
Junye Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/241415/publications.pdf Version: 2024-02-01

LUNYE CHENC

#	Article	lF	CITATIONS
1	An Aqueous Zn″on Hybrid Supercapacitor with High Energy Density and Ultrastability up to 80 000 Cycles. Advanced Energy Materials, 2019, 9, 1902915.	19.5	244
2	Lithiophilic Cu uOâ€Ni Hybrid Structure: Advanced Current Collectors Toward Stable Lithium Metal Anodes. Advanced Materials, 2018, 30, 1705830.	21.0	217
3	Emerging Materials and Designs for Low―and Multiâ€Band Electromagnetic Wave Absorbers: The Search for Dielectric and Magnetic Synergy?. Advanced Functional Materials, 2022, 32, .	14.9	185
4	Lightweight and High-Performance Microwave Absorber Based on 2D WS2–RGO Heterostructures. Nano-Micro Letters, 2019, 11, 38.	27.0	176
5	Unconventional Nickel Nitride Enriched with Nitrogen Vacancies as a Highâ€Efficiency Electrocatalyst for Hydrogen Evolution. Advanced Science, 2018, 5, 1800406.	11.2	163
6	Recent Advances in Design Strategies and Multifunctionality of Flexible Electromagnetic Interference Shielding Materials. Nano-Micro Letters, 2022, 14, 80.	27.0	159
7	Binder-free hierarchical VS ₂ electrodes for high-performance aqueous Zn ion batteries towards commercial level mass loading. Journal of Materials Chemistry A, 2019, 7, 16330-16338.	10.3	152
8	Initiating VBâ€Group Laminated NbS ₂ Electromagnetic Wave Absorber toward Superior Absorption Bandwidth as Large as 6.48ÂGHz through Phase Engineering Modulation. Advanced Functional Materials, 2022, 32, 2108194.	14.9	147
9	Synergetic dielectric loss and magnetic loss towards superior microwave absorption through hybridization of few-layer WS2 nanosheets with NiO nanoparticles. Science Bulletin, 2020, 65, 138-146.	9.0	139
10	Tailoring Selfâ€Polarization of Bimetallic Organic Frameworks with Multiple Polar Units Toward Highâ€Performance Consecutive Multiâ€Band Electromagnetic Wave Absorption at Gigahertz. Advanced Functional Materials, 2022, 32, .	14.9	135
11	High-performance microwave absorption enabled by Co3O4 modified VB-group laminated VS2 with frequency modulation from S-band to Ku-band. Journal of Materials Science and Technology, 2022, 107, 155-164.	10.7	133
12	Conductive WS2-NS/CNTs hybrids based 3D ultra-thin mesh electromagnetic wave absorbers with excellent absorption performance. Applied Surface Science, 2020, 528, 147052.	6.1	116
13	Editable asymmetric all-solid-state supercapacitors based on high-strength, flexible, and programmable 2D-metal–organic framework/reduced graphene oxide self-assembled papers. Journal of Materials Chemistry A, 2018, 6, 20254-20266.	10.3	110
14	Light-weight and low-cost electromagnetic wave absorbers with high performances based on biomass-derived reduced graphene oxides. Nanotechnology, 2019, 30, 445708.	2.6	104
15	Construction of multiple interfaces and dielectric/magnetic heterostructures in electromagnetic wave absorbers with enhanced absorption performance: A review. Journal of Materiomics, 2021, 7, 1233-1263.	5.7	94
16	Highâ€Performance Supercapacitor Applications of NiOâ€Nanoparticleâ€Decorated Millimeter‣ong Vertically Aligned Carbon Nanotube Arrays via an Effective Supercritical CO ₂ â€Assisted Method. Advanced Functional Materials, 2015, 25, 7381-7391.	14.9	90
17	Highly efficient microwave absorption properties and broadened absorption bandwidth of MoS2-iron oxide hybrids and MoS2-based reduced graphene oxide hybrids with Hetero-structures. Applied Surface Science, 2018, 462, 872-882.	6.1	90
18	Customizing coaxial stacking VS ₂ nanosheets for dual-band microwave absorption with superior performance in the C- and K _u -bands. Journal of Materials Chemistry C, 2020, 8, 5923-5933.	5.5	86

