
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2414541/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Silver Nanotube Networks with Ultrahigh Strain Limit as Reliable Flexible Transparent Electrode and Tactile Sensor. Advanced Engineering Materials, 2022, 24, 2100832.	3.5	5
2	Nanoconfinement induced electroluminescence spectrum shift in organic light-emitting diodes. Chemical Physics, 2022, 554, 111417.	1.9	3
3	Nearâ€Infrared to Visible Light Converter by Integrating Graphene Transistor into Perovskite Quantum Dot Light Emitting Diodes. Advanced Materials Technologies, 2022, 7, .	5.8	3
4	Formation mechanism of the pinholes in brown glazed stoneware from Yaozhou kiln. Archaeometry, 2022, 64, 644-654.	1.3	5
5	Dynamic photonic perovskite light-emitting diodes with post-treatment-enhanced crystallization as writable and wipeable inscribers. Nanoscale Advances, 2021, 3, 6659-6668.	4.6	9
6	Recent advances in MXene-based force sensors: a mini-review. RSC Advances, 2021, 11, 19169-19184.	3.6	12
7	Development and current situation of flexible and transparent EM shielding materials. Journal of Materials Science: Materials in Electronics, 2021, 32, 25603-25630.	2.2	20
8	Recent mechanical processing techniques of two-dimensional layered materials: A review. Journal of Science: Advanced Materials and Devices, 2021, 6, 135-152.	3.1	11
9	A color-tunable and high-effective organic light-emitting diode device with forward-inverse structure as intelligent lighting display. Journal of Materials Science: Materials in Electronics, 2021, 32, 22309-22318.	2.2	6
10	Recent progress in multifunctional hydrogel-based supercapacitors. Journal of Science: Advanced Materials and Devices, 2021, 6, 338-350.	3.1	19
11	60Ânm Pixel-size pressure piezo-memory system as ultrahigh-resolution neuromorphic tactile sensor for in-chip computing. Nano Energy, 2021, 87, 106190.	16.0	21
12	Study on the catalyst effect of NaCl on MoS ₂ growth in a chemical vapor deposition process. CrystEngComm, 2021, 23, 5337-5344.	2.6	18
13	A high-performance bionic pressure memory device based on piezo-OLED and piezo-memristor as luminescence-fish neuromorphic tactile system. Nano Energy, 2020, 77, 105120.	16.0	41
14	Silver nanowire networks with preparations and applications: a review. Journal of Materials Science: Materials in Electronics, 2020, 31, 15669-15696.	2.2	54
15	Highâ€Dynamicâ€Range Pressure Mapping Interactions by Dual Piezoâ€Phototronic Transistor with Piezoâ€Nanowire Channels and Piezoâ€OLED Gates. Advanced Functional Materials, 2020, 30, 2004724.	14.9	14
16	Performance of OLED under mechanical strain: a review. Journal of Materials Science: Materials in Electronics, 2020, 31, 20688-20729.	2.2	52
17	Hyaline and stretchable haptic interfaces based on serpentine-shaped silver nanofiber networks. Nano Energy, 2020, 73, 104782.	16.0	37
18	Realization of Nanostroke with a Violet-Light-Emitting Device with High Monochromaticity. ACS Applied Nano Materials, 2019, 2, 4804-4809.	5.0	3

#	Article	IF	CITATIONS
19	High Performance Vertical Resonant Photo-Effect-Transistor with an All-Around OLED-Gate for Ultra-Electromagnetic Stability. ACS Nano, 2019, 13, 8425-8432.	14.6	27
20	Paper-like Foldable Nanowave Circuit with Ultralarge Curvature and Ultrahigh Stability. ACS Applied Materials & Interfaces, 2019, 11, 43368-43375.	8.0	18
21	Atomic Layer Dependence of Shear Modulus in a Two-Dimensional Single-Crystal Organic–Inorganic Hybrid Perovskite. Journal of Physical Chemistry C, 2019, 123, 15251-15257.	3.1	13
22	Size-dependent Young's modulus in ZnO nanowires with strong surface atomic bonds. Nanotechnology, 2018, 29, 125702.	2.6	17
23	High-efficiency piezoelectric micro harvester for collecting low-frequency mechanical energy. Nanotechnology, 2016, 27, 485402.	2.6	6
24	Photoelectric Property Modulation by Nanoconfinement in the Longitude Direction of Short Semiconducting Nanorods. ACS Applied Materials & Interfaces, 2016, 8, 11001-11007.	8.0	11
