Yongfa Zhu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2414783/yongfa-zhu-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

149	21,285	76	145
papers	citations	h-index	g-index
151 ext. papers	24,726 ext. citations	15.5 avg, IF	7.6 L-index

#	Paper	IF	Citations
149	High Photocatalytic Oxygen Evolution via Strong Built-in Electric Field induced by High Crystallinity of Perylene Imide Supramolecule <i>Advanced Materials</i> , 2022 , e2102354	24	5
148	Nitrogen-defect induced trap states steering electron-hole migration in graphite carbon nitride. <i>Applied Catalysis B: Environmental</i> , 2022 , 306, 121142	21.8	9
147	A 3D/0D cobalt-embedded nitrogen-doped porous carbon/supramolecular porphyrin magnetic-separation photocatalyst with highly efficient pollutant degradation and water oxidation performance. <i>Journal of Materials Science and Technology</i> , 2022 , 124, 53-64	9.1	O
146	Perylenetetracarboxylic acid nanosheets with internal electric fields and anisotropic charge migration for photocatalytic hydrogen evolution <i>Nature Communications</i> , 2022 , 13, 2067	17.4	6
145	Electron Donor-Acceptor Interface of TPPS/PDI Boosting Charge Transfer for Efficient Photocatalytic Hydrogen Evolution <i>Advanced Science</i> , 2022 , e2201134	13.6	5
144	Unprecedentedly efficient mineralization performance of photocatalysis-self-Fenton system towards organic pollutants over oxygen-doped porous g-C3N4 nanosheets. <i>Applied Catalysis B: Environmental</i> , 2022 , 312, 121438	21.8	2
143	Highly efficient photocatalytic hydrogen production via porphyrin-fullerene supramolecular photocatalyst with donor-acceptor structure. <i>Chemical Engineering Journal</i> , 2022 , 444, 136621	14.7	Ο
142	Double-defect-induced polarization enhanced OV-BiOBr/Cu2NS high-low junction for boosted photoelectrochemical hydrogen evolution. <i>Applied Catalysis B: Environmental</i> , 2022 , 314, 121502	21.8	3
141	Efficient photothermal degradation on Bi12CoO20 sillenite with a strong internal electric field induced by the thermal effect. <i>Applied Catalysis B: Environmental</i> , 2022 , 313, 121452	21.8	1
140	Resin-based photo-self-Fenton system with intensive mineralization by the synergistic effect of holes and hydroxyl radicals. <i>Applied Catalysis B: Environmental</i> , 2022 , 315, 121525	21.8	1
139	Construction of Interfacial Electric Field via Dual-Porphyrin Heterostructure Boosting Photocatalytic Hydrogen Evolution. <i>Advanced Materials</i> , 2021 , e2106807	24	20
138	Steering Electron-Hole Migration Pathways Using Oxygen Vacancies in Tungsten Oxides to Enhance Their Photocatalytic Oxygen Evolution Performance. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 8236-8242	16.4	66
137	Steering ElectronHole Migration Pathways Using Oxygen Vacancies in Tungsten Oxides to Enhance Their Photocatalytic Oxygen Evolution Performance. <i>Angewandte Chemie</i> , 2021 , 133, 8317-832	2 3 .6	4
136	Supramolecular Zinc Porphyrin Photocatalyst with Strong Reduction Ability and Robust Built-In Electric Field for Highly Efficient Hydrogen Production. <i>Advanced Energy Materials</i> , 2021 , 11, 2101392	21.8	29
135	Highly-crystalline Triazine-PDI Polymer with an Enhanced Built-in Electric Field for Full-Spectrum Photocatalytic Phenol Mineralization. <i>Applied Catalysis B: Environmental</i> , 2021 , 287, 119957	21.8	20
134	Research progress on methane conversion coupling photocatalysis and thermocatalysis 2021 , 3, 519-54	10	9
133	Photogenerated-hole-induced rapid elimination of solid tumors by the supramolecular porphyrin photocatalyst. <i>National Science Review</i> , 2021 , 8, nwaa155	10.8	12

