

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2414410/publications.pdf Version: 2024-02-01

DALL

#	Article	IF	CITATIONS
1	Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity. Scientific Reports, 2014, 4, 6968.	1.6	802
2	Pressure-induced decomposition of solid hydrogen sulfide. Physical Review B, 2015, 91, .	1.1	255
3	Lowest enthalpy polymorph of cold-compressed graphite phase. Physical Chemistry Chemical Physics, 2012, 14, 4347.	1.3	80
4	Alkaline-earth metal (Mg) polynitrides at high pressure as possible high-energy materials. Physical Chemistry Chemical Physics, 2017, 19, 9246-9252.	1.3	77
5	A Novel Polymerization of Nitrogen in Beryllium Tetranitride at High Pressure. Journal of Physical Chemistry C, 2017, 121, 9766-9772.	1.5	67
6	Nitrogen concentration driving the hardness of rhenium nitrides. Scientific Reports, 2014, 4, 4797.	1.6	61
7	Divergent synthesis routes and superconductivity of ternary hydride <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MgSiH</mml:mi><mml:mn>6< high pressure. Physical Review B, 2017, 96, .</mml:mn></mml:msub></mml:math 	/mml :n an> </td <td>mmsmsub></td>	mm s msub>
8	Mechanical and metallic properties of tantalum nitrides from first-principles calculations. RSC Advances, 2014, 4, 10133.	1.7	55
9	Cubic C ₉₆ : a novel carbon allotrope with a porous nanocube network. Journal of Materials Chemistry A, 2015, 3, 10448-10452.	5.2	47
10	Cubic gauche-CN: A superhard metallic compound predicted via first-principles calculations. Journal of Chemical Physics, 2010, 133, 044512.	1.2	40
11	Prediction of superconducting ternary hydride MgGeH ₆ : from divergent high-pressure formation routes. Physical Chemistry Chemical Physics, 2017, 19, 27406-27412.	1.3	40
12	Ternary superconducting cophosphorus hydrides stabilized via lithium. Npj Computational Materials, 2019, 5, .	3.5	38
13	Pressure-Induced Structures and Properties in Indium Hydrides. Inorganic Chemistry, 2015, 54, 9924-9928.	1.9	34
14	Bonding Properties of Aluminum Nitride at High Pressure. Inorganic Chemistry, 2017, 56, 7494-7500.	1.9	34
15	High pressure structures and superconductivity of AlH ₃ (H ₂) predicted by first principles. RSC Advances, 2015, 5, 5096-5101.	1.7	33
16	Unique Phase Diagram and Superconductivity of Calcium Hydrides at High Pressures. Inorganic Chemistry, 2019, 58, 2558-2564.	1.9	33
17	Large Volume Collapse during Pressure-Induced Phase Transition in Lithium Amide. Journal of Physical Chemistry C, 2012, 116, 9744-9749.	1.5	32
18	High-temperature superconductivity in ternary clathrate YCaH ₁₂ under high pressures. Journal of Physics Condensed Matter, 2019, 31, 245404.	0.7	31