25	The Experiment and Simulation Method to Calibrate the Shear Modulus of Individual ZnO Nanorod. Journal of Nanoscience and Nanotechnology, 2016, 16, 4040-4043.	0.9	5
26	High output nano-energy cell with piezoelectric nanogenerator and porous supercapacitor dual functions – A technique to provide sustaining power by harvesting intermittent mechanical energy from surroundings. Nano Energy, 2016, 21, 209-216.	16.0	35
27	An Ultrahighâ€Resolution Digital Image Sensor with Pixel Size of 50 nm by Vertical Nanorod Arrays. Advanced Materials, 2015, 27, 4454-4460.	21.0	45
28	Flexible supercapacitors based on carbon nanotube/MnO2 nanotube hybrid porous films for wearable electronic devices. , 2015, , .		0
29	The Smallest Resonator Arrays in Atmosphere by Chip-Size-Grown Nanowires with Tunable <i>Q</i> -factor and Frequency for Subnanometer Thickness Detection. Nano Letters, 2015, 15, 1128-1134.	9.1	21
30	Elastic properties of van der Waals epitaxy grown bismuth telluride 2D nanosheets. Nanoscale, 2015, 7, 11915-11921.	5.6	43
31	Growth and spectroscopic properties of Ti-doped sapphire single-crystal fibers. Optical Materials, 2015, 47, 495-500.	3.6	7
32	Nanowires for Piezoelectric Nanogenerators. RSC Smart Materials, 2014, , 200-276.	0.1	0
33	Selective adsorption of bismuth telluride nanoplatelets through electrostatic attraction. Physical Chemistry Chemical Physics, 2014, 16, 11297-11302.	2.8	7
34	Large‣cale Fabrication of Pseudocapacitive Glass Windows that Combine Electrochromism and Energy Storage. Angewandte Chemie - International Edition, 2014, 53, 11935-11939.	13.8	207
35	Flexible supercapacitors based on carbon nanotube/MnO ₂ nanotube hybrid porous films for wearable electronic devices. Journal of Materials Chemistry A, 2014, 2, 17561-17567.	10.3	132
36	Significant Photoelectric Property Change Caused by Additional Nanoâ€confinement: A Study of Halfâ€Dimensional Nanomaterials. Small, 2014, 10, 5042-5046.	10.0	18

#	Article	IF	CITATIONS
37	Reciprocal alternate deposition strategy using metal oxide/carbon nanotube for positive and negative electrodes of high-performance supercapacitors. Nano Energy, 2014, 10, 108-116.	16.0	60
38	Physical model construction for electrical anisotropy of single crystal zinc oxide micro/nanobelt using finite element method. Applied Physics Letters, 2014, 104, 153109.	3.3	4
39	Shear Modulus Property Characterization of Nanorods. Nano Letters, 2013, 13, 111-115.	9.1	20
40	Controllable growth of laterally aligned zinc oxide nanorod arrays on a selected surface of the silicon substrate by a catalyst-free vapor solid process – a technique for growing nanocircuits. Physical Chemistry Chemical Physics, 2013, 15, 13532.	2.8	23
41	Nonlinear length dependent electrical resistance of a single crystal zinc oxide micro/nanobelt. Physical Chemistry Chemical Physics, 2013, 15, 8222.	2.8	9
42	Role of graphene in great enhancement of photocatalytic activity of ZnO nanoparticle–graphene hybrids. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 47, 279-284.	2.7	43
43	STUDYING THE MECHANISM OF PIEZOELECTRIC NANOGENERATORS. World Scientific Series in Nanoscience and Nanotechnology, 2013, , 557-590.	0.1	0
44	Enhanced wettability performance of ultrathin ZnO nanotubes by coupling morphology and size effects. Nanoscale, 2012, 4, 5755.	5.6	36
45	Polar Charges Induced Electric Hysteresis of ZnO Nano/Microwire for Fast Data Storage. Nano Letters, 2011, 11, 2829-2834.	9.1	102
46	Anisotropic Outputs of a Nanogenerator from Oblique-Aligned ZnO Nanowire Arrays. ACS Nano, 2011, 5, 6707-6713.	14.6	56
47	Study of the Piezoelectric Power Generation of ZnO Nanowire Arrays Grown by Different Methods. Advanced Functional Materials, 2011, 21, 628-633.	14.9	114
48	Contact materials for nanowire devices and nanoelectromechanical switches. MRS Bulletin, 2011, 36, 106-111.	3.5	6
49	Robust optimization of the output voltage of nanogenerators by statistical design of experiments. Nano Research, 2010, 3, 613-619.	10.4	21