132	Interfacial internal electric field and oxygen vacancies synergistically enhance photocatalytic performance of bismuth oxychloride. <i>Journal of Hazardous Materials</i> , 2021 , 402, 123470	12.8	31
131	Photocatalytic activity enhancement of PDI supermolecular via Haction and energy level adjusting with graphene quantum dots. <i>Applied Catalysis B: Environmental</i> , 2021 , 281, 119547	21.8	46
130	Controlled Synthesis of Higher Interfacial Electron Transfer Graphite-Like Carbon Nitride/Perylenetetracarboxylic Diimide Heterogeneous for Enhanced Photocatalytic Activity. <i>Solar Rrl</i> , 2021 , 5, 2000453	7.1	6
129	Improving the photocatalytic activity of benzyl alcohol oxidation by Z-scheme SnS/g-C3N4. <i>New Journal of Chemistry</i> , 2021 , 45, 6611-6617	3.6	9
128	Efficient Photocatalytic Overall Water Splitting Induced by the Giant Internal Electric Field of a g-C N /rGO/PDIP Z-Scheme Heterojunction. <i>Advanced Materials</i> , 2021 , 33, e2007479	24	107
127	Encapsulate MnO nanofiber within graphene layer to tune surface electronic structure for efficient ozone decomposition. <i>Nature Communications</i> , 2021 , 12, 4152	17.4	19
126	A Full-Spectrum Porphyrin-Fullerene D-A Supramolecular Photocatalyst with Giant Built-In Electric Field for Efficient Hydrogen Production. <i>Advanced Materials</i> , 2021 , 33, e2101026	24	24
125	An all-organic 0D/2D supramolecular porphyrin/g-C3N4 heterojunction assembled via	21.8	28
124	Create a strong internal electric-field on PDI photocatalysts for boosting phenols degradation via preferentially exposing Econjugated planes up to 100%. <i>Applied Catalysis B: Environmental</i> , 2021 , 300, 120762	21.8	6
123	Ultrathin perylene imide nanosheet with fast charge transfer enhances photocatalytic performance. <i>Applied Catalysis B: Environmental</i> , 2021 , 298, 120585	21.8	7
122	Photocatalytic production of H2O2 from water and dioxygen only under visible light using organic polymers: Systematic study of the effects of heteroatoms. <i>Applied Catalysis B: Environmental</i> , 2021 , 299, 120666	21.8	6
121	Accurate guided alternating atomic layer enhance internal electric field to steering photogenerated charge separation for enhance photocatalytic activity. <i>Applied Catalysis B: Environmental</i> , 2021 , 298, 120536	21.8	8
120	Photocatalytic degradation of tetracycline antibiotics using three-dimensional network structure perylene diimide supramolecular organic photocatalyst under visible-light irradiation. <i>Applied Catalysis B: Environmental</i> , 2020 , 277, 119122	21.8	137
119	Efficient and stable photocatalytic degradation of tetracycline wastewater by 3D Polyaniline/Perylene diimide organic heterojunction under visible light irradiation. <i>Chemical Engineering Journal</i> , 2020 , 397, 125476	14.7	58
118	Perylene diimide anchored graphene 3D structure via 🖽 nteraction for enhanced photoelectrochemical degradation performances. <i>Applied Catalysis B: Environmental</i> , 2020 , 272, 118897	21.8	32
117	A Highly Crystalline Perylene Imide Polymer with the Robust Built-In Electric Field for Efficient Photocatalytic Water Oxidation. <i>Advanced Materials</i> , 2020 , 32, e1907746	24	60
116	Photocatalytic activity enhanced via surface hybridization 2020 , 2, 308-349		25
115	Visible-Light-Promoted Efficient Aerobic Dehydrogenation of N-Heterocycles by a Tiny Organic Semiconductor Under Ambient Conditions. <i>European Journal of Organic Chemistry</i> , 2020 , 2020, 1956-196	δ^2	14

