019, 5, eaaw2953.	4.7	37
116	A Highâ€Performance Nonâ€Fullerene Acceptor Compatible with Polymers with Different Bandgaps for Efficient Organic Solar Cells. Solar Rrl, 2019, 3, 1800376.	3.1	37
117	Factors That Control the Reactivity of Cobalt(III)–Nitrosyl Complexes in Nitric Oxide Transfer and Dioxygenation Reactions: A Combined Experimental and Theoretical Investigation. Journal of the American Chemical Society, 2016, 138, 7753-7762.	6.6	36
118	Combined Experimental and Computational Study of Pyren-2,7-diyl-Bridged Diruthenium Complexes with Various Terminal Ligands. Inorganic Chemistry, 2015, 54, 4688-4698.	1.9	35
119	Promoted phase transition of titania nanoparticles prepared by a photo-assisted sol-gel method. New Journal of Chemistry, 2002, 26, 975-977.	1.4	34
120	An Organic Microlaser Array Based on a Lateral Microcavity of a Single Jâ€aggregation Microbelt. Angewandte Chemie - International Edition, 2015, 54, 7037-7041.	7.2	34
121	Geometry-Programmable Perovskite Microlaser Patterns for Two-Dimensional Optical Encryption. Nano Letters, 2021, 21, 6792-6799.	4.5	34
122	High-Efficiency Nonfullerene Polymer Solar Cell Enabling by Integration of Film-Morphology Optimization, Donor Selection, and Interfacial Engineering. ACS Applied Materials & Samp; Interfaces, 2016, 8, 15415-15421.	4.0	33
123	Basic amino acid induced isomerization of a spiropyran: towards visual recognition of basic amino acids in water. New Journal of Chemistry, 2007, 31, 1878.	1.4	32
124	Smart responsive organic microlasers with multiple emission states for high-security optical encryption. National Science Review, 2021, 8, nwaa162.	4.6	32
125	Waterâ€Resistant Perovskite Polygonal Microdisks Laser in Flexible Photonics Devices. Advanced Optical Materials, 2016, 4, 1718-1725.	3.6	31
126	Acid-promoted bicyclization of arylacetylenes to benzobicyclo[3.2.1]octanes through cationic rearrangements. Chemical Communications, 2016, 52, 4537-4540.	2.2	31

#	Article	IF	CITATIONS
127	An integrated instrument of DUV-IR photoionization mass spectrometry and spectroscopy for neutral clusters. Review of Scientific Instruments, 2019, 90, 073101.	0.6	31
128	A Photoisomerizationâ€Activated Intramolecular Chargeâ€Transfer Process for Broadbandâ€Tunable Singleâ€Mode Microlasers. Angewandte Chemie - International Edition, 2020, 59, 15992-15996.	7.2	31
129	An application of AAO template: orderly assembled organic molecules for surface-enhanced Raman scattering. Journal of Materials Chemistry, 2008, 18, 133-138.	6.7	30
130	In-depth understanding of photocurrent enhancement in solution-processed small-molecule:perylene diimide non-fullerene organic solar cells. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1961-1968.	0.8	30
131	Benzoindolic squaraine dyes with a large two-photon absorption cross-section. Journal of Materials Chemistry C, 2017, 5, 1224-1230.	2.7	30
132	Randomly Induced Phase Transformation in Silk Proteinâ€Based Microlaser Arrays for Anticounterfeiting. Advanced Materials, 2021, 33, e2102586.	11.1	29
133	Thermally Activated Lasing in Organic Microcrystals toward Laser Displays. Journal of the American Chemical Society, 2021, 143, 20249-20255.	6.6	29
134	Wide band gap copolymers based on phthalimide: synthesis, characterization, and photovoltaic properties with 3.70% efficiency. Polymer Chemistry, 2013, 4, 2174.	1.9	28
