Yan-Ping Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/241537/publications.pdf

Version: 2024-02-01

471371 477173 34 908 17 29 citations h-index g-index papers 34 34 34 938 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Antibacterial Activity and Membrane-Disruptive Mechanism of 3-p-trans-Coumaroyl-2-hydroxyquinic Acid, a Novel Phenolic Compound from Pine Needles of Cedrus deodara, against Staphylococcus aureus. Molecules, 2016, 21, 1084.	1.7	121
2	A dual antibacterial mechanism involved in membrane disruption and DNA binding of 2R,3R-dihydromyricetin from pine needles of Cedrus deodara against Staphylococcus aureus. Food Chemistry, 2017, 218, 463-470.	4.2	113
3	Antibiofilm activity of shikimic acid against Staphylococcus aureus. Food Control, 2019, 95, 327-333.	2.8	68
4	Antibacterial Activity of Shikimic Acid from Pine Needles of Cedrus deodara against Staphylococcus aureus through Damage to Cell Membrane. International Journal of Molecular Sciences, 2015, 16, 27145-27155.	1.8	66
5	A deep insight into mechanism for inclusion of 2R,3R-dihydromyricetin with cyclodextrins and the effect of complexation on antioxidant and lipid-lowering activities. Food Hydrocolloids, 2020, 103, 105718.	5. 6	45
6	Structural Characteristics and Hypolipidemic Activity of Theabrownins from Dark Tea Fermented by Single Species Eurotium cristatum PW-1. Biomolecules, 2020, 10, 204.	1.8	40
7	The effect of Eurotium cristatum (MF800948) fermentation on the quality of autumn green tea. Food Chemistry, 2021, 358, 129848.	4.2	36
8	Metal-induced G-quadruplex polymorphism for ratiometric and label-free detection of lead pollution in tea. Food Chemistry, 2021, 343, 128425.	4.2	33
9	A Comparative Study on the Effects of Quinic Acid and Shikimic Acid on Cellular Functions of Staphylococcus aureus. Journal of Food Protection, 2018, 81, 1187-1192.	0.8	28
10	<i>In vitro</i> and <i>in vivo</i> characterization of the antibacterial activity and membrane damage mechanism of quinic acid against <i>Staphylococcus aureus</i> Journal of Food Safety, 2018, 38, e12416.	1.1	27
11	The biochemical characteristics of a novel fermented loose tea by Eurotium cristatum (MF800948) and its hypolipidemic activity in a zebrafish model. LWT - Food Science and Technology, 2020, 117, 108629.	2.5	27
12	Insight into effects of isolated <i>Eurotium cristatum</i> from Pingwu Fuzhuan brick tea on the fermentation process and quality characteristics of Fuzhuan brick tea. Journal of the Science of Food and Agriculture, 2020, 100, 3598-3607.	1.7	26
13	Comparative study on antibacterial mechanism of shikimic acid and quinic acid against Staphylococcus aureus through transcriptomic and metabolomic approaches. LWT - Food Science and Technology, 2022, 153, 112441.	2.5	25
14	Ratiometric-enhanced G-Quadruplex Probes for Amplified and Mix-to-Read Detection of Mercury Pollution in Aquatic Products. Journal of Agricultural and Food Chemistry, 2020, 68, 12124-12131.	2.4	24
15	Cedrus deodara pine needle as a potential source of natural antioxidants: Bioactive constituents and antioxidant activities. Journal of Functional Foods, 2015, 14, 605-612.	1.6	22
16	A Potent Antibrowning Agent from Pine Needles of <i>Cedrus deodara</i> : <i>2R,3R</i> i>â€Dihydromyricetin. Journal of Food Science, 2014, 79, C1643-8.	1.5	20
17	Characteristics and chemical compositions of Pingwu Fuzhuan brick-tea, a distinctive post-fermentation tea in Sichuan province of China. International Journal of Food Properties, 2019, 22, 878-889.	1.3	20
18	Insight into the effect of quinic acid on biofilm formed by <i>Staphylococcus aureus</i> . RSC Advances, 2019, 9, 3938-3945.	1.7	19

