
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2415727/publications.pdf Version: 2024-02-01

Κειμ Μλαμοκλ

#	Article	IF	CITATIONS
1	Recent Advances of Catalytic Asymmetric 1,3-Dipolar Cycloadditions. Chemical Reviews, 2015, 115, 5366-5412.	23.0	824
2	Enantioselective Amino Acid Synthesis by Chiral Phase-Transfer Catalysis. Chemical Reviews, 2003, 103, 3013-3028.	23.0	797
3	Recent Advances in Asymmetric Phase-Transfer Catalysis. Angewandte Chemie - International Edition, 2007, 46, 4222-4266.	7.2	732
4	Recent Development and Application of Chiral Phase-Transfer Catalysts. Chemical Reviews, 2007, 107, 5656-5682.	23.0	723
5	Recent Developments in Asymmetric Phaseâ€Transfer Reactions. Angewandte Chemie - International Edition, 2013, 52, 4312-4348.	7.2	616
6	Molecular Design of a C2-Symmetric Chiral Phase-Transfer Catalyst for Practical Asymmetric Synthesis of α-Amino Acids. Journal of the American Chemical Society, 1999, 121, 6519-6520.	6.6	388
7	Practical Catalytic Enantioselective Synthesis of α,α-Dialkyl-α-amino Acids by Chiral Phase-Transfer Catalysis. Journal of the American Chemical Society, 2000, 122, 5228-5229.	6.6	332
8	Design ofN-SpiroC2-Symmetric Chiral Quaternary Ammonium Bromides as Novel Chiral Phase-Transfer Catalysts: Synthesis and Application to Practical Asymmetric Synthesis of α-Amino Acids. Journal of the American Chemical Society, 2003, 125, 5139-5151.	6.6	332
9	Phosphonium Salts as Chiral Phaseâ€Transfer Catalysts: Asymmetric Michael and Mannich Reactions of 3â€Aryloxindoles. Angewandte Chemie - International Edition, 2009, 48, 4559-4561.	7.2	257
10	Enantioselective Base-Free Phase-Transfer Reaction in Water-Rich Solvent. Journal of the American Chemical Society, 2009, 131, 16620-16621.	6.6	218
11	Design of Axially Chiral Dicarboxylic Acid for Asymmetric Mannich Reaction of Arylaldehyde <i>N</i> Boc Imines and Diazo Compounds. Journal of the American Chemical Society, 2007, 129, 10054-10055.	6.6	216
12	anti-Selective Direct Asymmetric Mannich Reactions Catalyzed by Axially Chiral Amino Sulfonamide as an Organocatalyst. Journal of the American Chemical Society, 2005, 127, 16408-16409.	6.6	213
13	Practical Aspects of Recent Asymmetric Phase-Transfer Catalysis. Organic Process Research and Development, 2008, 12, 679-697.	1.3	211
14	Powerful Chiral Phase-Transfer Catalysts for the Asymmetric Synthesis of ?-Alkyl- and ?,?-Dialkyl-?-amino Acids. Angewandte Chemie - International Edition, 2005, 44, 1549-1551.	7.2	209
15	Binaphthylâ€Modified Quaternary Phosphonium Salts as Chiral Phaseâ€Transfer Catalysts: Asymmetric Amination of βâ€Keto Esters. Angewandte Chemie - International Edition, 2008, 47, 9466-9468.	7.2	199
16	Design of New Chiral Phase-Transfer Catalysts with Dual Functions for Highly Enantioselective Epoxidation of α,β-Unsaturated Ketones. Journal of the American Chemical Society, 2004, 126, 6844-6845.	6.6	196
17	Asymmetric Organocatalysis of Structurally Well-Defined Chiral Quaternary Ammonium Fluorides. Accounts of Chemical Research, 2004, 37, 526-533.	7.6	195
18	Designer Chiral Quaternary Ammonium Bifluorides as an Efficient Catalyst for Asymmetric Nitroaldol Reaction of Silyl Nitronates with Aromatic Aldehydes. Journal of the American Chemical Society, 2003, 125, 2054-2055.	6.6	174

#	Article	IF	CITATIONS
19	An organic thiyl radical catalyst for enantioselective cyclization. Nature Chemistry, 2014, 6, 702-705.	6.6	170
20	Design of an Axially Chiral Amino Acid with a Binaphthyl Backbone as an Organocatalyst for a Direct Asymmetric Aldol Reaction. Angewandte Chemie - International Edition, 2005, 44, 3055-3057.	7.2	155
21	Development of Highly Diastereo- and Enantioselective Direct Asymmetric Aldol Reaction of a Glycinate Schiff Base with Aldehydes Catalyzed by Chiral Quaternary Ammonium Salts. Journal of the American Chemical Society, 2004, 126, 9685-9694.	6.6	146
22	Highly Enantioselective Construction of Quaternary Stereocenters onÎ ² -Keto Esters by Phase-Transfer Catalytic Asymmetric Alkylation and Michael Reaction. Angewandte Chemie - International Edition, 2003, 42, 3796-3798.	7.2	140
23	Organoaluminum-promoted Claisen rearrangement of allyl vinyl ethers. Journal of the American Chemical Society, 1990, 112, 316-322.	6.6	138
24	syn-Selective and Enantioselective Direct Cross-Aldol Reactions between Aldehydes Catalyzed by an Axially Chiral Amino Sulfonamide. Angewandte Chemie - International Edition, 2007, 46, 1738-1740.	7.2	137
25	Catalytic Asymmetric Alkynylation of C1â€6ubstituted C,N yclic Azomethine Imines by Cu ^I /Chiral BrÃ,nsted Acid Co atalyst. Angewandte Chemie - International Edition, 2011, 50, 8952-8955.	7.2	135
26	Organoaluminum-promoted rearrangement of epoxy silyl ethers to .betasiloxy aldehydes. Journal of the American Chemical Society, 1989, 111, 6431-6432.	6.6	131
27	Direct Asymmetric Hydroxyamination Reaction Catalyzed by an Axially Chiral Secondary Amine Catalyst. Journal of the American Chemical Society, 2006, 128, 6046-6047.	6.6	130
28	Stereocontrolled Synthesis of Vicinal Diamines by Organocatalytic Asymmetric Mannich Reaction of <i>N</i> -Protected Aminoacetaldehydes: Formal Synthesis of (â^)-Agelastatin A. Journal of the American Chemical Society, 2012, 134, 7516-7520.	6.6	128
29	A Designer Axially Chiral Amino Sulfonamide as an Efficient Organocatalyst for Direct Asymmetric Mannich Reactions of Nâ€Bocâ€Protected Imines. Angewandte Chemie - International Edition, 2009, 48, 1838-1840.	7.2	124
30	Direct Asymmetric Benzoyloxylation of Aldehydes Catalyzed by 2-Tritylpyrrolidine. Journal of the American Chemical Society, 2009, 131, 3450-3451.	6.6	123
31	Asymmetric Induction in the Neber Rearrangement of Simple Ketoxime Sulfonates under Phase-Transfer Conditions:  Experimental Evidence for the Participation of an Anionic Pathway. Journal of the American Chemical Society, 2002, 124, 7640-7641.	6.6	122
32	Design of bifunctional quaternary phosphonium salt catalysts for CO ₂ fixation reaction with epoxides under mild conditions. Green Chemistry, 2016, 18, 4611-4615.	4.6	121
33	Chiral bifunctional phase transfer catalysts for asymmetric fluorination of \hat{I}^2 -keto esters. Chemical Communications, 2010, 46, 321-323.	2.2	119
34	Epoxy silyl ether rearrangements: a new, stereoselective approach to the synthesis of .betahydroxy carbonyl compounds. Journal of the American Chemical Society, 1986, 108, 3827-3829.	6.6	118
35	Metalâ€Free CH Bond Activation of Branched Aldehydes with a Hypervalent Iodine(III) Catalyst under Visibleâ€Light Photolysis: Successful Trapping with Electronâ€Deficient Olefins. Angewandte Chemie - International Edition, 2014, 53, 11060-11064.	7.2	117
36	A Designer Axially Chiral Amino Sulfonamide as an Efficient Organocatalyst for Direct Asymmetric <i>anti</i> â€6elective Mannich Reactions and <i>syn</i> â€6elective Crossâ€Aldol Reactions. Chemistry - A European Journal, 2009, 15, 6678-6687.	1.7	114