#	Article	IF	CITATIONS
19	Moderate Pressure Stabilized Pentazolate Cyclo-N ₅ [–] Anion in Zn(N ₅) ₂ Salt. Inorganic Chemistry, 2020, 59, 8002-8012.	1.9	31
20	Stability of Sulfur Nitrides: A First-Principles Study. Journal of Physical Chemistry C, 2017, 121, 1515-1520.	1.5	30
21	Modulated T carbon-like carbon allotropes: an ab initio study. RSC Advances, 2014, 4, 17364.	1.7	29
22	Structures and Properties of Osmium Hydrides under Pressure from First Principle Calculation. Journal of Physical Chemistry C, 2015, 119, 15905-15911.	1.5	29
23	Pressure-induced superconducting ternary hydride H3SXe: A theoretical investigation. Frontiers of Physics, 2018, 13, 1.	2.4	29
24	Ultrahard boron-rich tantalum boride: Monoclinic TaB 4. Journal of Alloys and Compounds, 2014, 617, 660-664.	2.8	28
25	Miscibility and ordered structures of MgO-ZnO alloys under high pressure. Scientific Reports, 2014, 4, 5759.	1.6	26
26	First-principles study on the structural and electronic properties of metallic HfH2 under pressure. Scientific Reports, 2015, 5, 11381.	1.6	26
27	Stability and properties of the Ru–H system at high pressure. Physical Chemistry Chemical Physics, 2016, 18, 1516-1520.	1.3	26
28	High-temperature Superconductivity in compressed Solid Silane. Scientific Reports, 2015, 5, 8845.	1.6	25
29	Pressure-stabilized polymerization of nitrogen in alkaline-earth-metal strontium nitrides. Physical Chemistry Chemical Physics, 2020, 22, 5242-5248. Proposed Superconducting Electride <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>1.3</td><td>25</td></mml:math>	1.3	25
30	display="inline"> <mml:mrow><mml:mrow><mml:mi>Li</mml:mi></mml:mrow><mml:mi>Li</mml:mi></mml:mrow> <mi mathvariant="normal">C by <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>s</mml:mi>><mml:mi>p</mml:mi></mml:mrow></mml:math </mi 	nl:mn>62.9	nml:mn>25
31	-Hybridized Cage States at Moderate Pressures. Physical Review Letters, 2021, 127, 157002. Predicted structures and superconductivity of hypothetical Mg-CH4compounds under high pressures. Materials Research Express, 2015, 2, 046001.	0.8	24
32	Formation of twelve-fold iodine coordination at high pressure. Nature Communications, 2022, 13, 412.	5.8	23
33	High-Pressure Formation of Cobalt Polyhydrides: A First-Principle Study. Inorganic Chemistry, 2018, 57, 181-186.	1.9	22
34	Environment-dependent edge reconstruction of transition metal dichalcogenides: a global search. Materials Today Advances, 2020, 8, 100079.	2.5	21
35	Predicted Formation of H ₃ ⁺ in Solid Halogen Polyhydrides at High Pressures. Journal of Physical Chemistry A, 2015, 119, 11059-11065.	1.1	19
36	Ground state structures of tantalum tetraboride and triboride: an ab initio study. Physical Chemistry Chemical Physics, 2016, 18, 18074-18080.	1.3	19

#	Article	IF	CITATIONS
37	Metallic and anti-metallic properties of strongly covalently bonded energetic AlN5 nitrides. Physical Chemistry Chemical Physics, 2019, 21, 12029-12035.	1.3	19
38	High-pressure close-packed structure of boron. RSC Advances, 2014, 4, 203-207.	1.7	18
39	Polymerization of Nitrogen in Ammonium Azide at High Pressures. Journal of Physical Chemistry C, 2015, 119, 25268-25272.	1.5	17
40	Nitrogen-rich GaN5 and GaN6 as high energy density materials with modest synthesis condition. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 125859.	0.9	17
41	Investigation of stable germane structures under high-pressure. Physical Chemistry Chemical Physics, 2015, 17, 27630-27635.	1.3	16
42	High-Pressure Bonding Mechanism of Selenium Nitrides. Inorganic Chemistry, 2019, 58, 2397-2402.	1.9	16
43	Local Carbon Concentration Determines the Graphene Edge Structure. Journal of Physical Chemistry Letters, 2020, 11, 3451-3457.	2.1	16
44	Prediction of stoichiometric PoHn compounds: crystal structures and properties. RSC Advances, 2015, 5, 103445-103450.	1.7	15
45	Enhancement of Tc in the atomic phase of iodine-doped hydrogen at high pressures. Physical Chemistry Chemical Physics, 2015, 17, 32335-32340.	1.3	15
46	Synthesis and characterization of a strong ferromagnetic and high hardness intermetallic compound Fe ₂ 8. Physical Chemistry Chemical Physics, 2020, 22, 27425-27432.	1.3	15
47	Two-dimensional C ₅₆₇₈ : a promising carbon-based high-performance lithium-ion battery anode. Materials Advances, 2021, 2, 398-402.	2.6	15
48	Edge reconstructions of black phosphorene: a global search. Nanoscale, 2021, 13, 4085-4091.	2.8	15
49	Structural, mechanical and electronic properties of Rh2B and RhB2: first-principles calculations. Scientific Reports, 2015, 5, 10500.	1.6	14
50	Strong covalent boron bonding induced extreme hardness of VB3. Journal of Alloys and Compounds, 2016, 688, 1101-1107.	2.8	14
51	Structural phase transition and bonding properties of high-pressure polymeric CaN3. RSC Advances, 2018, 8, 4314-4320.	1.7	14
52	Formation mechanism of insensitive tellurium hexanitride with armchair-like cyclo-N6 anions. Communications Chemistry, 2020, 3, .	2.0	14
53	Ab initio investigation of CaO-ZnO alloys under high pressure. Scientific Reports, 2015, 5, 11003.	1.6	13
54	Ab initio structure determination of n-diamond. Scientific Reports, 2015, 5, 13447.	1.6	13