#	Article	IF	CITATIONS
19	180 Day Repeated-Dose Toxicity Study on Forchlorfenuron in Sprague–Dawley Rats and Its Effects on the Production of Steroid Hormones. Journal of Agricultural and Food Chemistry, 2019, 67, 10207-10213.	2.4	16
20	Antibacterial effect of 3- <i>p-trans</i> -coumaroyl-2-hydroxyquinic acid, a phenolic compound from needles of <i>Cedrus deodara</i> , on cellular functions of <i>Staphylococcus aureus</i> . RSC Advances, 2018, 8, 4969-4975.	1.7	14
21	Effects of Bacillus megaterium L222 on quality and bacterial diversity of Sichuan paocai. Food Research International, 2021, 140, 109994.	2.9	14
22	Insight into the characteristics of cider fermented by single and co-culture with Saccharomyces cerevisiae and Schizosaccharomyces pombe based on metabolomic and transcriptomic approaches. LWT - Food Science and Technology, 2022, 163, 113538.	2.5	14
23	Development and characterization of active bilayer film incorporated with dihydromyricetin encapsulated in hydroxypropyl- $\hat{1}^2$ -cyclodextrin for food packaging application. Food Hydrocolloids, 2022, 131, 107834.	5.6	14
24	Inhibitory effect of a natural phenolic compound, 3- <i>p-trans</i> -coumaroyl-2-hydroxyquinic acid against the attachment phase of biofilm formation of <i>Staphylococcus aureus</i> through targeting sortase A. RSC Advances, 2019, 9, 32453-32461.	1.7	11
25	Delving into the Biotransformation Characteristics and Mechanism of Steamed Green Tea Fermented by Aspergillus niger PW-2 Based on Metabolomic and Proteomic Approaches. Foods, 2022, 11, 865.	1.9	11
26	Food-grade olive oil Pickering emulsions stabilized by starch/ \hat{l}^2 -cyclodextrin complex nanoparticles: Improved storage stability and regulatory effects on gut microbiota. LWT - Food Science and Technology, 2022, 155, 112950.	2.5	10
27	Inhibitory Effect of <i>2R</i> , <i>3R</i> -Dihydromyricetin on Biofilm Formation by <i>Staphylococcus aureus</i> . Foodborne Pathogens and Disease, 2018, 15, 475-480.	0.8	9
28	Comprehensive evaluation of the composition of Mingshan Laochuancha green tea and demonstration of hypolipidemic activity in a zebrafish obesity model. RSC Advances, 2019, 9, 41269-41279.	1.7	7
29	Purification, Fermentation Optimization, and Antibacterial Activity of Pyrrole-2-carboxylic Acid Produced by an Endophytic Bacterium, <i>Bacillus cereus</i> ZBE, Isolated from <i>Zanthoxylum bungeanum</i> . Industrial & Engineering Chemistry Research, 2022, 61, 1267-1276.	1.8	7
30	Antibacterial Effect of $\langle i \rangle 2R \langle i \rangle$, $\langle i \rangle 3R \langle i \rangle$ -dihydromyricetin on the Cellular Functions of $\langle i \rangle Staphylococcus$ aureus $\langle i \rangle$. Bioscience, Biotechnology and Biochemistry, 2018, 82, 135-138.	0.6	6
31	Effects of konjac glucomannan on pasting, rheological, and structural properties of low-amylose rice starch. International Journal of Food Engineering, 2022, 18, 291-301.	0.7	5
32	Effect of Fixation Methods on Biochemical Characteristics of Green Teas and Their Lipid-Lowering Effects in a Zebrafish Larvae Model. Foods, 2022, 11, 1582.	1.9	5
33	Discovering the antibacterial mode of action of 3â€ <scp><i>p</i>pi>â€<i>trans</i></scp> â€coumaroylâ€2â€hydroxyquinic acid, a natural phenolic compound, against <scp><i>Staphylococcus aureus</i></scp> through an integrated transcriptomic and proteomic approach. Journal of Food Safety. 2021, 41.	1.1	3
34	Antibacterial and Antibiofilm Effects of <i>Zanthoxylum bungeanum</i> Leaves against <i>Staphylococcus aureus</i> Natural Product Communications, 2018, 13, 1934578X1801300.	0.2	2