#	Article	IF	CITATIONS
37	A Practical Synthesis of (S)-2-Cyclohexyl-2-phenylglycolic Acid via Organocatalytic Asymmetric Construction of a Tetrasubstituted Carbon Center. Organic Letters, 2005, 7, 5103-5105.	2.4	109
38	The Direct C–H Difluoromethylation of Heteroarenes Based on the Photolysis of Hypervalent Iodine(III) Reagents That Contain Difluoroacetoxy Ligands. Organic Letters, 2017, 19, 5126-5129.	2.4	106
39	Efficient Organocatalytic Cross-Aldol Reaction between Aliphatic Aldehydes through Their Functional Differentiation. Journal of the American Chemical Society, 2011, 133, 18130-18133.	6.6	104
40	A Chiral Electrophilic Selenium Catalyst for Highly Enantioselective Oxidative Cyclization. Journal of the American Chemical Society, 2016, 138, 5206-5209.	6.6	104
41	Organoaluminum-catalyzed rearrangement of epoxides a facile route to the synthesis of optically active β-siloxy aldehydes. Tetrahedron, 1991, 47, 6983-6998.	1.0	102
42	Complete Switch of Product Selectivity in Asymmetric Direct Aldol Reaction with Two Different Chiral Organocatalysts from a Common Chiral Source. Journal of the American Chemical Society, 2008, 130, 17666-17667.	6.6	101
43	Organocatalyzed direct asymmetric α-halogenation of carbonyl compounds. Organic and Biomolecular Chemistry, 2009, 7, 2005.	1.5	99
44	Catalytic Asymmetric Synthesis of 3,3′â€Diaryloxindoles as Triarylmethanes with a Chiral Allâ€Carbon Quaternary Center: Phaseâ€Transferâ€Catalyzed S _N Ar Reaction. Angewandte Chemie - International Edition, 2014, 53, 6220-6223.	7.2	99
45	(2,7-Dimethyl-1,8-biphenylenedioxy)bis(dimethylaluminum) as a Bidentate Lewis Acid:Â Its Reactivity and Selectivity in Organic Synthesis. Journal of the American Chemical Society, 1996, 118, 11307-11308.	6.6	95
46	Highly Enantioselective Michael Addition of Silyl Nitronates to α,β-Unsaturated Aldehydes Catalyzed by Designer Chiral Ammonium Bifluorides:  Efficient Access to Optically Active γ-Nitro Aldehydes and Their Enol Silyl Ethers. Journal of the American Chemical Society, 2003, 125, 9022-9023.	6.6	95
47	Design of Chiral Bifunctional Quaternary Phosphonium Bromide Catalysts Possessing an Amide Moiety. Organic Letters, 2013, 15, 3350-3353.	2.4	95
48	Design of chiral organocatalysts for practical asymmetric synthesis of amino acid derivatives. Chemical Communications, 2007, , 1487-1495.	2.2	92
49	Highly practical amino acid and alkaloid synthesis using designer chiral phase transfer catalysts as highâ€performance organocatalysts. Chemical Record, 2010, 10, 254-259.	2.9	91
50	An Achiralâ€Acidâ€Induced Switch in the Enantioselectivity of a Chiral <i>cis</i> â€Diamineâ€Based Organocatalyst for Asymmetric Aldol and Mannich Reactions. Angewandte Chemie - International Edition, 2012, 51, 1187-1190.	7.2	91
51	Highly Diastereo―and Enantioselective Mannich Reactions of Synthetically Flexible Ketimines with Secondary Amine Organocatalysts. Angewandte Chemie - International Edition, 2012, 51, 1191-1194.	7.2	85
52	Fluorotetraphenylbismuth:  A New Reagent for Efficient Regioselective α-Phenylation of Carbonyl Compounds. Journal of the American Chemical Society, 2003, 125, 10494-10495.	6.6	82
53	Efficient approach for the design of effective chiral quaternary phosphonium salts in asymmetric conjugate additions. Chemical Science, 2013, 4, 2248.	3.7	82
54	Tetraalkylammonium Salts as Hydrogenâ€Bonding Catalysts. Angewandte Chemie - International Edition, 2015, 54, 15767-15770.	7.2	82

#	Article	IF	CITATIONS
55	Combinatorial Design of Simplified Highâ€Performance Chiral Phaseâ€Transfer Catalysts for Practical Asymmetric Synthesis of αâ€Alkyl―and α,αâ€Dialkylâ€Î±â€Amino Acids. Chemistry - an Asian Journal, 2008, 3,	1 7 02-171	.4 ⁸¹
56	Asymmetric Neutral Amination of Nitroolefins Catalyzed by Chiral Bifunctional Ammonium Salts in Waterâ€Rich Biphasic Solvent. Angewandte Chemie - International Edition, 2011, 50, 5327-5330.	7.2	76
57	Fluorine-Assisted Selective Alkylation to Fluorinated Epoxides and Carbonyl Compounds:Â Implication of Pentacoordinate Trialkylaluminum Complexes. Journal of the American Chemical Society, 1997, 119, 5754-5755.	6.6	75
58	Diastereo- and enantioselective conjugate addition of α-substituted nitroacetates to maleimides under base-free neutral phase-transfer conditions. Chemical Communications, 2011, 47, 10557.	2.2	75
59	Organocatalytic Approach to Enantioselective One-Pot Synthesis of Pyrrolidine, Hexahydropyrrolizine, and Octahydroindolizine Core Structures. Organic Letters, 2009, 11, 2027-2029.	2.4	74
60	Metalâ€Free Direct Asymmetric Aminoxylation of Aldehydes Catalyzed by a Binaphthylâ€Based Chiral Amine. Angewandte Chemie - International Edition, 2010, 49, 6638-6641.	7.2	74
61	New, Improved Procedure for the Synthesis of Structurally Diverse N-Spiro C2-Symmetric Chiral Quaternary Ammonium Bromides. Journal of Organic Chemistry, 2003, 68, 4576-4578.	1.7	72
62	Construction of a Chiral Quaternary Carbon Center by Catalytic Asymmetric Alkylation of 2-Arylcyclohexanones under Phase-Transfer Conditions. Journal of the American Chemical Society, 2013, 135, 7134-7137.	6.6	72
63	Distinct Advantage of the in Situ Generation of Quaternary Ammonium Fluorides under Phase-Transfer Conditions toward Catalytic Asymmetric Synthesis. Organic Letters, 2001, 3, 1273-1276.	2.4	70
64	Design of chiral bifunctional secondary amine catalysts for asymmetric enamine catalysis. Chemical Communications, 2008, , 5465.	2.2	70
65	Indanolâ€Based Chiral Organoiodine Catalysts for Enantioselective Hydrative Dearomatization. Angewandte Chemie - International Edition, 2018, 57, 7200-7204.	7.2	70
66	Asymmetric Synthesis of Chiral Sulfoximines via the <i>S</i> -Arylation of Sulfinamides. Journal of the American Chemical Society, 2019, 141, 19263-19268.	6.6	69
67	Synthesis of a biphenyl-based axially chiral amino acid as a highly efficient catalyst for the direct asymmetric aldol reaction. Tetrahedron Letters, 2006, 47, 7423-7426.	0.7	68
68	The direct catalytic asymmetric aldol reaction of α-substituted nitroacetates with aqueous formaldehyde under base-free neutral phase-transfer conditions. Organic and Biomolecular Chemistry, 2012, 10, 5753.	1.5	66
69	Direct Asymmetric Iodination of Aldehydes Using an Axially Chiral Bifunctional Amino Alcohol Catalyst. Journal of the American Chemical Society, 2008, 130, 3728-3729.	6.6	65
70	A Bulky Thiylâ€Radical Catalyst for the [3+2] Cyclization of <i>N</i> â€Tosyl Vinylaziridines and Alkenes. Angewandte Chemie - International Edition, 2016, 55, 8081-8085.	7.2	65
71	Acidâ€Catalyzed In Situ Generation of Less Accessible or Unprecedented <i>N</i> â€Boc Imines from <i>N</i> â€Boc Aminals. Angewandte Chemie - International Edition, 2013, 52, 5532-5534.	7.2	63
72	αâ€Chiral Acetylenes Having an Allâ€Carbon Quaternary Center: Phase Transfer Catalyzed Enantioselective αâ€Alkylation of αâ€Alkylâ€I±â€alkynyl Esters. Angewandte Chemie - International Edition, 2009, 48, 5014-50	17:2	62