JUNYE CHENG

#	Article	IF	CITATIONS
19	Enhancing electromagnetic wave absorption performance of Co3O4 nanoparticles functionalized MoS2 nanosheets. Journal of Alloys and Compounds, 2020, 829, 154531.	5.5	85
20	Two-Dimensional Black Phosphorus Nanomaterials: Emerging Advances in Electrochemical Energy Storage Science. Nano-Micro Letters, 2020, 12, 179.	27.0	82
21	High-performance microwave absorption materials based on MoS 2 -graphene isomorphic hetero-structures. Journal of Alloys and Compounds, 2018, 758, 62-71.	5.5	77
22	Biomass-derived carbon-coated WS2 core-shell nanostructures with excellent electromagnetic absorption in C-band. Applied Surface Science, 2022, 577, 151939.	6.1	75
23	<i>In situ</i> nitridated porous nanosheet networked Co ₃ O ₄ –Co ₄ N heteronanostructures supported on hydrophilic carbon cloth for highly efficient electrochemical hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 775-782.	10.3	63
24	Construction of low-frequency and high-efficiency electromagnetic wave absorber enabled by texturing rod-like TiO2 on few-layer of WS2 nanosheets. Applied Surface Science, 2021, 548, 149158.	6.1	63
25	Bismuth nanorod networks confined in a robust carbon matrix as long-cycling and high-rate potassium-ion battery anodes. Journal of Materials Chemistry A, 2020, 8, 8440-8446.	10.3	52
26	Nitrogenâ€Doped Grapheneâ€Encapsulated Nickel–Copper Alloy Nanoflower for Highly Efficient Electrochemical Hydrogen Evolution Reaction. Small, 2019, 15, e1901545.	10.0	50
27	Engineering flexible and green electromagnetic interference shielding materials with high performance through modulating WS2 nanosheets on carbon fibers. Journal of Materiomics, 2022, 8, 327-334.	5.7	50
28	Self-assembly of 2D-metal–organic framework/graphene oxide membranes as highly efficient adsorbents for the removal of Cs ⁺ from aqueous solutions. RSC Advances, 2018, 8, 40813-40822.	3.6	48
29	Enhanced microwave absorption performance of polyaniline-coated CNT hybrids by plasma-induced graft polymerization. Applied Physics A: Materials Science and Processing, 2015, 119, 379-386.	2.3	46
30	Magnetic-field-induced dielectric behaviors and magneto-electrical coupling of multiferroic compounds containing cobalt ferrite/barium calcium titanate composite fibers. Journal of Alloys and Compounds, 2018, 740, 1067-1076.	5.5	45
31	Electromagnetic and microwave absorbing properties of magnetite nanoparticles decorated carbon nanotubes/polyaniline multiphase heterostructures. Journal of Materials Science, 2014, 49, 7221-7230.	3.7	41
32	Defect engineering of nanostructured electrocatalysts for enhancing nitrogen reduction. Journal of Materials Chemistry A, 2020, 8, 7457-7473.	10.3	41
33	Effective nondestructive evaluations on UHMWPE/Recycled-PA6 blends using FTIR imaging and dynamic mechanical analysis. Polymer Testing, 2017, 59, 371-376.	4.8	36
34	Nickel-metal-organic framework nanobelt based composite membranes for efficient Sr2+ removal from aqueous solution. Environmental Science and Ecotechnology, 2020, 3, 100035.	13.5	36
35	Confinedly growing and tailoring of Co ₃ O ₄ clusters-WS ₂ nanosheets for highly efficient microwave absorption. Nanotechnology, 2020, 31, 325703.	2.6	28
36	Achieving superior GHz-absorption performance in VB-group laminated VS2 microwave absorber with dielectric and magnetic synergy effects. Advanced Composites and Hybrid Materials, 2022, 5, 2317-2327.	21.1	24

JUNYE CHENG

#	Article	IF	CITATIONS
37	Metal–Organic-Framework-Derived Ball-Flower-like Porous Co3O4/Fe2O3 Heterostructure with Enhanced Visible-Light-Driven Photocatalytic Activity. Nanomaterials, 2022, 12, 904.	4.1	18
38	Low-temperature synthesis of ribbon-like orthorhombic NaNbO ₃ fibers and their photocatalytic activities for H ₂ evolution. RSC Advances, 2015, 5, 33001-33007.	3.6	17
39	Facile synthesis of highly conductive MoS2/graphene nanohybrids with hetero-structures as excellent microwave absorbers. RSC Advances, 2018, 8, 36616-36624.	3.6	15
40	Evolution of 3D nanoporosity and morphology in selectively dealloying ternary Au ₅₅ Cu ₂₅ Si ₂₀ metallic glass ribbon with enhanced alcohol electro-oxidation performance. Nanoscale, 2018, 10, 18846-18856.	5.6	13
41	An electromagnetic wave absorbing material with potential application prospects—WS ₂ nanosheets. Integrated Ferroelectrics, 2019, 200, 108-116.	0.7	11
42	Hydrogen Evolution Reaction: Nitrogenâ€Doped Grapheneâ€Encapsulated Nickel–Copper Alloy Nanoflower for Highly Efficient Electrochemical Hydrogen Evolution Reaction (Small 48/2019). Small, 2019, 15, 1970260.	10.0	11
43	Giant magnetocaloric effect in nanostructured Fe-Co-P amorphous alloys enabled through pulse electrodeposition. Nanotechnology, 2020, 31, 385704.	2.6	11
44	Highly Ordered Mesoporous NiCo2O4 as a High Performance Anode Material for Li-Ion Batteries. Frontiers in Chemistry, 2019, 7, 521.	3.6	10
45	Highly effective photocatalytic performance of {001}-TiO ₂ /MoS ₂ /RGO hybrid heterostructures for the reduction of Rh B. RSC Advances, 2019, 9, 15033-15041.	3.6	10
46	Structural and ferroelectric properties of textured KNN thick films prepared by sol-gel methods. Integrated Ferroelectrics, 2016, 176, 171-178.	0.7	9
47	Morphology and structure of WS2 nanosheets prepared by solvothermal method with surfactants. Integrated Ferroelectrics, 2018, 188, 24-30.	0.7	9
48	The effects of additions of two-dimensional graphitic-C ₃ N ₄ on the negative electro-caloric effects in P(VDF-TrFE) copolymers. RSC Advances, 2019, 9, 15917-15925.	3.6	7
49	Catalyst-Free Synthesis of Hollow-Sphere-Like ZnO and Its Photoluminescence Property. Advances in Materials Science and Engineering, 2014, 2014, 1-6.	1.8	5
50	The Growth Behavior and Mechanism of KNN Nanorods with Sol-gel Route. Integrated Ferroelectrics, 2015, 160, 135-141.	0.7	4
51	Morphology characterization and the phase separation behavior of UHMWPE/recycled-PA6 blends using FTIR imaging and thermomechanical analysis. Advances in Polymer Technology, 2018, 37, 2609-2615.	1.7	1