
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2415381/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PVT1 dependence in cancer with MYC copy-number increase. Nature, 2014, 512, 82-86.	13.7	617
2	Epicardial retinoid X receptor is required for myocardial growth and coronary artery formation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18455-18460.	3.3	320
3	WNT Signals Control FGF-Dependent Limb Initiation and AER Induction in the Chick Embryo. Cell, 2001, 104, 891-900.	13.5	319
4	Activation of Notch signaling pathway precedes heart regeneration in zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11889-11895.	3.3	302
5	Wnt/beta-catenin signaling regulates vertebrate limb regeneration. Genes and Development, 2006, 20, 3232-3237.	2.7	267
6	Retinoic acid signalling links left–right asymmetric patterning and bilaterally symmetric somitogenesis in the zebrafish embryo. Nature, 2005, 435, 165-171.	13.7	256
7	Notch activity acts as a sensor for extracellular calcium during vertebrate left–right determination. Nature, 2004, 427, 121-128.	13.7	255
8	MKP3 mediates the cellular response to FGF8 signalling in the vertebrate limb. Nature Cell Biology, 2003, 5, 513-519.	4.6	247
9	Nanog binds to Smad1 and blocks bone morphogenetic protein-induced differentiation of embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10294-10299.	3.3	226
10	Notch activity induces Nodal expression and mediates the establishment of left-right asymmetry in vertebrate embryos. Genes and Development, 2003, 17, 1213-1218.	2.7	171
11	Bone Morphogenetic Protein Signaling Is Required for Maintenance of Differentiated Phenotype, Control of Proliferation, and Hypertrophy in Chondrocytes. Journal of Cell Biology, 1998, 140, 409-418.	2.3	166
12	The limb identity gene <i>Tbx5</i> promotes limb initiation by interacting with <i>Wnt2b</i> and <i>Fgf10</i> . Development (Cambridge), 2002, 129, 5161-5170.	1.2	161
13	Sp8 and Sp9, two closely related buttonhead-like transcription factors, regulate Fgf8expression and limb outgrowth in vertebrate embryos. Development (Cambridge), 2004, 131, 4763-4774.	1.2	149
14	Noncanonical Wnt signaling regulates midline convergence of organ primordia during zebrafish development. Genes and Development, 2005, 19, 164-175.	2.7	146
15	Transcriptional coactivator PGC-1Â regulates chondrogenesis via association with Sox9. Proceedings of the United States of America, 2005, 102, 2414-2419.	3.3	145
16	The role of TGFβs and Sox9 during limb chondrogenesis. Current Opinion in Cell Biology, 2006, 18, 723-729.	2.6	142
17	Involvement of Wnt-5a in chondrogenic pattern formation in the chick limb bud. Development Growth and Differentiation, 1999, 41, 29-40.	0.6	126
18	Migration of cardiomyocytes is essential for heart regeneration in zebrafish. Development (Cambridge), 2012, 139, 4133-4142.	1.2	125

#	Article	IF	CITATIONS
19	Regulation of primary cilia formation and left-right patterning in zebrafish by a noncanonical Wnt signaling mediator, duboraya. Nature Genetics, 2006, 38, 1316-1322.	9.4	117
20	Sp8 exhibits reciprocal induction with Fgf8 but has an opposing effect on anterior-posterior cortical area patterning. Neural Development, 2007, 2, 10.	1.1	115
21	BMP-3 and BMP-6 Structures Illuminate the Nature of Binding Specificity with Receptors [,] . Biochemistry, 2007, 46, 12238-12247.	1.2	96
22	BMP-2/6 Heterodimer Is More Effective than BMP-2 or BMP-6 Homodimers as Inductor of Differentiation of Human Embryonic Stem Cells. PLoS ONE, 2010, 5, e11167.	1.1	84
23	Tbx2 and Tbx3 Regulate the Dynamics of Cell Proliferation during Heart Remodeling. PLoS ONE, 2007, 2, e398.	1.1	82
24	A Src-Tks5 Pathway Is Required for Neural Crest Cell Migration during Embryonic Development. PLoS ONE, 2011, 6, e22499.	1.1	80
25	HMGB proteins and arthritis. Human Cell, 2018, 31, 1-9.	1.2	75
26	Sall genes regulate region-specific morphogenesis in the mouse limb by modulating Hox activities. Development (Cambridge), 2009, 136, 585-594.	1.2	66
27	Chromatin protein HMGB2 regulates articular cartilage surface maintenance via Î ² -catenin pathway. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16817-16822.	3.3	63
28	<i>Islet1</i> regulates establishment of the posterior hindlimb field upstream of the <i>Hand2</i> - <i>Shh</i> morphoregulatory gene network in mouse embryos. Development (Cambridge), 2012, 139, 1620-1629.	1.2	63
29	Life-long preservation of the regenerative capacity in the fin and heart in zebrafish. Biology Open, 2012, 1, 739-746.	0.6	60