50	Electricity Generation based on Oneâ€Đimensional Groupâ€III Nitride Nanomaterials. Advanced Materials, 2010, 22, 2155-2158.	21.0	135
51	Singleâ€InNâ€Nanowire Nanogenerator with Upto 1 V Output Voltage. Advanced Materials, 2010, 22, 4008-4013.	21.0	169
52	GaN Nanowire Arrays for High-Output Nanogenerators. Journal of the American Chemical Society, 2010, 132, 4766-4771.	13.7	284
53	Near UV LEDs Made with in Situ Doped p-n Homojunction ZnO Nanowire Arrays. Nano Letters, 2010, 10, 4387-4393.	9.1	198
54	Growth and replication of ordered ZnO nanowire arrays on general flexible substrates. Journal of Materials Chemistry, 2010, 20, 10606.	6.7	69

#	Article	IF	CITATIONS
55	ZnOâ^'ZnS Heterojunction and ZnS Nanowire Arrays for Electricity Generation. ACS Nano, 2009, 3, 357-362.	14.6	256
56	Controlled Growth of Aligned Polymer Nanowires. Journal of Physical Chemistry C, 2009, 113, 16571-16574.	3.1	100
57	Single-Crystal Mesoporous ZnO Thin Films Composed of Nanowalls. Journal of Physical Chemistry C, 2009, 113, 1791-1794.	3.1	65
58	Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators. Journal of Materials Chemistry, 2009, 19, 9260.	6.7	181
59	Quantifying the Traction Force of a Single Cell by Aligned Silicon Nanowire Array. Nano Letters, 2009, 9, 3575-3580.	9.1	115
60	Piezoelectric Nanogenerator Using p-Type ZnO Nanowire Arrays. Nano Letters, 2009, 9, 1223-1227.	9.1	390
61	Piezoelectric Potential Gated Field-Effect Transistor Based on a Free-Standing ZnO Wire. Nano Letters, 2009, 9, 3435-3439.	9.1	132
62	Alternating the Output of a CdS Nanowire Nanogenerator by a Whiteâ€Lightâ€Stimulated Optoelectronic Effect. Advanced Materials, 2008, 20, 3127-3130.	21.0	207
63	Piezoelectric Nanogenerators for Self-Powered Nanodevices. IEEE Pervasive Computing, 2008, 7, 49-55.	1.3	72
64	Carrier Density and Schottky Barrier on the Performance of DC Nanogenerator. Nano Letters, 2008, 8, 328-332.	9.1	142
65	Piezoelectric Potential Output from ZnO Nanowire Functionalized with p-Type Oligomer. Nano Letters, 2008, 8, 203-207.	9.1	73
66	Piezoelectric nanogenerator using CdS nanowires. Applied Physics Letters, 2008, 92, .	3.3	248
67	Mechanical and magnetic properties of Ni-doped metallic TaSi2nanowires. Nanotechnology, 2007, 18, 145604.	2.6	8
68	Integrated Nanogenerators in Biofluid. Nano Letters, 2007, 7, 2475-2479.	9.1	155
69	Direct-Current Nanogenerator Driven by Ultrasonic Waves. Science, 2007, 316, 102-105.	12.6	2,065
70	Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices. Journal of Materials Chemistry, 2007, 17, 711.	6.7	261
71	Vertically Aligned Zn2SiO4 Nanotube/ZnO Nanowire Heterojunction Arrays. Small, 2007, 3, 622-626.	10.0	78
72	Piezoelectric and Semiconducting Coupled Power Generating Process of a Single ZnO Belt/Wire. A Technology for Harvesting Electricity from the Environment. Nano Letters, 2006, 6, 1656-1662.	9.1	384

#	Article	IF	CITATIONS
73	Piezoelectric Field Effect Transistor and Nanoforce Sensor Based on a Single ZnO Nanowire. Nano Letters, 2006, 6, 2768-2772.	9.1	983
74	Density-Controlled Growth of Aligned ZnO Nanowires Sharing a Common Contact:  A Simple, Low-Cost, and Mask-Free Technique for Large-Scale Applications. Journal of Physical Chemistry B, 2006, 110, 7720-7724.	2.6	120
75	Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science, 2006, 312, 242-246.	12.6	6,691
76	Single-crystal nanocastles of ZnO. Chemical Physics Letters, 2006, 424, 86-90.	2.6	81
77	Elastic Property of Vertically Aligned Nanowires. Nano Letters, 2005, 5, 1954-1958.	9.1	280
78	Growth of Uniformly Aligned ZnO Nanowire Heterojunction Arrays on GaN, AlN, and Al0.5Ga0.5N Substrates. Journal of the American Chemical Society, 2005, 127, 7920-7923.	13.7	244
79	Systematic Study on Experimental Conditions for Large-Scale Growth of Aligned ZnO Nanwires on Nitrides. Journal of Physical Chemistry B, 2005, 109, 9869-9872.	2.6	124