114	Catalytic activity of porous carbon nitride regulated by polyoxometalates under visible light <i>RSC Advances</i> , 2020 , 10, 8255-8260	3.7	4
113	Highly efficient visible photocatalytic disinfection and degradation performances of microtubular nanoporous g-C3N4 via hierarchical construction and defects engineering. <i>Journal of Materials Science and Technology</i> , 2020 , 49, 133-143	9.1	36
112	Enhanced visible photocatalytic oxidation activity of perylene diimide/g-C3N4 n-n heterojunction via Interaction and interfacial charge separation. <i>Applied Catalysis B: Environmental</i> , 2020 , 271, 118933	21.8	82
111	Thermodynamic and dynamic dual regulation Bi2O2CO3/Bi5O7I enabling high-flux photogenerated charge migration for enhanced visible-light-driven photocatalysis. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 10252-10259	13	24
110	Photocatalysis-self-Fenton system with high-fluent degradation and high mineralization ability. <i>Applied Catalysis B: Environmental</i> , 2020 , 276, 119150	21.8	34
109	Visible-light-promoted aerobic oxidative hydroxylation of arylboronic acids in water by hydrophilic organic semiconductor. <i>Tetrahedron Letters</i> , 2020 , 61, 152010	2	1
108	Enhanced visible-light photocatalytic degradation and disinfection performance of oxidized nanoporous g-C3N4 via decoration with graphene oxide quantum dots. <i>Chinese Journal of Catalysis</i> , 2020 , 41, 474-484	11.3	19
107	Large dipole moment induced efficient bismuth chromate photocatalysts for wide-spectrum driven water oxidation and complete mineralization of pollutants. <i>National Science Review</i> , 2020 , 7, 652-659	10.8	27
106	Photochemical preparation of atomically dispersed nickel on cadmium sulfide for superior photocatalytic hydrogen evolution. <i>Applied Catalysis B: Environmental</i> , 2020 , 261, 118233	21.8	39
105	Enhanced photoactivity and oxidizing ability simultaneously via internal electric field and valence band position by crystal structure of bismuth oxyiodide. <i>Applied Catalysis B: Environmental</i> , 2020 , 262, 118262	21.8	70
104	Three-dimensional network structure assembled by g-C3N4 nanorods for improving visible-light photocatalytic performance. <i>Applied Catalysis B: Environmental</i> , 2019 , 255, 117761	21.8	95
103	Three-dimensional porous g-C3N4 for highly efficient photocatalytic overall water splitting. <i>Nano Energy</i> , 2019 , 59, 644-650	17.1	347
102	Enhanced organic pollutant photodegradation via adsorption/photocatalysis synergy using a 3D g-C3N4/TiO2 free-separation photocatalyst. <i>Chemical Engineering Journal</i> , 2019 , 370, 287-294	14.7	166
101	Enhanced visible-light-induced photocatalytic degradation and disinfection activities of oxidized porous g-C3N4 by loading Ag nanoparticles. <i>Catalysis Today</i> , 2019 , 332, 227-235	5.3	57
100	TiO @Perylene Diimide Full-Spectrum Photocatalysts via Semi-Core-Shell Structure. Small, 2019, 15, e19	903933	3 23
99	Designed synthesis of a p-Ag2S/n-PDI self-assembled supramolecular heterojunction for enhanced full-spectrum photocatalytic activity. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 6482-6490	13	67
98	Internal electric field engineering for steering photogenerated charge separation and enhancing photoactivity. <i>EcoMat</i> , 2019 , 1, e12007	9.4	47
97	Interaction between self-assembled perylene diimide and 3D graphene for excellent visible-light photocatalytic activity. <i>Applied Catalysis B: Environmental</i> , 2019 , 240, 225-233	21.8	84

(2017-2019)