30	The limb identity gene Tbx5 promotes limb initiation by interacting with Wnt2b and Fgf10. Development (Cambridge), 2002, 129, 5161-70.	1.2	60
31	Maintenance of embryonic stem cell pluripotency by Nanog-mediated reversal of mesoderm specification. Nature Clinical Practice Cardiovascular Medicine, 2006, 3, S114-S122.	3.3	58
32	Bone Morphogenetic Protein-2 and -6 Heterodimer Illustrates the Nature of Ligand-Receptor Assembly. Molecular Endocrinology, 2010, 24, 1469-1477.	3.7	58
33	<i>Sall4-Gli3</i> system in early limb progenitors is essential for the development of limb skeletal elements. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5075-5080.	3.3	52
34	Islet1-mediated activation of the \hat{l}^2 -catenin pathway is necessary for hindlimb initiation in mice. Development (Cambridge), 2011, 138, 4465-4473.	1.2	51
35	Lysosomal cathepsins in embryonic programmed cell death. Developmental Biology, 2007, 301, 205-217.	0.9	49
36	β-Catenin signaling specifies progenitor cell identity in parallel with Shh signaling in the developing mammalian thalamus. Development (Cambridge), 2012, 139, 2692-2702.	1.2	49

#	Article	IF	CITATIONS
37	Expression Patterns and Function of Chromatin Protein HMGB2 during Mesenchymal Stem Cell Differentiation. Journal of Biological Chemistry, 2011, 286, 41489-41498.	1.6	47
38	The Zebrafish as a Model of Heart Regeneration. Cloning and Stem Cells, 2004, 6, 345-351.	2.6	45
39	miles-apart-Mediated regulation of cell–fibronectin interaction and myocardial migration in zebrafish. Nature Clinical Practice Cardiovascular Medicine, 2007, 4, S77-S82.	3.3	45
40	Differential activity of Wnt/β atenin signaling in the embryonic mouse thalamus. Developmental Dynamics, 2009, 238, 3297-3309.	0.8	39
41	Characterization of dermacan, a novel zebrafish lectican gene, expressed in dermal bones. Mechanisms of Development, 2004, 121, 301-312.	1.7	38
42	Designer TGFÎ ² Superfamily Ligands with Diversified Functionality. PLoS ONE, 2011, 6, e26402.	1.1	35
43	Involvement of Frizzled-10 in Wnt-7a signaling during chick limb development. Development Growth and Differentiation, 2000, 42, 561-569.	0.6	33
44	HMGB factors are required for posterior digit development through integrating signaling pathway activities. Developmental Dynamics, 2011, 240, 1151-1162.	0.8	30
45	Cell migration during heart regeneration in zebrafish. Developmental Dynamics, 2016, 245, 774-787.	0.8	30
46	Expression of Fgf19 in the developing chick eye. Developmental Brain Research, 2005, 156, 104-109.	2.1	28
47	Islet1 Deletion Causes Kidney Agenesis and Hydroureter Resembling CAKUT. Journal of the American Society of Nephrology: JASN, 2013, 24, 1242-1249.	3.0	25
48	Identification of chick frizzled-10 expressed in the developing limb and the central nervous system. Mechanisms of Development, 2000, 91, 375-378.	1.7	23
49	Etv2-miR-130a-Jarid2 cascade regulates vascular patterning during embryogenesis. PLoS ONE, 2017, 12, e0189010.	1.1	22
50	<i>Sall4</i> regulates neuromesodermal progenitors and their descendants during body elongation in mouse embryos. Development (Cambridge), 2019, 146, .	1.2	22
51	Differential Expression of the Two Closely Related LIM-Class Homeobox GenesLH-2AandLH-2Bduring Limb Development. Biochemical and Biophysical Research Communications, 1997, 238, 506-511.	1.0	20
52	Cell lineage transport: a mechanism for molecular gradient formation. Molecular Systems Biology, 2006, 2, 57.	3.2	20
53	Regenerative responses after mild heart injuries for cardiomyocyte proliferation in zebrafish. Developmental Dynamics, 2014, 243, 1477-1486.	0.8	18
54	Endoglin integrates BMP and Wnt signalling to induce haematopoiesis through JDP2. Nature Communications, 2016, 7, 13101.	5.8	18

#	Article	IF	CITATIONS
55	Sonic hedgehog signaling during digit pattern duplication after application of recombinant protein and expressing cells. Development Growth and Differentiation, 1999, 41, 567-574.	0.6	17
56	Gata6-Dependent GLI3 Repressor Function is Essential in Anterior Limb Progenitor Cells for Proper Limb Development. PLoS Genetics, 2016, 12, e1006138.	1.5	16
57	Molecular Cloning and Developmental Expression of a Hyaluronan and Proteoglycan Link Protein Gene, <i>crtl1/hapln1</i> , in Zebrafish. Zoological Science, 2008, 25, 912-918.	0.3	15
58	Distinct populations within Isl1 lineages contribute to appendicular and facial skeletogenesis through the β-catenin pathway. Developmental Biology, 2014, 387, 37-48.	0.9	15
59	The FGF-AKT pathway is necessary for cardiomyocyte survival for heart regeneration in zebrafish. Developmental Biology, 2021, 472, 30-37.	0.9	15