135	A new solution-processed diketopyrrolopyrrole donor for non-fullerene small-molecule solar cells. Journal of Materials Chemistry A, 2014, 2, 1869-1876.	5.2	28
136	Successive Cu/Pd transmetalation relay catalysis in stereoselective synthesis of tetraarylethenes. Organic Chemistry Frontiers, 2015, 2, 1366-1373.	2.3	28
137	Synthesis and photovoltaic properties of low bandgap dimeric perylene diimide based non-fullerene acceptors. Science China Chemistry, 2016, 59, 209-217.	4.2	28
138	High-efficiency quaternary polymer solar cells enabled with binary fullerene additives to reduce nonfullerene acceptor optical band gap and improve carriers transport. Science China Chemistry, 2018, 61, 1609-1618.	4.2	28
139	Porous hydrogen-bonded organic–inorganic frameworks: weak interactions and selective dye filtration. CrystEngComm, 2017, 19, 613-617.	1.3	27
140	Singlet Fission in a <i>para</i> -Azaquinodimethane-Based Quinoidal Conjugated Polymer. Journal of the American Chemical Society, 2020, 142, 17892-17896.	6.6	26
141	A Twoâ€Dimensional Holeâ€Transporting Material for Highâ€Performance Perovskite Solar Cells with 20 % Average Efficiency. Angewandte Chemie, 2018, 130, 11125-11131.	1.6	25
142	Superkinetic Growth of Oval Organic Semiconductor Microcrystals for Chaotic Lasing. Advanced Materials, 2021, 33, e2100484.	11.1	25
143	Synthesis and characterization of new layered polyoxometallates–1,10-decanediamine intercalative nanocomposites. Journal of Materials Research, 2004, 19, 496-500.	1.2	24
144	Synthesis and charge-transporting properties of electron-deficient CN2â€"fluorene based Dâ€"A copolymers. Polymer Chemistry, 2012, 3, 2170.	1.9	24

#	Article	IF	CITATIONS
145	Understanding Solvent Manipulation of Morphology in Bulkâ€Heterojunction Organic Solar Cells. Chemistry - an Asian Journal, 2016, 11, 2620-2632.	1.7	24
146	A New Function of N719: N719 Based Solutionâ€Processible Binary Cathode Buffer Layer Enables Highâ€Efficiency Singleâ€Junction Polymer Solar Cells. Solar Rrl, 2017, 1, 1700014.	3.1	24
147	A Twoâ€Dimensional Ruddlesden–Popper Perovskite Nanowire Laser Array based on Ultrafast Lightâ€Harvesting Quantum Wells. Angewandte Chemie, 2018, 130, 7874-7878.	1.6	24
148	Controlled Outcoupling of Whispering-Gallery-Mode Lasers Based on Self-Assembled Organic Single-Crystalline Microrings. Nano Letters, 2019, 19, 1098-1103.	4.5	24
149	Engineering Platinum–Oxygen Dual Catalytic Sites via Charge Transfer towards Highly Efficient Hydrogen Evolution. Angewandte Chemie, 2020, 132, 17865-17871.	1.6	24
150	Nonaqueous synthesis of TiO ₂ â€"carbon hybrid nanomaterials with enhanced stable photocatalytic hydrogen production activity. Journal of Materials Chemistry A, 2015, 3, 10060-10068.	5.2	23
151	A theoretical study of weak interactions in phenylenediamine homodimer clusters. Physical Chemistry Chemical Physics, 2016, 18, 29249-29257.	1.3	23
152	Latticeâ€Matched Epitaxial Growth of Organic Heterostructures for Integrated Optoelectronic Application. Angewandte Chemie, 2017, 129, 3670-3674.	1.6	23
153	Charge-transfer interactions between TCNQ and silver clusters Ag ₂₀ and Ag ₁₃ . Physical Chemistry Chemical Physics, 2016, 18, 7190-7196.	1.3	22
154	Tetraphenylphosphonium Bromide as a Cathode Buffer Layer Material for Highly Efficient Polymer Solar Cells. ACS Applied Materials & Solar Cells. ACS ACS Applied Materials & Solar Cells. ACS	4.0	22