#	Article	IF	CITATIONS
55	Ab initio study of germanium-hydride compounds under high pressure. RSC Advances, 2015, 5, 19432-19438.	1.7	13
56	Carbon and Oxygen Coordinating Atoms Adjust Transition Metal Single-Atom Catalysts Based On Boron Nitride Monolayers for Highly Efficient CO ₂ Electroreduction. ACS Applied Materials & Interfaces, 2021, 13, 18934-18943.	4.0	13
57	Stability of hydrogen-terminated graphene edges. Physical Chemistry Chemical Physics, 2021, 23, 13261-13266.	1.3	11
58	Unraveling electrochemical CO reduction of the single-atom transition metals supported on N-doped phosphorene. Applied Surface Science, 2021, 545, 148953.	3.1	11
59	The crystal structure of IrB ₂ : a first-principle calculation. RSC Advances, 2014, 4, 63442-63446.	1.7	10
60	Pressure-induced phase transition of SnH ₄ : a new layered structure. RSC Advances, 2016, 6, 10456-10461.	1.7	10
61	Role of TM–TM Connection Induced by Opposite d-Electron States on the Hardness of Transition-Metal (TM = Cr, W) Mononitrides. Inorganic Chemistry, 2019, 58, 15573-15579.	1.9	10
62	Anisotropic Angstrom-Wide Conductive Channels in Black Phosphorus by Top-down Cu Intercalation. Nano Letters, 2021, 21, 6336-6342.	4.5	10
63	Correlations of Ionic Migration and Deep-Level Traps Leads to Surface Defect Formation in Perovskite Solar Cells. Journal of Physical Chemistry C, 2021, 125, 19551-19559.	1.5	10
64	A novel stable hydrogen-rich SnH8 under high pressure. RSC Advances, 2015, 5, 107637-107641.	1.7	9
65	Ab initio study of native point defects in ZnO under pressure. Solid State Communications, 2015, 201, 130-134.	0.9	9
66	Revealing unusual rigid diamond net analogues in superhard titanium carbides. RSC Advances, 2018, 8, 14479-14487.	1.7	9
67	Ab initio studies of copper hydrides under high pressure. Frontiers of Physics, 2019, 14, 1.	2.4	9
68	Crystal structures and properties of the CH4H2compound under high pressure. RSC Advances, 2014, 4, 37569.	1.7	7
69	Structural and Electrical Properties of Be _x Zn _{1–x} O Alloys under High Pressure. Chinese Physics Letters, 2021, 38, 026101.	1.3	7
70	High-pressure phase transition of MH3 (M: Er, Ho). Journal of Chemical Physics, 2014, 141, 054703.	1.2	6
71	First-principles study of ternary Li-Al-Te compounds under high pressure. Solid State Communications, 2018, 270, 58-64.	0.9	6
72	Structural and electrical properties of Ga–Te systems under high pressure. Chinese Physics B, 2019, 28, 056104.	0.7	6