96	A Full-Spectrum Metal-Free Porphyrin Supramolecular Photocatalyst for Dual Functions of Highly Efficient Hydrogen and Oxygen Evolution. <i>Advanced Materials</i> , 2019 , 31, e1806626	24	115
95	Fabrication of BiOI/graphene Hydrogel/FTO photoelectrode with 3D porous architecture for the enhanced photoelectrocatalytic performance. <i>Applied Catalysis B: Environmental</i> , 2018 , 233, 202-212	21.8	69
94	Polyoxometalates covalently combined with graphitic carbon nitride for photocatalytic hydrogen peroxide production. <i>Catalysis Science and Technology</i> , 2018 , 8, 1686-1695	5.5	46
93	Enhanced visible-light photocatalysis via back-electron transfer from palladium quantum dots to perylene diimide. <i>Applied Catalysis B: Environmental</i> , 2018 , 230, 49-57	21.8	26
92	Self-assembled polymer phenylethnylcopper nanowires for photoelectrochemical and photocatalytic performance under visible light. <i>Applied Catalysis B: Environmental</i> , 2018 , 226, 616-623	21.8	34
91	Self-assembled perylene diimide based supramolecular heterojunction with Bi2WO6 for efficient visible-light-driven photocatalysis. <i>Applied Catalysis B: Environmental</i> , 2018 , 232, 175-181	21.8	118
90	Supramolecular packing dominant photocatalytic oxidation and anticancer performance of PDI. <i>Applied Catalysis B: Environmental</i> , 2018 , 231, 251-261	21.8	73
89	Enhanced photocatalytic activity of PTCDI-C60 via Interaction. <i>Applied Catalysis B:</i> Environmental, 2018 , 238, 302-308	21.8	21
88	Visible-light photocatalysis of PDI nanowires enhanced by plasmonic effect of the gold nanoparticles. <i>Applied Catalysis B: Environmental</i> , 2018 , 239, 61-67	21.8	62
87	Two-dimensional polymeric carbon nitride: structural engineering for optimizing photocatalysis. <i>Science China Chemistry</i> , 2018 , 61, 1205-1213	7.9	36
86	Constructing a novel Bi2SiO5/BiPO4 heterostructure with extended light response range and enhanced photocatalytic performance. <i>Applied Catalysis B: Environmental</i> , 2018 , 236, 205-211	21.8	78
85	Ultrathin nanosheets g-C3N4@Bi2WO6 core-shell structure via low temperature reassembled strategy to promote photocatalytic activity. <i>Applied Catalysis B: Environmental</i> , 2018 , 237, 633-640	21.8	104
84	Efficient visible-light-driven selective oxygen reduction to hydrogen peroxide by oxygen-enriched graphitic carbon nitride polymers. <i>Energy and Environmental Science</i> , 2018 , 11, 2581-2589	35.4	226
83	Photocatalytic activity enhancement of core-shell structure g-C3N4@TiO2 via controlled ultrathin g-C3N4 layer. <i>Applied Catalysis B: Environmental</i> , 2018 , 220, 337-347	21.8	254
82	Oxygen-doped carbon nitride aerogel: A self-supported photocatalyst for solar-to-chemical energy conversion. <i>Applied Catalysis B: Environmental</i> , 2018 , 236, 428-435	21.8	73
81	An anion exchange strategy for construction of a novel Bi2SiO5/Bi2MoO6 heterostructure with enhanced photocatalytic performance. <i>Catalysis Science and Technology</i> , 2018 , 8, 3278-3285	5.5	19
80	Tuning the K Concentration in the Tunnels of EMnO To Increase the Content of Oxygen Vacancy for Ozone Elimination. <i>Environmental Science & Emp; Technology</i> , 2018 , 52, 8684-8692	10.3	88
79	Enhancement of full-spectrum photocatalytic activity over BiPO4/Bi2WO6 composites. <i>Applied Catalysis B: Environmental</i> , 2017 , 200, 222-229	21.8	196