155	sp ² /sp ³ Hybridized Carbon as an Anode with Extra Li-lon Storage Capacity: Construction and Origin. ACS Central Science, 2020, 6, 1451-1459.	5.3	22
156	A Universal In Situ Crossâ€Linking Strategy Enables Orthogonal Processing of Fullâ€Color Organic Microlaser Arrays. Advanced Functional Materials, 2021, 31, 2103031.	7.8	22
157	Excitonâ€Polaritons and Their Bose–Einstein Condensates in Organic Semiconductor Microcavities. Advanced Materials, 2022, 34, e2106095.	11.1	22
158	Solution-based patterned growth of rubrene nanocrystals for organic field effect transistors. Applied Physics Letters, 2009, 95, 263312.	1.5	21
159	Spin–Orbit Coupling and Outer-Core Correlation Effects in Ir- and Pt-Catalyzed C–H Activation. Journal of Chemical Theory and Computation, 2012, 8, 1641-1645.	2.3	21
160	Cubic nickel frames: one-pot synthesis, magnetic properties and application in water treatment. CrystEngComm, 2012, 14, 7616.	1.3	21
161	Ideal N-doped carbon nanoarchitectures evolved from fibrils for highly efficient oxygen reduction. Journal of Materials Chemistry A, 2014, 2, 19765-19770.	5.2	21
162	Transition from a Metalâ€Localized Mixedâ€Valence Compound to a Fully Delocalized and Bridgeâ€Biased Electrophore in a Ruthenium–Amine–Ruthenium Tricenter System. Chemistry - A European Journal, 2016, 22, 10341-10345.	1.7	21

#	Article	IF	CITATIONS
163	Co13O8â€"metalloxocubes: a new class of perovskite-like neutral clusters with cubic aromaticity. National Science Review, 2021, 8, nwaa201.	4.6	21
164	Fullâ€Color and White Circularly Polarized Luminescence of Hydrogenâ€Bonded Ionic Organic Microcrystals. Angewandte Chemie, 2021, 133, 14716-14721.	1.6	21
165	Performance enhancement of BODIPY dimer-based small-molecule solar cells using a visible-photon-capturing diketopyrrolopyrrole π-bridge. RSC Advances, 2015, 5, 74238-74241.	1.7	20
166	Theoretical Study of Tetrahydrofuran-Stabilized Al ₁₃ Superatom Cluster. Journal of Physical Chemistry A, 2016, 120, 3950-3957.	1.1	20
167	A Novel BODIPYâ€Based Lowâ€Bandâ€Gap Smallâ€Molecule Acceptor for Efficient Nonâ€fullerene Polymer Solar Cells. Chinese Journal of Chemistry, 2017, 35, 1813-1823.	2.6	20
168	Novel bimetallic lanthanide metal–organic frameworks (Ln-MOFs) for colour-tuning through energy-transfer between visible and near-infrared emitting Ln ³⁺ ions. Journal of Materials Chemistry C, 2019, 7, 2751-2757.	2.7	20
169	Tailoring Color-Tunable Dual Emissions of Mn ²⁺ -Alloyed Two-Dimensional Perovskite Quantum Wells. Chemistry of Materials, 2021, 33, 2847-2854.	3.2	20
170	Singleâ€molecule surfaceâ€enhanced Raman scattering of fullerene C ₆₀ . Journal of Raman Spectroscopy, 2011, 42, 319-323.	1.2	19
171	Probing single molecules and molecular aggregates: Raman spectroscopic advances. Journal of Raman Spectroscopy, 2016, 47, 623-635.	1.2	19
172	13%-Efficiency Quaternary Polymer Solar Cell with Nonfullerene and Fullerene as Mixed Electron Acceptor Materials. ACS Applied Materials & Samp; Interfaces, 2019, 11, 766-773.	4.0	19
173	Lasing from an Organic Microâ€Helix. Angewandte Chemie - International Edition, 2020, 59, 11080-11086.	7.2	19
174	Manganese Doping in Cobalt Oxide Nanorods Promotes Catalytic Dehydrogenation. ACS Sustainable Chemistry and Engineering, 2020, 8, 5734-5741.	3.2	19