#	Article	IF	CITATIONS
73	Design of Structurally Rigid <i>trans</i> -Diamine-Based Tf-Amide Organocatalysts with a Dihydroanthracene Framework for Asymmetric Conjugate Additions of Heterosubstituted Aldehydes to Vinyl Sulfones. Journal of the American Chemical Society, 2010, 132, 17074-17076.	6.6	62
74	Metal-Free Enantioselective Hydroxyamination of Aldehydes with Nitrosocarbonyl Compounds Catalyzed by an Axially Chiral Amine. Journal of the American Chemical Society, 2013, 135, 18036-18039.	6.6	62
75	Hypercoordination of Boron and Aluminum:Â Synthetic Utility as Chelating Lewis Acids. Journal of the American Chemical Society, 1998, 120, 5327-5328.	6.6	61
76	Site‣elective Oxidation of Unactivated CH Bonds with Hypervalent Iodine(III) Reagents. Angewandte Chemie - International Edition, 2013, 52, 8657-8660.	7.2	61
77	Unprecedented stereochemical control in the Claisen rearrangement of allyl vinyl ethers using organoaluminum reagents. Journal of the American Chemical Society, 1988, 110, 7922-7924.	6.6	60
78	Organocatalytic Asymmetric Synthesis of Propargylamines with Two Adjacent Stereocenters: Mannichâ€Type Reactions of In Situ Generated Câ€Alkynyl Imines with I²â€Keto Esters. Angewandte Chemie - International Edition, 2013, 52, 11509-11512.	7.2	60
79	anti-Selective direct asymmetric Mannich reactions catalyzed by chiral pyrrolidine-based amino sulfonamides. Tetrahedron, 2008, 64, 1197-1203.	1.0	59
80	Asymmetric Synthesis of Chiral Sulfoximines through the Sâ€Alkylation of Sulfinamides. Angewandte Chemie - International Edition, 2019, 58, 17661-17665.	7.2	59
81	Design of a C2-symmetric chiral pyrrolidine-based amino sulfonamide: application to anti-selective direct asymmetric Mannich reactions. Tetrahedron Letters, 2006, 47, 8467-8469.	0.7	54
82	Design of a Binaphthyl-Based Axially Chiral Amino Acid as an Organocatalyst for Direct Asymmetric Aldol Reactions. Chemistry - an Asian Journal, 2006, 1, 210-215.	1.7	53
83	[2 + 2] Photocycloadditions between the Carbon–Nitrogen Double Bonds of Imines and Carbon–Carbon Double Bonds. Organic Letters, 2016, 18, 6252-6255.	2.4	53
84	Versatile In Situ Generated <i>N</i> â€Bocâ€Imines: Application to Phaseâ€Transferâ€Catalyzed Asymmetric Mannichâ€Type Reactions. Angewandte Chemie - International Edition, 2015, 54, 8471-8474.	7.2	51
85	Cu-Catalyzed Enantioselective Alkylarylation of Vinylarenes Enabled by Chiral Binaphthyl–BOX Hybrid Ligands. Journal of the American Chemical Society, 2020, 142, 19017-19022.	6.6	50
86	New Chiral Bis-Titanium(IV) Catalyst with Dibenzofuran Spacer for Catalytic Asymmetric Allylation of Aldehydes and Aryl Ketones. Advanced Synthesis and Catalysis, 2001, 343, 57-60.	2.1	49
87	Phase-Transfer-Catalyzed Asymmetric Conjugate Cyanation of Alkylidenemalonates with KCN in the Presence of a BrĂ,nsted Acid Additive. Organic Letters, 2013, 15, 1230-1233.	2.4	49
88	Combinatorial approach for the design of new, simplified chiral phase-transfer catalysts with high catalytic performance for practical asymmetric synthesis of α-alkyl-α-amino acids. Tetrahedron Letters, 2008, 49, 2026-2030.	0.7	48
89	Efficient generation of perfluoroalkyl radicals from sodium perfluoroalkanesulfinates and a hypervalent iodine(iii) reagent: mild, metal-free synthesis of perfluoroalkylated organic molecules. Organic and Biomolecular Chemistry, 2016, 14, 6417-6421.	1.5	46
90	Highly Diastereo- and Enantioselective Formal Conjugate Addition of Nitroalkanes to Nitroalkenes by Chiral Ammonium Bifluoride Catalysis. Angewandte Chemie - International Edition, 2006, 45, 7606-7608.	7.2	44