78	Three-dimensional photocatalysts with a network structure. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 5661-5679	13	70
77	Ultrathin TiO(B) Nanosheets as the Inductive Agent for Transfrering HO into Superoxide Radicals. <i>ACS Applied Materials & Discourse (Control of the Control </i>	9.5	37
76	Covalent combination of polyoxometalate and graphitic carbon nitride for light-driven hydrogen peroxide production. <i>Nano Energy</i> , 2017 , 35, 405-414	17.1	108
75	Peroxymonosulfate enhanced visible light photocatalytic degradation bisphenol A by single-atom dispersed Ag mesoporous g-C3N4 hybrid. <i>Applied Catalysis B: Environmental</i> , 2017 , 211, 79-88	21.8	328
74	Surface oxygen vacancy induced EMnO2 nanofiber for highly efficient ozone elimination. <i>Applied Catalysis B: Environmental</i> , 2017 , 209, 729-737	21.8	248
73	Short-Range (Stacking Assembly on P25 TiO2 Nanoparticles for Enhanced Visible-Light Photocatalysis. <i>ACS Catalysis</i> , 2017 , 7, 652-663	13.1	80
72	3D-3D porous Bi2WO6/graphene hydrogel composite with excellent synergistic effect of adsorption-enrichment and photocatalytic degradation. <i>Applied Catalysis B: Environmental</i> , 2017 , 205, 228-237	21.8	214
71	Enhanced Visible-Light-Driven Photocatalytic Disinfection Performance and Organic Pollutant Degradation Activity of Porous g-CN Nanosheets. <i>ACS Applied Materials & Degradation Activity of Porous g-CN Nanosheets</i> .	27 ⁹ 2 ⁵ 773	35 ²⁴²
70	Removal of chromium (VI) by a self-regenerating and metal free g-C3N4/graphene hydrogel system via the synergy of adsorption and photo-catalysis under visible light. <i>Applied Catalysis B: Environmental</i> , 2017 , 219, 53-62	21.8	163
69	Photocatalytic degradation of deoxynivalenol using graphene/ZnO hybrids in aqueous suspension. <i>Applied Catalysis B: Environmental</i> , 2017 , 204, 11-20	21.8	132
68	TiO2/Al(H2PO4)3 composite film as separation-free and washing-resistance photocatalyst. <i>Applied Catalysis B: Environmental</i> , 2017 , 204, 43-48	21.8	18
67	Photoelectrocatalytic degradation of phenol-containing wastewater by TiO2/g-C3N4 hybrid heterostructure thin film. <i>Applied Catalysis B: Environmental</i> , 2017 , 201, 600-606	21.8	218
66	Supramolecular organic nanofibers with highly efficient and stable visible light photooxidation performance. <i>Applied Catalysis B: Environmental</i> , 2017 , 202, 289-297	21.8	124
65	Enhancement of mineralization ability for phenol via synergetic effect of photoelectrocatalysis of g-C3N4 film. <i>Applied Catalysis B: Environmental</i> , 2016 , 180, 324-329	21.8	134
64	Highly Efficient Organic Photocatalyst with Full Visible Light Spectrum through Estacking of TCNQ-PTCDI. ACS Applied Materials & Interfaces, 2016, 8, 30225-30231	9.5	46
63	Enhancement of catalytic activity and oxidative ability for graphitic carbon nitride. <i>Journal of Photochemistry and Photobiology C: Photochemistry Reviews</i> , 2016 , 28, 87-115	16.4	155
62	Removal of Cr(VI) by 3D TiO2-graphene hydrogel via adsorption enriched with photocatalytic reduction. <i>Applied Catalysis B: Environmental</i> , 2016 , 199, 412-423	21.8	282
61	Photodegradation of phenol via C 3 N 4 -agar hybrid hydrogel 3D photocatalysts with free separation. <i>Applied Catalysis B: Environmental</i> , 2016 , 183, 263-268	21.8	149

(2014-2016)

60	Separation-Free Polyaniline/TiO2 3D Hydrogel with High Photocatalytic Activity. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1500502	4.6	55
59	Self-Assembled PDINH Supramolecular System for Photocatalysis under Visible Light. <i>Advanced Materials</i> , 2016 , 28, 7284-90	24	219
58	Separation free C3N4/SiO2 hybrid hydrogels as high active photocatalysts for TOC removal. <i>Applied Catalysis B: Environmental</i> , 2016 , 194, 105-110	21.8	68
57	Polyaniline/Carbon Nitride Nanosheets Composite Hydrogel: A Separation-Free and High-Efficient Photocatalyst with 3D Hierarchical Structure. <i>Small</i> , 2016 , 12, 4370-8	11	170
56	Enhanced visible light photocatalytic performance of a novel heterostructured Bi4O5Br2/Bi24O31Br10/Bi2SiO5 photocatalyst. <i>Applied Catalysis B: Environmental</i> , 2015 , 172-173, 100-1	1 67 8	74
55	Controlled synthesis of a highly dispersed BiPO4 photocatalyst with surface oxygen vacancies. <i>Nanoscale</i> , 2015 , 7, 13943-50	7.7	95
54	Photocatalytic hydrogen generation on bifunctional ternary heterostructured In2S3/MoS2/CdS composites with high activity and stability under visible light irradiation. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 18406-18412	13	118
53	Photocatalytic performance enhanced via surface bismuth vacancy of Bi6S2O15 core/shell nanowires. <i>Applied Catalysis B: Environmental</i> , 2015 , 176-177, 306-314	21.8	67
52	Photocatalytic enhancement of hybrid C3N4/TiO2 prepared via ball milling method. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 3647-52	3.6	119
51	Visible light photoactivity enhancement via CuTCPP hybridized g-C3N4 nanocomposite. <i>Applied Catalysis B: Environmental</i> , 2015 , 166-167, 366-373	21.8	155
50	Enhanced catalytic activity of potassium-doped graphitic carbon nitride induced by lower valence position. <i>Applied Catalysis B: Environmental</i> , 2015 , 164, 77-81	21.8	261
49	Enhancement of photocatalytic performance via a P3HT-g-C3N4 heterojunction. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 2741-2747	13	100
48	Surface oxygen vacancy induced photocatalytic performance enhancement of a BiPO4 nanorod. Journal of Materials Chemistry A, 2014 , 2, 1174-1182	13	228
47	Enhancement of visible photocatalytic activity via Ag@C3N4 coreBhell plasmonic composite. <i>Applied Catalysis B: Environmental</i> , 2014 , 147, 82-91	21.8	399
46	Significantly enhancement of photocatalytic performances via coreShell structure of ZnO@mpg-C3N4. <i>Applied Catalysis B: Environmental</i> , 2014 , 147, 554-561	21.8	188
45	A superior photocatalytic performance of a novel Bi2SiO5 flower-like microsphere via a phase junction. <i>Nanoscale</i> , 2014 , 6, 15222-7	7.7	36
44	Enhancement of mineralization ability of C3N4via a lower valence position by a tetracyanoquinodimethane organic semiconductor. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 11432-114	138	56
43	Preparation of visible light-driven g-CN@ZnO hybrid photocatalyst via mechanochemistry. Physical Chemistry Chemical Physics, 2014 , 16, 17627-33	3.6	99