175	High-Lying $3 < \sup 1 < \sup A < \sup g < \sup D$ Dark-State-Mediated Singlet Fission. Journal of the American Chemical Society, 2021, 143, 5691-5697.	6.6	19
176	H-Type-like Aggregation-Accelerated Singlet Fission Process in Dipyrrolonaphthyridinedione Thin Film: The Role of Charge Transfer/Excimer Mixed Intermediate State. Journal of Physical Chemistry Letters, 2021, 12, 12276-12282.	2.1	19
177	Large-scale, ultra-dense and vertically standing zinc phthalocyanine π–π stacks as a hole-transporting layer on an ITO electrode. Journal of Materials Chemistry, 2012, 22, 23492.	6.7	18
178	CH Bond Activation by Early Transition Metal Carbide Cluster Anion MoC ₃ ^{â^'} . Chemistry - A European Journal, 2015, 21, 17748-17756.	1.7	18
179	Revealing the Role of d Orbitals of Transition-Metal-Doped Titanium Oxide on High-Efficient Oxygen Reduction. CCS Chemistry, 2021, 3, 180-188.	4.6	18
180	Understanding and Modifying the Scaling Relations for Ammonia Synthesis on Dilute Metal Alloys: From Single-Atom Alloys to Dimer Alloys. ACS Catalysis, 2022, 12, 9201-9212.	5.5	18

#	Article	IF	CITATIONS
181	Two-dimensional self-organization of 1-nonanethiol-capped gold nanoparticles. Science Bulletin, 2001, 46, 996-998.	1.7	17
182	Modulating PCBM-Acceptor Crystallinity and Organic Solar Cell Performance by Judiciously Designing Small-Molecule Mainchain End-Capping Units. ACS Applied Materials & Samp; Interfaces, 2016, 8, 26058-26065.	4.0	17
183	Wavelengthâ€Controlled Organic Microlasers Based on Polymorphismâ€Dependent Intramolecular Chargeâ€Transfer Process. Chemistry - an Asian Journal, 2016, 11, 2656-2661.	1.7	17
184	Absence of Intramolecular Singlet Fission in Pentacene–Perylenediimide Heterodimers: The Role of Charge Transfer State. Journal of Physical Chemistry Letters, 2017, 8, 5609-5615.	2.1	17
185	Regulation of intra- and intermolecular Pt–Pt and π–π interactions of a U-shaped diplatinum complex to achieve pseudo-polymorphic emissions in solution and crystalline states. Journal of Materials Chemistry C, 2017, 5, 7222-7229.	2.7	17
186	Reaction Mechanisms of CO2 Reduction to Formaldehyde Catalyzed by Hourglass Ru, Fe, and Os Complexes: A Density Functional Theory Study. Catalysts, 2017, 7, 5.	1.6	17
187	All-solid-state deep ultraviolet laser for single-photon ionization mass spectrometry. Review of Scientific Instruments, 2016, 87, 024102.	0.6	16
188	Direct photocatalytic hydrogen evolution from water splitting using nanostructures of hydrate organic small molecule as photocatalysts. Journal of Materials Chemistry A, 2016, 4, 6577-6584.	5.2	16
189	Terminal moiety-driven electrical performance of asymmetric small-molecule-based organic solar cells. Journal of Materials Chemistry A, 2016, 4, 15688-15697.	5.2	16
190	Probing the Conformational Transition of 2,2′-Bipyridyl under External Field by Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 2884-2890.	1.5	15
191	Cyclometalated ruthenium(<scp>ii</scp>) complexes with bis(benzimidazolyl)benzene for dye-sensitized solar cells. RSC Advances, 2015, 5, 90001-90009.	1.7	15
192	Triarylamines with branched multi-pyridine groups: modulation of emission properties by structural variation, solvents, and tris(pentafluorophenyl)borane. Science China Chemistry, 2018, 61, 545-556.	4.2	15
193	Organophosphorus Derivatives as Cathode Interfacial-Layer Materials for Highly Efficient Fullerene-Free Polymer Solar Cells. ACS Applied Materials & Samp; Interfaces, 2018, 10, 35896-35903.	4.0	15