#	Article	IF	CITATIONS
91	Alkylsilyl Peroxides as Alkylating Agents in the Copperâ€Catalyzed Selective Monoâ€ <i>N</i> â€Alkylation of Primary Amides and Arylamines. Chemistry - A European Journal, 2017, 23, 9030-9033.	1.7	44
92	Efficient photolytic C–H bond functionalization of alkylbenzene with hypervalent iodine(<scp>iii</scp>) reagent. Chemical Communications, 2016, 52, 3758-3761.	2.2	43
93	Powerful Amino Diol Catalyst for Effecting the Direct Asymmetric Conjugate Addition of Aldehydes to Acrylates. Journal of the American Chemical Society, 2012, 134, 16068-16073.	6.6	41
94	Asymmetric phase-transfer reactions under base-free neutral conditions. Tetrahedron Letters, 2014, 55, 3833-3839.	0.7	41
95	Evaluation of the Efficiency of the Chiral Quaternary Ammonium Salt β-Np-NAS-Br in the Organic-Aqueous Phase-Transfer Alkylation of a Protected Glycine Derivative. Advanced Synthesis and Catalysis, 2002, 344, 288-291.	2.1	40
96	Hydrogen-bonding catalysis of sulfonium salts. Chemical Communications, 2017, 53, 119-122.	2.2	40
97	Unique properties of chiral biaryl-based secondary aminecatalysts for asymmetric enamine catalysis. Chemical Science, 2013, 4, 907-915.	3.7	39
98	Chiral Tertiary Sulfonium Salts as Effective Catalysts for Asymmetric Baseâ€Free Neutral Phaseâ€Transfer Reactions. Angewandte Chemie - International Edition, 2017, 56, 4819-4823.	7.2	39
99	Copper-Catalyzed C(sp)–C(sp ³) Coupling of Terminal Alkynes with Alkylsilyl Peroxides via a Radical Mechanism. Organic Letters, 2018, 20, 1400-1403.	2.4	39
100	Practical asymmetric synthesis of both erythro and threo aldols based on the MABR-Promoted selective rearrangement of erythro and threo epoxy silyl ethers: unusual effect of silyl substituents. Tetrahedron, 1992, 48, 3749-3762.	1.0	38
101	Asymmetric Catalysis Special Feature Part II: Stereoselective terminal functionalization of small peptides for catalytic asymmetric synthesis of unnatural peptides. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5824-5829.	3.3	38
102	Direct asymmetric aminoxylation reaction catalyzed by a binaphthyl-based chiral amino sulfonamide with high catalytic performance. Tetrahedron Letters, 2008, 49, 5369-5371.	0.7	38
103	Diastereoselective Radical Hydroacylation of Alkylidenemalonates with Aliphatic Aldehydes Initiated by Photolysis of Hypervalent Iodine(III) Reagents. Chemistry - A European Journal, 2016, 22, 6552-6555.	1.7	38
104	Organocatalytic Formal (3 + 2) Cycloaddition toward Chiral Pyrrolo[1,2- <i>a</i>]indoles via Dynamic Kinetic Resolution of Allene Intermediates. Organic Letters, 2020, 22, 5439-5445.	2.4	38
105	Practical asymmetric synthesis of both erythro and threo aldols: unusual effect of silyl groups. Journal of the American Chemical Society, 1991, 113, 5449-5450.	6.6	37
106	A Baseâ€Free Neutral Phaseâ€Transfer Reaction System. Chemistry - an Asian Journal, 2014, 9, 1586-1593.	1.7	36
107	Catalystâ€Controlled, Enantioselective, and Diastereodivergent Conjugate Addition of Aldehydes to Electronâ€Deficient Olefins. Angewandte Chemie - International Edition, 2017, 56, 9487-9491.	7.2	36
108	Bowl-Shaped Tris(2,6-diphenylbenzyl)tin Hydride: A Unique Reducing Agent for Radical and Ionic Chemistry. Angewandte Chemie - International Edition, 2001, 40, 411-414.	7.2	34

#	Article	IF	CITATIONS
109	Effects of Aromatic Substituents on Binaphthyl-Based Chiral Spiro-Type Ammonium Salts in Asymmetric Phase-Transfer Reactions. Advanced Synthesis and Catalysis, 2007, 349, 556-560.	2.1	34
110	Practical Approach for Asymmetric Hydroxyamination of Aldehydes with <i>in Situ</i> Generated Nitrosocarbonyl Compounds: Application to One-Pot Synthesis of Chiral Allylamines. Organic Letters, 2014, 16, 1530-1532.	2.4	34
111	Mechanism of Metal-Free C–H Activation of Branched Aldehydes and Acylation of Alkenes Using Hypervalent Iodine Compound: A Theoretical Study. Journal of Organic Chemistry, 2015, 80, 9264-9271.	1.7	34
112	Transitionâ€Metalâ€Free Direct Câ^'H Silylation of Electronâ€Deficient Heteroarenes with Hydrosilanes via a Radical Mechanism. Asian Journal of Organic Chemistry, 2018, 7, 1085-1088.	1.3	34
113	Asymmetric Synthesis of Chiral 1,4â€Enynes through Organocatalytic Alkenylation of Propargyl Alcohols with Trialkenylboroxines. Angewandte Chemie - International Edition, 2019, 58, 8898-8901.	7.2	34
114	Conjugate Allylation toα,β-Unsaturated Aldehydes with the New Chemzymep-F-ATPH. Angewandte Chemie International Edition in English, 1997, 36, 1183-1185.	4.4	33
115	Asymmetric Synthesis of α-Acyl-γ-butyrolactones Possessing All-Carbon Quaternary Stereocenters by Phase-Transfer-Catalyzed Alkylation. Advanced Synthesis and Catalysis, 2006, 348, 1539-1542.	2.1	33
116	Development of Synthetic Transformations by Control of Acid-Catalyzed Reactions of Diazocarbonyl Compounds. Bulletin of the Chemical Society of Japan, 2013, 86, 1217-1230.	2.0	33
117	Boronic Acid-Catalyzed, Highly Enantioselective Aza-Michael Additions of Hydroxamic Acid to Quinone Imine Ketals. Journal of the American Chemical Society, 2015, 137, 16016-16019.	6.6	33
118	Direct asymmetric bromination of aldehydes catalyzed by a binaphthyl-based secondary amine: highly enantio- and diastereoselective one-pot synthesis of bromohydrins. Chemical Communications, 2010, 46, 7590.	2.2	32
119	Phase-transfer catalyzed asymmetric synthesis of α,β-unsaturated γ,γ-disubstituted γ-lactams. Chemical Communications, 2017, 53, 4779-4782.	2.2	32
120	Alkylative kinetic resolution of vicinal diols under phase-transfer conditions: a chiral ammonium borinate catalysis. Chemical Science, 2018, 9, 1231-1235.	3.7	32
121	Effect of BrÃ,nsted acid co-catalyst in asymmetric conjugate addition of 3-aryloxindoles to maleimide under base-free phase-transfer conditions. Tetrahedron, 2014, 70, 7128-7132.	1.0	31
122	Catalytic asymmetric synthesis of axially chiral 2-amino-1,1′-biaryl compounds by phase-transfer-catalyzed kinetic resolution and desymmetrization. Tetrahedron, 2016, 72, 5163-5171.	1.0	31
123	Iodine(III)-Catalyzed Electrophilic Nitration of Phenols via Non-BrÃ,nsted Acidic NO ₂ ⁺ Generation. Organic Letters, 2019, 21, 1315-1319.	2.4	31
124	Remarkable Template Effect of a Lewis Acidic Receptor in Intramolecular Radical Cyclizations. Angewandte Chemie International Edition in English, 1997, 36, 1181-1183.	4.4	30
125	syn-Selective asymmetric cross-aldol reactions between aldehydes and glyoxylic acid derivatives catalyzed by an axially chiral amino sulfonamide. Chemical Communications, 2011, 47, 10626.	2.2	30
126	Hydrogenâ€Bonding Catalysis of Tetraalkylammonium Salts in an Azaâ€Diels–Alder Reaction. Chemistry - an Asian Journal, 2016, 11, 2126-2129.	1.7	30