42	Enhancement of photocatalytic activity for BiPO4via phase junction. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 13041-13048	13	104
41	Fluorine mediated photocatalytic activity of BiPO4. Applied Catalysis B: Environmental, 2014, 147, 851-	857 1.8	100
40	Enhancement of visible photocatalytic performances of a Bi2MoO6-BiOCl nanocomposite with plate-on-plate heterojunction structure. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 26314-21	3.6	132
39	Enhancement of visible light photocatalytic activities via porous structure of g-C3N4. <i>Applied Catalysis B: Environmental</i> , 2014 , 147, 229-235	21.8	239
38	Dramatic visible activity in phenol degradation of TCNQ@TiO2 photocatalyst with coreShell structure. <i>Applied Catalysis B: Environmental</i> , 2014 , 160-161, 44-50	21.8	46
37	Enhanced oxidation ability of g-C3N4 photocatalyst via C60 modification. <i>Applied Catalysis B:</i> Environmental, 2014 , 152-153, 262-270	21.8	325
36	Nanoporous graphitic carbon nitride with enhanced photocatalytic performance. <i>Langmuir</i> , 2013 , 29, 10566-72	4	247
35	The surface oxygen vacancy induced visible activity and enhanced UV activity of a ZnO1\(\text{D}\) photocatalyst. Catalysis Science and Technology, 2013 , 3, 3136	5.5	130
34	Enhanced Photocatalytic Performance for the BiPO4⊠ Nanorod Induced by Surface Oxygen Vacancy. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 18520-18528	3.8	196
33	Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 14766	13	853
32	Performance enhancement of ZnO photocatalyst via synergic effect of surface oxygen defect and graphene hybridization. <i>Langmuir</i> , 2013 , 29, 3097-105	4	397
31	Production of visible activity and UV performance enhancement of ZnO photocatalyst via vacuum deoxidation. <i>Applied Catalysis B: Environmental</i> , 2013 , 138-139, 26-32	21.8	160
30	Degradation and mineralization mechanism of phenol by BiPO4 photocatalysis assisted with H2O2. <i>Applied Catalysis B: Environmental</i> , 2013 , 142-143, 561-567	21.8	108
29	Photocatalytic Activity Enhanced via g-C3N4 Nanoplates to Nanorods. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 9952-9961	3.8	524
28	Visible Photocatalytic Activity Enhancement of ZnWO4 by Graphene Hybridization. <i>ACS Catalysis</i> , 2012 , 2, 2769-2778	13.1	236
27	Synthesis and photoactivity enhancement of ZnWO4 photocatalysts doped with chlorine. <i>CrystEngComm</i> , 2012 , 14, 8076	3.3	39
26	Photocatalytic and photoelectrochemical properties of in situ carbon hybridized BiPO4 films. <i>Applied Catalysis A: General</i> , 2012 , 435-436, 93-98	5.1	37
25	Enhancement of photocatalytic activity of Bi2WO6 hybridized with graphite-like C3N4. <i>Journal of Materials Chemistry</i> , 2012 , 22, 11568		318