194	Hybrid Three-Dimensional Spiral WSe ₂ Plasmonic Structures for Highly Efficient Second-Order Nonlinear Parametric Processes. Research, 2018, 2018, 4164029.	2.8	15
195	Modulated emission from dark triplet excitons in aza-acene compounds: fluorescence versus phosphorescence. New Journal of Chemistry, 2017, 41, 1864-1871.	1.4	14
196	Weak interactions cause selective cocrystal formation of lanthanide nitrates and tetra-2-pyridinylpyrazine. CrystEngComm, 2018, 20, 1123-1129.	1.3	14
197	Modulation of Amplified Spontaneous Emissions between Singlet Fluorescence and Triplet Phosphorescence Channels in Organic Dye Lasers. Laser and Photonics Reviews, 2019, 13, 1900036.	4.4	14
198	Grain Boundary Enhanced Photoluminescence Anisotropy in Twoâ€Dimensional Hybrid Perovskite Films. Advanced Optical Materials, 2020, 8, 1901780.	3.6	14

#	Article	IF	Citations
199	Wavelength-Tunable Single-Mode Microlasers Based on Photoresponsive Pitch Modulation of Liquid Crystals for Information Encryption. Research, 2020, 2020, 6539431.	2.8	14
200	Ruthenium-bis-terpyridine Complex with Two Redox-Asymmetric Amine Substituents: Potential-Controlled Reversal of the Direction of Charge-Transfer. Organometallics, 2014, 33, 6223-6231.	1.1	13
201	Quantum-size-effect accommodation of gold clusters with altered fluorescence of dyes. RSC Advances, 2015, 5, 30610-30616.	1.7	13
202	Reversible Aqueous Zinc–CO 2 Batteries Based on CO 2 –HCOOH Interconversion. Angewandte Chemie, 2018, 130, 17242-17247.	1.6	13
203	Effect of Axial Coordination of Iron Porphyrin on Their Nanostructures and Photocatalytic Performance. Crystal Growth and Design, 2019, 19, 3279-3287.	1.4	13
204	Ultrathin Monolayer Mn ²⁺ â€Alloyed 2D Perovskite Colloidal Quantum Wells. Advanced Optical Materials, 2021, 9, 2001135.	3.6	13
205	The leverage effect of the relative strength of molecular solvophobicity vs. solvophilicity on fine-tuning nanomorphologies of perylene diimide bolaamphiphiles. Soft Matter, 2013, 9, 3089.	1.2	12
206	Inclusion induced second harmonic generation in low dimensional supramolecular crystals. Journal of Materials Chemistry C, 2014, 2, 3199-3203.	2.7	12
207	Engineering Electronic Structure of Single-Atom Pd Site on Ti 0.87 O 2 Nanosheet via Charge Transfer Enables C–Br Cleavage for Room-Temperature Suzuki Coupling. CCS Chemistry, 2021, 3, 1453-1462.	4.6	12
208	Molecular Design Strategy for Practical Singlet Fission Materials: The Charm of Donor/Acceptor Decorated Quinoidal Structure. CCS Chemistry, 2022, 4, 2748-2756.	4.6	12
209	Differential Polymer Chain Scission Enables Freeâ€Standing Microcavity Laser Arrays. Advanced Materials, 2022, 34, e2107611.	11.1	12
210	Reversible fluorescence modulation based on photochromic diarylethene and fluorescent coumarin. Journal of Materials Research, 2007, 22, 1558-1563.	1.2	11
211	The controllable synthesis of ultrafine one-dimensional small-molecule semiconducting nanocrystals in surfactant-assisted wet chemical reactions and their confinement effect. Journal of Materials Chemistry C, 2017, 5, 6377-6385.	2.7	11
212	Exciton funneling amplified photoluminescence anisotropy in organic radical-doped microcrystals. Journal of Materials Chemistry C, 2022, 10, 2551-2555.	2.7	11