#	Article	IF	CITATIONS
127	Enantioselective Alkynylation of Isatin Derivatives Using a Chiral Phase-Transfer/Transition-Metal Hybrid Catalyst System. ACS Catalysis, 2019, 9, 2395-2399.	5.5	30
128	Synthesis of Functionalized Organoboron/Silicon Compounds by Copper-Catalyzed Coupling of Alkylsilyl Peroxides and Diboron/Silylborane Reagents. Organic Letters, 2019, 21, 2477-2481.	2.4	30
129	Broad-spectrum antifungal activity of spirooxindolo-pyrrolidine tethered indole/imidazole hybrid heterocycles against fungal pathogens. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2059-2063.	1.0	29
130	Design of Efficient Chiral Bifunctional Phase-Transfer Catalysts Possessing an Amino Functionality for Asymmetric Aminations. ACS Catalysis, 2019, 9, 78-82.	5.5	29
131	Cationic DABCO-Based Catalyst for Site-Selective C–H Alkylation via Photoinduced Hydrogen-Atom Transfer. ACS Catalysis, 2022, 12, 2045-2051.	5.5	29
132	Rapid and Mild Generation of Carbon Radicals fromo-(o-lodophenyl)phenylthio Derivatives by an Anchimeric Approach. Advanced Synthesis and Catalysis, 2001, 343, 166-168.	2.1	28
133	Generation of alkyl radicals from alkylsilyl peroxides and their applications to C-N or C-O bond formations. Tetrahedron, 2019, 75, 172-179.	1.0	28
134	One-pot cross double-Mannich reaction of acetaldehyde catalyzed by a binaphthyl-based amino sulfonamide. Chemical Communications, 2013, 49, 1118.	2.2	27
135	Bis(trialkylsilyl) peroxides as alkylating agents in the copper-catalyzed selective mono-N-alkylation of primary amides. Chemical Communications, 2017, 53, 6484-6487.	2.2	26
136	The radical acylarylation of N-arylacrylamides with aliphatic aldehydes using the photolysis of hypervalent iodine(iii) reagents. Organic and Biomolecular Chemistry, 2018, 16, 5412-5415.	1.5	26
137	Cu-Catalyzed Generation of Alkyl Radicals from Alkylsilyl Peroxides and Subsequent C(sp ³)–C(sp ²) Cross-Coupling with Arylboronic Acids. Journal of Organic Chemistry, 2020, 85, 3973-3980.	1.7	26
138	Design of Chiral Phase Transfer Catalyst with Conformationally Fixed Biphenyl Core:Â Application to Asymmetric Alkylation of Glycine Derivatives. Organic Process Research and Development, 2007, 11, 628-632.	1.3	25
139	Development of Highly Selective Organic Reactions Catalyzed by Designed Amine Organocatalysts. Bulletin of the Chemical Society of Japan, 2010, 83, 1421-1438.	2.0	25
140	Phaseâ€Transferâ€Catalyzed Asymmetric Synthesis of 1,1â€Disubstituted Tetrahydroisoquinolines. Advanced Synthesis and Catalysis, 2011, 353, 2614-2618.	2.1	25
141	Contribution of Cage-Shaped Structure of Physalins to Their Mode of Action in Inhibition of NF-ήB Activation. ACS Medicinal Chemistry Letters, 2013, 4, 730-735.	1.3	25
142	N-Boc-aminals as easily accessible precursors for less accessible N-Boc-imines: facile synthesis of optically active propargylamine derivatives using Mannich-type reactions. Tetrahedron, 2016, 72, 3687-3700.	1.0	25
143	Hypervalent lodine Mediated Chemoselective Iodination of Alkynes. Journal of Organic Chemistry, 2017, 82, 11865-11871.	1.7	25
144	Catalystâ€Controlled, Enantioselective, and Diastereodivergent Conjugate Addition of Aldehydes to Electronâ€Deficient Olefins. Angewandte Chemie, 2017, 129, 9615-9619.	1.6	25

#	Article	IF	CITATIONS
145	Molecular recognition of ketomalonates by asymmetric aldol reaction of aldehydes with secondary-amine organocatalysts. Chemical Communications, 2012, 48, 7037.	2.2	24
146	Amine-Catalyzed Asymmetric Cross-Aldol Reactions Using Heterofunctionalized Acetaldehydes as Nucleophiles. Organic Letters, 2014, 16, 944-947.	2.4	24
147	Positive Effect of Water in Asymmetric Direct Aldol Reactions with Primary Amine Organocatalyst: Experimental and Computational Studies. Chemistry - an Asian Journal, 2015, 10, 2112-2116.	1.7	24
148	BrÃ,nsted acid-catalyzed Mannich reaction through dual activation of aldehydes and N-Boc-imines. Chemical Communications, 2015, 51, 16472-16474.	2.2	24
149	Asymmetric Synthesis of Less Accessible αâ€Tertiary Amines from Alkynyl <i>Zâ€</i> Ketimines. Angewandte Chemie - International Edition, 2017, 56, 16293-16296.	7.2	24
150	Development of Organosilicon Peroxides as Practical Alkyl Radical Precursors and Their Applications to Transition Metal Catalysis. Bulletin of the Chemical Society of Japan, 2021, 94, 513-524.	2.0	24
151	Synthesis of <i>N</i> Boc-Propargylic and Allylic Amines by Reaction of Organomagnesium Reagents with <i>N</i> Boc-Aminals and Their Oxidation to <i>N</i> Boc-Ketimines. Organic Letters, 2016, 18, 276-279.	2.4	23
152	<i>N</i> -Hydroxybenzimidazole as a structurally modifiable platform for <i>N</i> -oxyl radicals for direct C–H functionalization reactions. Chemical Science, 2020, 11, 5772-5778.	3.7	23
153	The first example of the direct asymmetric conjugate addition of aldehydes to a methylenemalonate promoted by an axially chiral amino diol catalyst. Chemical Science, 2011, 2, 2311.	3.7	22
154	New chiral phase-transfer catalysts possessing a 6,6′-bridged ring on the biphenyl unit: application to the synthesis of α,α-dialkyl-α-amino acids. Tetrahedron Letters, 2012, 53, 3739-3741.	0.7	22
155	Benzimidazole tethered pyrrolo[3,4-b]quinoline with broad-spectrum activity against fungal pathogens. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 729-733.	1.0	22
156	Efficient cleavage of tertiary amide bonds via radical–polar crossover using a copper(ii) bromide/Selectfluor hybrid system. Chemical Science, 2020, 11, 12323-12328.	3.7	22
157	Ironâ€Catalyzed Radical Cleavage/Câ^'C Bond Formation of Acetalâ€Derived Alkylsilyl Peroxides. Chemistry - an Asian Journal, 2020, 15, 573-576.	1.7	22
158	Unusual anti-selective asymmetric conjugate addition of aldehydes to nitroalkenes catalyzed by a biphenyl-based chiral secondary amine. Chemical Communications, 2013, 49, 7028.	2.2	21
159	Efficient Synthesis of Cyclic Sulfoximines from Nâ€Propargylsulfinamides through Sulfur–Carbon Bond Formation. Chemistry - A European Journal, 2019, 25, 15755-15758.	1.7	21
160	Cu-Catalyzed <i>O</i> -alkylation of phenol derivatives with alkylsilyl peroxides. Chemical Communications, 2021, 57, 81-84.	2.2	21
161	Remote chirality control based on the organocatalytic asymmetric Mannich reaction of α-thio acetaldehydes. Chemical Communications, 2014, 50, 942-944.	2.2	20
162	Indanolâ€Based Chiral Organoiodine Catalysts for Enantioselective Hydrative Dearomatization. Angewandte Chemie, 2018, 130, 7318-7322.	1.6	20