(2008-2012)

24	Decontamination of bisphenol A from aqueous solution by graphene adsorption. <i>Langmuir</i> , 2012 , 28, 8418-25	4	635
23	Dramatic Activity of C3N4/BiPO4 Photocatalyst with Core/Shell Structure Formed by Self-Assembly. <i>Advanced Functional Materials</i> , 2012 , 22, 1518-1524	15.6	743
22	Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4. Energy and Environmental Science, 2011 , 4, 2922	35.4	908
21	Effects of distortion of PO4 tetrahedron on the photocatalytic performances of BiPO4. <i>Catalysis Science and Technology</i> , 2011 , 1, 1399	5.5	127
20	Photocatalytic activity and photoelectric performance enhancement for ZnWO4 by fluorine substitution. <i>Journal of Molecular Catalysis A</i> , 2011 , 348, 100-105		49
19	Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. <i>Applied Catalysis B: Environmental</i> , 2011 , 101, 382-387	21.8	950
18	Significant enhancement of the visible photocatalytic degradation performances of EBi2MoO6 nanoplate by graphene hybridization. <i>Journal of Molecular Catalysis A</i> , 2011 , 340, 77-82		103
17	Enhancement of photoelectric catalytic activity of TiO2 film via Polyaniline hybridization. <i>Journal of Solid State Chemistry</i> , 2011 , 184, 1433-1438	3.3	46
16	Significant Visible Photoactivity and Antiphotocorrosion Performance of CdS Photocatalysts after Monolayer Polyaniline Hybridization. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 5822-5826	3.8	234
15	New type of BiPO(4) oxy-acid salt photocatalyst with high photocatalytic activity on degradation of dye. <i>Environmental Science & amp; Technology, 2010</i> , 44, 5570-4	10.3	487
14	Surface hybridization effect of C60 molecules on TiO2 and enhancement of the photocatalytic activity. <i>Journal of Molecular Catalysis A</i> , 2010 , 331, 7-14		58
13	Controllable synthesis of Bi2MoO6 and effect of morphology and variation in local structure on photocatalytic activities. <i>Applied Catalysis B: Environmental</i> , 2010 , 98, 138-146	21.8	362
12	Significant photocatalytic enhancement in methylene blue degradation of TiO2 photocatalysts via graphene-like carbon in situ hybridization. <i>Applied Catalysis B: Environmental</i> , 2010 , 100, 179-183	21.8	244
11	Photoelectric catalytic degradation of methylene blue by C60-modified TiO2 nanotube array. <i>Applied Catalysis B: Environmental</i> , 2009 , 89, 425-431	21.8	121
10	Photocatalytic Activity Enhancement for Bi2WO6 by Fluorine Substitution. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 19633-19638	3.8	169
9	Photocorrosion Inhibition and Photoactivity Enhancement for Zinc Oxide via Hybridization with Monolayer Polyaniline. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 4605-4611	3.8	361
8	Photocatalytic degradation of RhB by fluorinated Bi2WO6 and distributions of the intermediate products. <i>Environmental Science & Environmental Science</i>	10.3	321
7	Dramatic visible photocatalytic degradation performances due to synergetic effect of TiO2 with PANI. <i>Environmental Science & Technology</i> , 2008 , 42, 3803-7	10.3	455

6	Fluorination of ZnWO4 photocatalyst and influence on the degradation mechanism for 4-chlorophenol. <i>Environmental Science & Environmental & En</i>	10.3	79
5	Photocorrosion inhibition and enhancement of photocatalytic activity for ZnO via hybridization with C60. <i>Environmental Science & Environmental Scienc</i>	10.3	434
4	Enhanced Photocatalytic Activity of ZnWO4 Catalyst via Fluorine Doping. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 11952-11958	3.8	143
3	Synergetic effect of Bi2WO6 photocatalyst with C60 and enhanced photoactivity under visible irradiation. <i>Environmental Science & Environmental Scienc</i>	10.3	306
2	Synthesis of Square Bi2WO6 Nanoplates as High-Activity Visible-Light-Driven Photocatalysts. <i>Chemistry of Materials</i> , 2005 , 17, 3537-3545	9.6	820
1	Graphitic Carbon Nitride for Photoelectrochemical Detection of Environmental Pollutants. <i>ACS ES&T Engineering</i> ,		8