213	Osmium Bisterpyridine Complexes with Redox-Active Amine Substituents: A Comparison Study with Ruthenium Analogues. Inorganic Chemistry, 2015, 54, 8136-8147.	1.9	10
214	Anion-regulated electronic communication in a cyclometalated diruthenium complex with a urea bridge. Physical Chemistry Chemical Physics, 2017, 19, 8902-8907.	1.3	10
215	Wavelength Division Multiplexer Based on Semiconductor Heterostructures Constructed via Nanoarchitectonics. Small, 2018, 14, 1702698.	5 . 2	10
216	Molecular Quadripod as a Noncovalent Interfacial Coupling Reagent for Forming Immobilized Coordination Assemblies. Journal of the American Chemical Society, 2018, 140, 12337-12340.	6.6	10

#	Article	IF	Citations
217	Improved fullerene-free polymer solar cells using a rationally designed binary mixed solution of an electron extracting layer. Materials Chemistry Frontiers, 2018, 2, 1876-1883.	3.2	10
218	Effect of the Fluoro-Substituent Position on the Crystal Structure and Photoluminescence of Microcrystals of Platinum \hat{l}^2 -Diketonate Complexes. Inorganic Chemistry, 2020, 59, 11316-11328.	1.9	10
219	Regulating Charge Transfer of Lattice Oxygen in Singleâ€Atomâ€Doped Titania for Hydrogen Evolution. Angewandte Chemie, 2020, 132, 15989-15993.	1.6	10
220	Fabrication of photochromic phosphomolybdic acid monolayer film. Physical Chemistry Chemical Physics, 2003, 5, 2751.	1.3	9
221	Ultrasound-induced change of microstructure and photochromic properties of polyacrylamide thin films containing a polyoxometalate. Journal of Materials Research, 2003, 18, 709-713.	1.2	9
222	Photochromism induced aggregate-monomer interconversion and fluorescence switch of porphyrin with spiropyran. Journal of Physical Organic Chemistry, 2007, 20, 884-887.	0.9	9
223	Boosting Organic Solar Cell Electrical Performance by Introducing Large Aromatics onto Smallâ€Molecule Peripheral Sideâ€Chains. Advanced Materials Interfaces, 2016, 3, 1600323.	1.9	9
224	Thermalâ€Responsive Phosphorescent Nanoamplifiers Assembled from Two Metallophosphors. Angewandte Chemie, 2018, 130, 7946-7951.	1.6	9
225	A mono-copper doped undeca-gold cluster with up-converted and anti-stokes emissions of fluorescence and phosphorescence. Nanoscale, 2021, 13, 5300-5306.	2.8	9
226	Photocatalytic activity of pure rutile particles derived from a photo-assisted sol-gel method. New Journal of Chemistry, 2003, 27, 529-532.	1.4	8
227	Tunable two-photon pumped lasing from alloyed semiconductor nanoribbons. Journal of Materials Chemistry, 2011, 21, 4837.	6.7	8
228	3D-printed optical-electronic integrated devices. Science China Chemistry, 2019, 62, 1398-1404.	4.2	7
229	Organic composite materials: Understanding and manipulating excited states toward higher lightâ€emitting performance. Aggregate, 2021, 2, e103.	5.2	7
230	Title is missing!. Journal of Materials Science Letters, 2002, 21, 1257-1259.	0.5	6
231	Tunable Self-Assembly and Morphology-Dependent Photoconductivity of a Donor–Acceptor-Structured Diruthenium Complex. Inorganic Chemistry, 2016, 55, 13007-13013.	1.9	6
232	Unraveling weak interactions in aniline-pyrrole dimer clusters. Science China Chemistry, 2016, 59, 1270-1276.	4.2	6
233	Photoreactions of Porphyrins Initiated by Deep Ultraviolet Single Photons. Journal of Physical Chemistry A, 2017, 121, 4626-4632.	1.1	6
234	Lasing from an Organic Microâ€Helix. Angewandte Chemie, 2020, 132, 11173-11179.	1.6	6