#	Article	IF	CITATIONS
163	Designer chiral phase-transfer catalysts for green sustainable chemistry. Pure and Applied Chemistry, 2012, 84, 1575-1585.	0.9	19
164	New Neutral Reaction System with Crown Ether–KCl Complexes in Aqueous Solution. Chemistry - A European Journal, 2012, 18, 8588-8590.	1.7	19
165	The Formation of C–C or C–N Bonds via the Copper-Catalyzed Coupling of Alkylsilyl Peroxides and Organosilicon Compounds: AÂRoute to Perfluoroalkylation. Organic Letters, 2021, 23, 1809-1813.	2.4	19
166	Unprecedented stereochemical control in the intramolecular ene-reactions of δ,ε-unsaturated aldehydes using exceptionally bulky organoaluminum reagents: Elucidation of the transition state. Tetrahedron, 1994, 50, 6505-6522.	1.0	18
167	Bidentate Lewis acid catalysts in asymmetric synthesis. Pure and Applied Chemistry, 2002, 74, 123-128.	0.9	18
168	A Practical Approach for the Oxidation of Unactivated C _{sp3} H Bonds with <i>o</i> â€Nitro(diacetoxyiodo)benzene as an Efficient Hypervalent Iodine(III)â€Based Oxidizing Agent. Asian Journal of Organic Chemistry, 2014, 3, 932-935.	1.3	18
169	Regioselectivity switch in chiral amine-catalysed asymmetric addition of aldehydes to reactive enals. Chemical Communications, 2015, 51, 10062-10065.	2.2	18
170	Metal-free approach for hindered amide-bond formation with hypervalent iodine(<scp>iii</scp>) reagents: application to hindered peptide synthesis. Green Chemistry, 2021, 23, 848-855.	4.6	18
171	A Scalable Synthesis of (R)-3,5-Dihydro-4H-dinaphth[2,1-c:1â€~2â€~-e]azepine. Organic Process Research and Development, 2003, 7, 644-648.	1.3	17
172	Catalytic asymmetric synthesis of cyclic amino acids and alkaloid derivatives: application to (+)-dihydropinidine and Selfotel synthesis. Chemical Science, 2010, 1, 499.	3.7	17
173	A Bulky Thiylâ€Radical Catalyst for the [3+2] Cyclization of <i>N</i> â€Tosyl Vinylaziridines and Alkenes. Angewandte Chemie, 2016, 128, 8213-8217.	1.6	17
174	Synthesis of Chiral Tritylpyrrolidine Derivatives and Their Application to Asymmetric Benzoyloxylation. Journal of Organic Chemistry, 2017, 82, 12928-12932.	1.7	17
175	Construction of Quaternary Carbon Center by Catalytic Asymmetric Alkylation of 3â€Arylpiperidinâ€2â€ones Under Phaseâ€Transfer Conditions. Angewandte Chemie - International Edition, 2020, 59, 2211-2214.	7.2	16
176	Development of Ketone-Based Brominating Agents (KBA) for the Practical Asymmetric α-Bromination of Aldehydes Catalyzed by Tritylpyrrolidine. ACS Catalysis, 2020, 10, 5959-5963.	5.5	16
177	Asymmetric α-Hydroxylation of α-Aryl-δ-lactams with Molecular Oxygen under Phase-Transfer Conditions. Organic Letters, 2021, 23, 792-796.	2.4	16
178	Practical Asymmetric Synthesis of Chiral Sulfoximines via Sulfur-Selective Alkylation. Journal of Organic Chemistry, 2022, 87, 3652-3660.	1.7	16
179	anti-Selective Asymmetric Synthesis ofβ-Hydroxy-α-amino Acid Esters by thein situ Generated Chiral Quaternary Ammonium Fluoride-Catalyzed Mukaiyama-Type Aldol Reaction. Advanced Synthesis and Catalysis, 2004, 346, 1073-1076.	2.1	15
180	Chiral Tertiary Sulfonium Salts as Effective Catalysts for Asymmetric Baseâ€Free Neutral Phaseâ€Transfer Reactions. Angewandte Chemie, 2017, 129, 4897-4901.	1.6	15

#	Article	IF	CITATIONS
181	Iodine(III)-catalyzed benzylic oxidation by using the (PhIO) _n /Al(NO ₃) ₃ system. Synthetic Communications, 2020, 50, 539-548.	1.1	15
182	Design of Bowlâ€Shaped <i>N</i> â€Hydroxyimide Derivatives as New Organoradical Catalysts for Siteâ€Selective C(sp ³)â~H Bond Functionalization Reactions. Angewandte Chemie - International Edition, 2020, 59, 14261-14264.	7.2	15
183	Asymmetric Synthesis of α-Amino Acids by Organocatalytic Biomimetic Transamination. Organic Letters, 2019, 21, 2294-2297.	2.4	14
184	One-Pot Synthesis of Less Accessible <i>N</i> -Boc-Propargylic Amines through BF ₃ -Catalyzed Alkynylation and Allylation Using Boronic Esters. Organic Letters, 2019, 21, 3214-3217.	2.4	14
185	Ni-Catalyzed C(sp ²)–H alkylation of <i>N</i> -quinolylbenzamides using alkylsilyl peroxides as structurally diverse alkyl sources. Chemical Communications, 2021, 57, 7942-7945.	2.2	14
186	Regio―and Stereoselective Conjugate Addition of Aldehydes to βâ€Tosyl Enones under the Catalysis of a Binaphthylâ€Modified Chiral Amine. Angewandte Chemie - International Edition, 2015, 54, 8462-8465.	7.2	13
187	Rate Acceleration of Solidâ€Liquid Phaseâ€Transfer Catalysis by Rotorâ€Stator Homogenizer. Advanced Synthesis and Catalysis, 2016, 358, 2996-2999.	2.1	13
188	In situ generation of N-Boc-protected alkenyl imines: controlling the E/Z geometry of alkenyl moieties in the Mukaiyama–Mannich reaction. Chemical Communications, 2017, 53, 8203-8206.	2.2	13
189	A Synthetic Route to Sodium α-Aminoalkanesulfinates and Their Application in the Generation of α-Aminoalkyl Radicals for Radical Addition Reactions. Organic Letters, 2018, 20, 2080-2083.	2.4	13
190	Construction of chiral α- <i>tert</i> -amine scaffolds <i>via</i> amine-catalyzed asymmetric Mannich reactions of alkyl-substituted ketimines. Chemical Science, 2021, 12, 1445-1450.	3.7	13
191	A New Cyclization of Olefinic Epoxides by Modified Organoaluminum Reagents via Epoxide Rearrangement and Subsequent Intramolecular Ene Reaction. Synlett, 1991, 1991, 857-858.	1.0	12
192	Phase-transfer-catalyzed asymmetric desymmetrizations of cyclopentanones. Organic Chemistry Frontiers, 2015, 2, 336-339.	2.3	12
193	Catalyst-controlled diastereoselectivity reversal in the formation of dihydropyrans. Chemical Communications, 2018, 54, 3496-3499.	2.2	12
194	Scalable Synthesis of a Chiral Selenium ï€-Acid Catalyst and Its Use in Enantioselective Iminolactonization of β,γ-Unsaturated Amides. Synlett, 2019, 30, 1679-1682.	1.0	12
195	Synthesis of Phenylcyclopropane-Based Secondary Amine Catalysts and Their Applications in Enamine Catalysis. Organic Letters, 2019, 21, 8071-8074.	2.4	12
196	Design of New Amino Tf-Amide Organocatalysts: Environmentally Benign Approach to Asymmetric Aldol Synthesis. Synlett, 2019, 30, 401-404.	1.0	12
197	BrÃ,nsted Acidâ€Catalyzed Intramolecular αâ€Arylation of Ketones with Phenolic Nucleophiles via Oxyâ€Allyl Cation Intermediates. European Journal of Organic Chemistry, 2020, 2020, 1907-1911.	1.2	12
198	The copper-catalyzed selective monoalkylation of active methylene compounds with alkylsilyl peroxides. Organic and Biomolecular Chemistry, 2021, 19, 2658-2662.	1.5	12