60	Two Distinctive <i>POMC</i> Promoters Modify Gene Expression in Cushing Disease. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e3346-e3363.	1.8	15
61	Cloning and characterization ofWnt-4andWnt-11cDNAs from chick embryo. DNA Sequence, 1995, 5, 277-281.	0.7	14
62	Multimodal Non-Surgical Treatments of Aggressive Pituitary Tumors. Frontiers in Endocrinology, 2021, 12, 624686.	1.5	13
63	Analysis of transcription factors expressed at the anterior mouse limb bud. PLoS ONE, 2017, 12, e0175673.	1.1	13
64	Teratogenic effects of <i>in utero</i> exposure to di-(2-ethylhexyl)-phthalate (DEHP) in B6:129S4 mice. Toxicological Sciences, 2017, 157, kfx019.	1.4	12
65	Cloning and expression pattern of Xenopus prx-1 (Xprx-1) during embryonic development. Development Growth and Differentiation, 1998, 40, 97-104.	0.6	11
66	Temporal changes of Sall4 lineage contribution in developing embryos and the contribution of Sall4-lineages to postnatal germ cells in mice. Scientific Reports, 2018, 8, 16410.	1.6	11
67	Expression of <i>Noggin</i> and <i>Gremlin1</i> and its implications in fine-tuning BMP activities in mouse cartilage tissues. Journal of Orthopaedic Research, 2017, 35, 1671-1682.	1.2	11
68	Corepressor SMRT is required to maintain Hox transcriptional memory during somitogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10381-10386.	3.3	10
69	Identification and functional characterization of novel transcriptional enhancers involved in regulating human <i><scp>GLI</scp>3</i> expression during early development. Development Growth and Differentiation, 2015, 57, 570-580.	0.6	9
70	The two domain hypothesis of limb prepattern and its relevance to congenital limb anomalies. Wiley Interdisciplinary Reviews: Developmental Biology, 2017, 6, e270.	5.9	9
71	Expression of the chick vascular endothelial growth factor D gene during limb development. Mechanisms of Development, 2002, 116, 239-242.	1.7	8
72	An optical labeling-based proliferation assay system reveals the paracrine effect of interleukin-6 in breast cancer. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 27-40.	1.9	8

#	Article	IF	CITATIONS
73	Development of the Proximal-Anterior Skeletal Elements in the Mouse Hindlimb Is Regulated by a Transcriptional and Signaling Network Controlled by Sall4. Genetics, 2020, 215, 129-141.	1.2	8
74	Tuba8 Drives Differentiation of Cortical Radial Glia into Apical Intermediate Progenitors by Tuning Modifications of Tubulin C Termini. Developmental Cell, 2020, 52, 477-491.e8.	3.1	7
75	Expression of the fibroblast growth factor receptor 1–4 genes in glomeruli in anti-Thy1.1 mesangial proliferative glomerulonephritis. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 1999, 435, 501-508.	1.4	6
76	Gata6 restricts Isl1 to the posterior of nascent hindlimb buds through Isl1 cis-regulatory modules. Developmental Biology, 2018, 434, 74-83.	0.9	6
77	A nontoxic fungal natural product modulates fin regeneration in zebrafish larvae upstream of FGFâ€WNT developmental signaling. Developmental Dynamics, 2021, 250, 160-174.	0.8	6
78	Redefining the Role of Retinoic Acid in Limb Development. Cell Reports, 2013, 3, 1337-1338.	2.9	5
79	IRX3/5 regulate mitotic chromatid segregation and limb bud shape. Development (Cambridge), 2020, 147,	1.2	4
80	Aberrant Nuclear Translocation of E2F1 and Its Association in Cushing's Disease. Endocrinology, 2022, 163, .	1.4	3
81	Normal embryonic development and neonatal digit regeneration in mice overexpressing a stem cell factor, Sall4. PLoS ONE, 2022, 17, e0267273.	1.1	2
82	Characterization of <i>cis</i> â€regulatory elements for <i>Fgf10</i> expression in the chick embryo. Developmental Dynamics, 2018, 247, 1253-1263.	0.8	1
83	Acute elevation of interleukin 6 and matrix metalloproteinase 9 during the onset of pituitary apoplexy in Cushing's disease. Pituitary, 2021, 24, 859-866.	1.6	1
84	Cover Image, Volume 6, Issue 4. Wiley Interdisciplinary Reviews: Developmental Biology, 2017, 6, e285.	5.9	0
85	A Rare Case of Recurrent Pituitary Collision Tumors. Journal of the Endocrine Society, 2020, 4, bvaa089.	0.1	Ο
86	Sall genes regulates limb patterning through modulation of regionâ€specific Hox activities in mice. FASEB Journal, 2008, 22, 230.6.	0.2	0
87	Maintenance of Embryonic Stem Cell Pluripotency by Nanog-Mediated Dedifferentiation of Committed Mesoderm Progenitors. , 2009, , 37-53.		0
88	Abstract 448: Etv2-Mir130a-Jarid2 Cascade Regulates Vascular Patterning During Embryogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, .	1.1	0