#	Article	IF	CITATIONS
235	Magnetically Controlled Assembly of Dielectric Microspheres toward Photonic Molecules. Advanced Functional Materials, 2021, 31, 2103945.	7.8	6
236	Emissive edge state in CH3NH3PbBr3 films probed by fluorescence lifetime imaging technique. Journal of Photonics for Energy, 2018, 8, 1.	0.8	6
237	Supramolecular Assembly and Circularly Polarized Phosphorescence of Tridentate Platinumâ€Isocyanide Complexes Modified with a Chiral Leucine Derivative. ChemPhotoChem, 2022, 6, .	1.5	6
238	Efficient triplet pair separation from intramolecular singlet fission in dibenzopentalene derivatives. Science China Chemistry, 2019, 62, 1037-1043.	4.2	5
239	A fluorometric displacement assay for adenosine triphosphate using layered cobalt(II) double hydroxide nanosheets. Mikrochimica Acta, 2019, 186, 263.	2.5	5
240	Efficient Singlet Fission in Loose Packing Benzodipyrrolidone Thin Films. Journal of Physical Chemistry C, 2021, 125, 22093-22099.	1.5	5
241	Molecular engineering towards tunable morphology of metal–organic complex microcrystals for efficient and multicolor electrochemiluminescence. Journal of Materials Chemistry C, 2021, 9, 16485-16494.	2.7	5
242	Conformational distortion-harnessed singlet fission dynamics in thienoquinoid: rapid generation and subsequent annihilation of multiexciton dark state. Journal of Materials Chemistry C, 2022, 10, 4268-4275.	2.7	5
243	A pre-organized monomer-reservoir strategy to prepare multidimensional phosphorescent organoplatinum nanocrystals and suprastructures. Science China Chemistry, 2022, 65, 328-338.	4.2	5
244	Riemannian Surface on Carbon Anodes Enables Li-Ion Storage at \hat{a} 35 \hat{A} C. ACS Central Science, 2022, 8, 905-914.	5. 3	5
245	Realization of Single-Crystal Dye Lasers by Taming Charge Transfer in Molecular Self-Assemblies. ACS Nano, 2022, 16, 12345-12351.	7.3	5
246	Delayed Fluorescent Emission from Pyrene Doped Phenanthrene Nanoparticles Based on Tripletâ€triplet Energy Transfer. Chinese Journal of Chemistry, 2010, 28, 2103-2108.	2.6	4
247	Loss compensation during subwavelength propagation of enhanced second-harmonic generation signals in a hybrid plasmonic waveguide. Materials Chemistry Frontiers, 2018, 2, 491-496.	3.2	4
248	On the Formation of Nanostructures from Stilbazolium-like Dyes. Journal of Nanoparticle Research, 2006, 8, 65-77.	0.8	3
249	Potentialâ€induced Raman behavior of individual (<i>R</i>)â€diâ€2â€naphthylprolinol molecules on a Agâ€modified Ag electrode. Journal of Raman Spectroscopy, 2011, 42, 951-957.	1.2	3
250	Selfâ€Assembled 1Dâ€Nanowire Lasers of Perylenediimides. ChemPhysChem, 2016, 17, 3160-3164.	1.0	3
251	A Photoisomerizationâ€Activated Intramolecular Chargeâ€Transfer Process for Broadbandâ€Tunable Singleâ€Mode Microlasers. Angewandte Chemie, 2020, 132, 16126-16130.	1.6	3
252	Strategic Engineering of Subâ€5 nm Dyes@CDs Nanoassemblies Platform for Super Resolution Imaging. Advanced Functional Materials, 2021, 31, 2106516.	7.8	3

#	Article	IF	CITATIONS
253	Magnetically Boosted Generation of Intracellular Reactive Oxygen Species toward Magneto-Photodynamic Therapy. Journal of Physical Chemistry B, 2022, 126, 1895-1903.	1.2	3
254	Electrochemical and Photoelectrochemical Properties of ITO/ \hat{l} ±-Fe2O3 Nanoparticulate Film Electrode in Na2SO4 Solution. Molecular Crystals and Liquid Crystals, 1999, 337, 437-440.	0.3	2