#	Article	IF	CITATIONS
199	Radical-Mediated Activation of Esters with a Copper/Selectfluor System: Synthesis of Bulky Amides and Peptides. Journal of Organic Chemistry, 2021, 86, 5401-5411.	1.7	12
200	1,8-Bis(allylstannyl)naphthalene Derivatives as Neutral Allylation Agents: Rate Acceleration by Chelation-Induced Lewis Acidity. Angewandte Chemie International Edition in English, 1997, 36, 2507-2509.	4.4	11
201	Konjugierte Allylierung α,βâ€ungesÃŧtigter Aldehyde mit dem neuen "Chemzymâ€i,• <i>p</i> â€Fâ€ATPH. Angev Chemie, 1997, 109, 1231-1233.	wandte 1.0	11
202	Catalytic Asymmetric Alkylation of 3â€Arylâ€Substituted Oxindoles to give 3,3â€Disubstituted Oxindoles under Phaseâ€Transfer Conditions. Asian Journal of Organic Chemistry, 2014, 3, 395-398.	1.3	11
203	Practical Synthesis of both Enantiomeric Amino Acid, Mannich, and Aldol Derivatives by Asymmetric Organocatalysis. Chemical Record, 2017, 17, 1059-1069.	2.9	11
204	Hypervalent iodine(III) catalyzed radical hydroacylation of chiral alkylidenemalonates with aliphatic aldehydes under photolysis. Tetrahedron, 2017, 73, 5841-5846.	1.0	11
205	Synthesis of 1â€Aminoindenes through Azaâ€Prinsâ€Type Cyclization. Chemistry - A European Journal, 2018, 24, 10320-10323.	1.7	11
206	Fe-Catalyzed Three-Component Coupling Reaction of α,β,γ,δ-Unsaturated Carbonyl Compounds and Conjugate Dienes with Alkylsilyl Peroxides and Nucleophiles. Journal of Organic Chemistry, 2022, 87, 8824-8834.	1.7	11
207	Phaseâ€Transferâ€Catalyzed Olefin Isomerization/αâ€Alkylation of αâ€Alkynylcrotonates as a Route for 1,4â€Enynes. Advanced Synthesis and Catalysis, 2010, 352, 1653-1656.	2.1	10
208	Asymmetric Synthesis of Chiral Sulfoximines through the Sâ€Alkylation of Sulfinamides. Angewandte Chemie, 2019, 131, 17825-17829.	1.6	10
209	Fe-Catalyzed Dicarbofunctionalization of Vinylarenes with Alkylsilyl Peroxides and β-Keto Carbonyl Substrates. Organic Letters, 2022, 24, 2641-2645.	2.4	10
210	Unique Synthetic Utility of BF3·OEt2in the Highly Diastereoselective Reduction of Hydroxy Carbonyl and Dicarbonyl Substrates. Organic Letters, 2000, 2, 2015-2017.	2.4	9
211	The Basic Principle of Phase-Transfer Catalysis and Some Mechanistic Aspects. , 0, , 1-8.		9
212	Phase-transfer-catalysed asymmetric synthesis of 2,2-disubstituted 1,4-benzoxazin-3-ones. Chemical Communications, 2018, 54, 7078-7080.	2.2	9
213	Development of New Radicalâ€Mediated Selective Reactions Promoted by Hypervalent Iodine(III) Reagents. Chemical Record, 2021, 21, 1342-1357.	2.9	9
214	Bifunctional amino sulfonamide-catalyzed asymmetric conjugate addition to alkenyl alkynyl ketimines as enone surrogates. Chemical Communications, 2021, 57, 2808-2811.	2.2	9
215	Enantioselective Synthesis of .ALPHAAmino Acids by Chiral Phase-Transfer Catalysis. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2003, 61, 1195-1206.	0.0	9
216	A new approach for the copper-catalyzed functionalization of alkyl hydroperoxides with organosilicon compounds via in-situ-generated alkylsilyl peroxides. Tetrahedron, 2022, , 132627.	1.0	9

#	Article	IF	CITATIONS
217	Chiral designer phase-transfer catalysts for practical asymmetric synthesis. Pure and Applied Chemistry, 2005, 77, 1285-1296.	0.9	8
218	Aliphatic and Aromatic Claisen Rearrangement. , 0, , 45-116.		8
219	Chiral Quaternary Ammonium Fluorides for Asymmetric Synthesis. , 0, , 189-206.		8
220	Synthesis of 3-Mono-Substituted Binaphthyl-Based Secondary Amine Catalysts via Monobromination of an Axially Chiral Dicarboxylic Acid Derivative. Journal of Organic Chemistry, 2014, 79, 4240-4244.	1.7	8
221	In situ generation of less accessible Boc-imines from aldehydes: construction of a quaternary carbon by the Mannich reaction or unprecedented aldol reaction. Organic and Biomolecular Chemistry, 2017, 15, 4527-4530.	1.5	8
222	Enantioselective Alkylation of <i>N</i> â€Arylhydrazones Derived from αâ€Keto Esters and Isatin Derivatives through Asymmetric Phaseâ€Transfer Catalysis. Chemistry - an Asian Journal, 2018, 13, 1780-1783.	1.7	8
223	Hypervalent Iodine-Mediated Diastereoselective α-Acetoxylation of Cyclic Ketones. Frontiers in Chemistry, 2020, 8, 467.	1.8	8
224	Chemistry of Chelate-Type Hypervalent Boron and Aluminum: Utilization for Selective Organic Synthesis Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2000, 58, 14-22.	0.0	8
225	Selective functionalization of benzylic C–H bonds of two different benzylic ethers by bowl-shaped <i>N</i> -hydroxyimide derivatives as efficient organoradical catalysts. Chemical Communications, 2022, 58, 1021-1024.	2.2	8
226	Außergewöhnlicher Templateffekt eines Lewisâ€sauren Rezeptors bei einer intramolekularen radikalischen Cyclisierung. Angewandte Chemie, 1997, 109, 1230-1231.	1.6	7
227	Enantioselectivity Switch in Direct Asymmetric Aminoxylation Catalyzed by Binaphthyl-Based Chiral Secondary Amines. Synthesis, 2009, 2009, 1557-1563.	1.2	7
228	BF ₃ â€Catalyzed Synthesis of Cyclic Carbamates from Bocâ€Protected Aminals and Alkynes. Asian Journal of Organic Chemistry, 2018, 7, 1575-1578.	1.3	7
229	Synthesis of alkynyl Z-ketimines and their application in amine-catalyzed asymmetric Mannich reactions and conjugate addition. Tetrahedron, 2021, 91, 132225.	1.0	7
230	Highly Selective Monoalkylation of Active Methylene and Related Derivatives using Alkylsilyl Peroxides by a Catalytic Culâ€ÐMAP System. Asian Journal of Organic Chemistry, 2021, 10, 2625.	1.3	7
231	Catalytic asymmetric synthesis of .ALPHAamino acid derivatives and peptides using chiral phase-transfer catalysts Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2003, 79B, 181-189.	1.6	6
232	Chiral amine-catalyzed asymmetric conjugate addition of aldehydes to α-phenylselenoenones as formal <i>Z</i> -allylating agents. Chemical Communications, 2018, 54, 176-179.	2.2	6
233	Construction of Quaternary Carbon Center by Catalytic Asymmetric Alkylation of 3â€Arylpiperidinâ€2â€ones Under Phaseâ€Transfer Conditions. Angewandte Chemie, 2020, 132, 2231-2234.	1.6	6
234	Enantioselective Hydrative <i>paraâ€</i> Dearomatization of Sulfonanilides by an Indanolâ€based Chiral Organoiodine Catalyst. Asian Journal of Organic Chemistry, 2021, 10, 1638-1642.	1.3	6