#	Article	IF	CITATIONS
73	First principle studies of ZnO1-xSx alloys under high pressure. Journal of Alloys and Compounds, 2019, 788, 905-911.	2.8	6
74	Structure and superconductivity of protactinium hydrides under high pressure. Journal of Physics Condensed Matter, 2019, 31, 315403.	0.7	6
75	Pressure-Induced Amorphization and Recrystallization of SnI ₂ . Journal of Physical Chemistry C, 2015, 119, 19312-19317.	1.5	5
76	Pressure-induced structural transformation of CaC2. Journal of Chemical Physics, 2016, 144, 194506.	1.2	5
77	Ab initio molecular dynamic study of solid-state transitions of ammonium nitrate. Scientific Reports, 2016, 6, 18918.	1.6	5
78	Emergent property of high hardness for C-rich ruthenium carbides: partial covalent Ru–Ru bonds. Physical Chemistry Chemical Physics, 2018, 20, 6108-6115.	1.3	5
79	High pressure superconducting phase of BI3: an ab initio study. RSC Advances, 2014, 4, 32068-32074.	1.7	4
80	Insights into Antibonding Induced Energy Density Enhancement and Exotic Electronic Properties for Germanium Nitrides at Modest Pressures. Inorganic Chemistry, 2018, 57, 10416-10423.	1.9	4
81	Defects of monolayer Pbl ₂ : a computational study. Physical Chemistry Chemical Physics, 2021, 23, 20553-20559.	1.3	4
82	Ab initio studies on ammonium iodine under high pressure. Chinese Physics B, 2020, 29, 053104.	0.7	4
83	H _d -Graphene: A Hexagon-Deficient Carbon-Based Anode for Metal-Ion Batteries with High Charge/Discharge Rates. ACS Applied Electronic Materials, 2021, 3, 5147-5154.	2.0	4
84	Crystal structures and properties of nitrogen oxides under high pressure. RSC Advances, 2015, 5, 103373-103379.	1.7	3
85	Ab initio study on the stability of N-doped ZnO under high pressure. RSC Advances, 2015, 5, 16774-16779.	1.7	3
86	Ground State Structures of Boron-Rich Rhodium Boride: An Ab Initio Study. Chinese Physics Letters, 2018, 35, 016401.	1.3	3
87	High-pressure structures of helium and carbon dioxide from first-principles calculations. Solid State Communications, 2018, 283, 9-13.	0.9	3
88	Structural, Electronic, and Optical Properties of ZnO _{1 – <i>x</i>} Te _{<i>x</i>} Alloys. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900155.	1.2	3
89	High-pressure formation of antimony nitrides: a first-principles study. RSC Advances, 2020, 10, 2448-2452.	1.7	3
90	Two-dimensional few-layered Janus diamond nanofilms with boron-terminated surfaces: First-principles calculation. Thin Solid Films, 2021, 722, 138570.	0.8	3

#	Article	IF	CITATIONS
91	Structural diversity and hydrogen storage properties in the system K–Si–H. Physical Chemistry Chemical Physics, 2022, 24, 13033-13039.	1.3	3
92	Revealing the Role of d-Orbital Occupation in Edge Reconstruction of 1T-Transition-Metal Dichalcogenides. Journal of Physical Chemistry C, 2022, 126, 11389-11399.	1.5	3
93	A theoretical investigation on phase transition and dissociation of ammonium bromide under high pressure. Science Bulletin, 2014, 59, 5272-5277.	1.7	2
94	The hardness mechanism and bonding properties of CrN2: A first principle study. Computational Materials Science, 2019, 158, 282-288.	1.4	2
95	Stable structures and superconductivity of an At–H system at high pressure. Physical Chemistry Chemical Physics, 2018, 20, 24783-24789.	1.3	1
96	Strain-engineering enables reversible semiconductor–metal transition of skutterudite IrAs3. Inorganic Chemistry Frontiers, 2020, 7, 1108-1114.	3.0	1
97	First-principle studies on the Li–Te system. Materials Research Express, 2017, 4, 015701.	0.8	0
98	High pressure structural stability of the Na-Te system. AIP Advances, 2018, 8, 035123.	0.6	0
99	Strain engineering induced indirect-direct band gap transition of difluorphosphorane. Solid State Communications, 2020, 311, 113873.	0.9	0