255	Uniformly-Assembled Metal Nanoparticles on Anodic Aluminum Oxide (AAO) Applied in Surface-Enhanced Raman Spectroscopy. Materials Research Society Symposia Proceedings, 2011, 1351, 116601.	0.1	2
256	Luminescent Nanoparticles: Elimination of Photon Quenching by a Transition Layer to Fabricate a Quenchingâ€Shield Sandwich Structure for 800 nm Excited Upconversion Luminescence of Nd ³⁺ â€Sensitized Nanoparticles (Adv. Mater. 18/2014). Advanced Materials, 2014, 26, 2766-2766.	11.1	2
257	An Organic Microlaser Array Based on a Lateral Microcavity of a Single Jâ€aggregation Microbelt. Angewandte Chemie, 2015, 127, 7143-7147.	1.6	2
258	Accumulating bright excitons on the hybridized local and charge transfer excited state for organic semiconductor lasers. Journal of Materials Chemistry C, 2022, 10, 9945-9952.	2.7	2
259	Inside Cover: Cooperative Assembly of Binary Molecular Components into Tubular Structures for Multiple Photonic Applications (Angew. Chem. Int. Ed. 21/2011). Angewandte Chemie - International Edition, 2011, 50, 4716-4716.	7.2	1
260	Nano- and microstructured gold tubes for surface-enhanced Raman scattering by vapor-induced strain of thin films. Journal of Materials Chemistry, 2012, 22, 19202.	6.7	1
261	Chemical Sensors: Hydrogen Peroxide Vapor Sensing with Organic Core/Sheath Nanowire Optical Waveguides (Adv. Mater. 35/2012). Advanced Materials, 2012, 24, OP186.	11.1	1
262	Nanowires: Optical Wavelength Filters Based on Photonic Confinement in Semiconductor Nanowire Homojunctions (Adv. Mater. 4/2014). Advanced Materials, 2014, 26, 663-663.	11.1	1
263	Frontispiece: Reversible Aqueous Zinc–CO ₂ Batteries Based on CO ₂ –HCOOH Interconversion. Angewandte Chemie - International Edition, 2018, 57, .	7.2	1
264	Innentitelbild: Cooperative Assembly of Binary Molecular Components into Tubular Structures for Multiple Photonic Applications (Angew. Chem. 21/2011). Angewandte Chemie, 2011, 123, 4812-4812.	1.6	0
265	Celebrating the 80th Anniversary of Chinese Chemical Society. Chinese Journal of Chemistry, 2012, 30, 1915-1915.	2.6	O
266	Photonics: One-Dimensional Organic Photonic Heterostructures: Rational Construction and Spatial Engineering of Excitonic Emission (Adv. Mater. 13/2012). Advanced Materials, 2012, 24, 1622-1622.	11.1	0
267	Nanowire Heterostructures: Embedded Branchâ€Like Organic/Metal Nanowire Heterostructures: Liquidâ€Phase Synthesis, Efficient Photonâ€Plasmon Coupling, and Optical Signal Manipulation (Adv.) Tj ETQq1 1	0.7.84314	4 g BT /Ove
268	Photodetectors: Controlled Substitution of Chlorine for Iodine in Single-Crystal Nanofibers of Mixed Perovskite MAPbl ₃₋ <i></i> Cl<i>_x</i>(Small 28/2016). Small, 2016, 12, 3880-3880.	5.2	0
269	Frontispiz: Reversible Aqueous Zinc–CO ₂ Batteries Based on CO ₂ –HCOOH Interconversion. Angewandte Chemie, 2018, 130, .	1.6	O
270	Innenrýcktitelbild: Metal-Free Fluorine-Doped Carbon Electrocatalyst for CO2 Reduction Outcompeting Hydrogen Evolution (Angew. Chem. 31/2018). Angewandte Chemie, 2018, 130, 10133-10133.	1.6	0

#	Article	IF	CITATIONS
271	Organoplatinum(II) Cruciform: A Versatile Building Block to Fabricate 2D Microcrystals with Fullâ€Color and White Phosphorescence and Anisotropic Photon Transport. Angewandte Chemie, 0, , .	1.6	0
272	Efficient Singlet Fission via a High-lying 3 ¹ A _g Dark Intermediate State., 2022,,.		0