#	Article	IF	CITATIONS
235	Asymmetric Phase-Transfer Catalysis. , 0, , 383-412.		5
236	Design and synthesis of a biphenyl-based chiral amino sulfonamide with high catalytic performance in Mannich reactions. Tetrahedron Letters, 2014, 55, 4227-4229.	0.7	5
237	Practical Synthesis of α,β-Alkynyl Ketones by Oxidative Alkynylation of Aldehydes with Hypervalent Alkynyliodine Reagents. Chemistry Letters, 2020, 49, 633-636.	0.7	5
238	Practical Synthesis of Highâ€Performance Amino Tfâ€Amide Organocatalysts for Asymmetric Aldol Reactions. Asian Journal of Organic Chemistry, 2020, 9, 206-209.	1.3	5
239	Design of Bifunctional Amino Tfâ€Amide Organocatalysts and Application in Various Asymmetric Transformations. Chemical Record, 2022, 22, e202200004.	2.9	5
240	Asymmetric Synthesis of Less Accessible αâ€Tertiary Amines from Alkynyl <i>Zâ€</i> Ketimines. Angewandte Chemie, 2017, 129, 16511-16514.	1.6	4
241	Asymmetric Synthesis of Chiral 1,4â€Enynes through Organocatalytic Alkenylation of Propargyl Alcohols with Trialkenylboroxines. Angewandte Chemie, 2019, 131, 8990-8993.	1.6	4
242	Synthesis of Electron-Deficient Chiral Biphenols and Their Applications in Catalytic Asymmetric Reactions. Journal of Organic Chemistry, 2020, 85, 10232-10239.	1.7	4
243	Remarkable Effect of tert â€Amine Additives in the Asymmetric Direct Michael Reaction of Ketones with βâ€Arylnitroethenes Catalyzed by an L â€Hydroxyprolineâ€Based Amino Tfâ€Amide Organocatalyst. European Journal of Organic Chemistry, 2021, 2021, 1909-1912.	1.2	4
244	In-situ-generation of alkylsilyl peroxides from alkyl hydroperoxides and their subsequent copper-catalyzed functionalization with organosilicon compounds. Tetrahedron Letters, 2021, 75, 153144.	0.7	4
245	Synthesis of Functionalized Aliphatic Acid Esters via the Generation of Alkyl Radicals from Silylperoxyacetals. Chemistry - an Asian Journal, 2021, 16, 2431-2434.	1.7	4
246	Ammonium lons as Chiral Templates. , 0, , 121-150.		3
247	Synthesis of αâ€Quaternary Aldehydes via a Stereoselective Semiâ€Pinacol Rearrangement of Optically Active Epoxy Alcohols. Asian Journal of Organic Chemistry, 2019, 8, 1390-1393.	1.3	3
248	Enantioselective Synthesis of Monosaccharide Analogues by Twoâ€6tep Sequential Enamine Catalysis: Benzoyloxylation and Aldol Reaction. European Journal of Organic Chemistry, 2020, 2020, 2028-2032.	1.2	3
249	1,8â€Bis(allylstannyl)naphthalinderivate als neutrale Allylierungsreagentien: Steigerung der Reaktionsgeschwindigkeit als Folge einer durch Chelatisierung erzeugten Lewisâ€Aciditä Angewandte Chemie, 1997, 109, 2616-2618.	1.6	2
250	Crown Ethers, Taddol, Nobin and Metal(salen) Complexes as Chiral Phase-Transfer Catalysts for Asymmetric Synthesis. , 0, , 161-187.		2
251	Binaphthyl- and Biphenyl-Modified Chiral Phase-Transfer Catalysts for Asymmetric Synthesis. , 0, , 71-113.		2
252	Practical synthesis of four different pseudoenantiomeric organocatalysts with both cis- and trans-substituted 1,2-cis-cyclohexanediamine structures from a common intermediate. Tetrahedron, 2018, 74, 5263-5269.	1.0	2

#	Article	IF	CITATIONS
253	CuCl ₂ â€Mediated Oxidative Intramolecular αâ€Arylation of Ketones with Phenolic Nucleophiles via Oxyâ€Allyl Cation Intermediates. Chemistry - an Asian Journal, 2020, 15, 3816-3819.	1.7	2
254	Deacylative Carbonâ€Carbon Bond Cleavage of Ketone Equivalents: Applications to Radical Carbon arbon Bond Formation Reactions. Chemistry - an Asian Journal, 2021, 16, 282-286.	1.7	2
255	Asymmetric Carbon-Carbon Bond-Forming Reactions: Asymmetric Cycloaddition Reactions. , 2005, , 465-491.		1
256	Phase-Transfer Catalysis. , 2006, , 265-285.		1
257	Practical Synthesis of Two Different Pseudoenantiomeric Organocatalysts with <i>cis</i> ꀀyclohexanediamine Structure from a Common Chiral Source. Asian Journal of Organic Chemistry, 2017, 6, 1226-1230.	1.3	1
258	Design of Next-Generation Chiral Acid-Base Catalysts and Application to Fine Organic Synthesis. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2005, 63, 686-695.	0.0	1
259	VCD spectroscopy distinguishes the enamine and iminium ion of a 1,1′-binaphthyl azepine. Chemical Communications, 2022, 58, 8412-8415.	2.2	1
260	Two-Center Chiral Phase-Transfer Catalysts for Asymmetric Synthesis. , 0, , 115-134.		0
261	Other Chiral Phase-Transfer Catalysts for Asymmetric Synthesis. , 0, , 135-159.		0
262	The Design of Environmentally-Benign, High-Performance Organocatalysts for Asymmetric Catalysis. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2017, 75, 1141-1149.	0.0	0
263	Chemoselective Preparation of 1-lodoalkynes, 1,2-Diiodoalkenes, and 1,1,2-Triiodoalkenes Based on the Oxidative lodination of Terminal Alkynes. Journal of Visualized Experiments, 2018, , .	0.2	0
264	Design of Bowlâ€5haped N â€Hydroxyimide Derivatives as New Organoradical Catalysts for Siteâ€5elective C(sp 3)â^'H Bond Functionalization Reactions. Angewandte Chemie, 2020, 132, 14367-14370.	1.6	0
265	Innentitelbild: Construction of Quaternary Carbon Center by Catalytic Asymmetric Alkylation of 3â€Arylpiperidinâ€2â€ones Under Phaseâ€Transfer Conditions (Angew. Chem. 6/2020). Angewandte Chemie, 202 132, 2146-2146.	2 0, 6	0
266	Upward Trajectory. Asian Journal of Organic Chemistry, 2017, 6, 1115-1116.	1.3	0