P Salas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2413745/publications.pdf

Version: 2024-02-01

		109321	182427
136	3,334	35	51
papers	citations	h-index	g-index
139	139	139	3573
all docs	docs citations	times ranked	citing authors
un doco	acco citations	cimico funice	oring authors

#	Article	IF	CITATIONS
1	Controlling the Growth and Luminescence Properties of Well-Faceted ZnO Nanorods. Journal of Physical Chemistry C, 2007, 111, 8489-8495.	3.1	186
2	Strong green upconversion emission in ZrO2:Yb3+–Ho3+ nanocrystals. Applied Physics Letters, 2005, 87, 241912.	3.3	123
3	Luminescence and visible upconversion in nanocrystalline ZrO2:Er3+. Applied Physics Letters, 2003, 83, 4903-4905.	3.3	105
4	Visible light emission under UV and IR excitation of rare earth doped ZrO2 nanophosphor. Optical Materials, 2005, 27, 1320-1325.	3.6	105
5	Luminescent properties and energy transfer in ZrO2:Sm3+ nanocrystals. Journal of Applied Physics, 2003, 94, 3509-3515.	2.5	95
6	Ni/Ce-MCM-41 mesostructured catalysts for simultaneous production of hydrogen and nanocarbon via methane decomposition. International Journal of Hydrogen Energy, 2010, 35, 3509-3521.	7.1	95
7	Efficient photoluminescence of Dy3+ at low concentrations in nanocrystalline ZrO2. Journal of Solid State Chemistry, 2008, 181, 75-80.	2.9	85
8	Hydrogen interactions and catalytic properties of platinum-tin supported on zinc aluminate. Applied Catalysis A: General, 1995, 127, 65-75.	4.3	74
9	Role of Yb3+ and Er3+ concentration on the tunability of green-yellow-red upconversion emission of codoped ZrO2:Yb3+–Er3+ nanocrystals. Journal of Applied Physics, 2010, 108, .	2.5	73
10	Synthesis, characterization and luminescence properties of ZrO2:Yb3+â€"Er3+ nanophosphor. Optical Materials, 2005, 27, 1295-1300.	3.6	69
11	Ultrasensitive SERS Substrate for Label-Free Therapeutic-Drug Monitoring of Paclitaxel and Cyclophosphamide in Blood Serum. Analytical Chemistry, 2019, 91, 2100-2111.	6.5	67
12	Towards translation of surface-enhanced Raman spectroscopy (SERS) to clinical practice: Progress and trends. TrAC - Trends in Analytical Chemistry, 2021, 134, 116122.	11.4	62
13	Low temperature synthesis and structural characterization of nanocrystalline YAG prepared by a modified sol–gel method. Optical Materials, 2005, 27, 1793-1799.	3.6	58
14	Enhanced cooperative absorption and upconversion in Yb3+doped YAG nanophosphors. Optical Materials, 2005, 27, 1305-1310.	3.6	55
15	Synthesis and physicochemical properties of Zr-MCM-41 mesoporous molecular sieves and Pt/H3PW12O40/Zr-MCM-41 catalysts. Journal of Solid State Chemistry, 2007, 180, 2958-2972.	2.9	53
16	High temperature thermoluminescence induced on UV-irradiated tetragonal ZrO2 prepared by sol–gel. Materials Letters, 2000, 45, 241-245.	2.6	52
17	Evidence of non-radiative energy transfer from the host to the active ions in monoclinic ZrO2:Sm3+. Journal Physics D: Applied Physics, 2001, 34, L83-L86.	2.8	51
18	Monoclinic ZrO2 as a broad spectral response thermoluminescence UV dosemeter. Radiation Measurements, 2003, 37, 187-190.	1.4	51

#	Article	IF	CITATIONS
19	Preparation, photo- and thermo-luminescence characterization of Tb3+ and Ce3+ doped nanocrystalline Y3Al5O12 exposed to UV-irradiation. Optical Materials, 2004, 25, 285-293.	3.6	49
20	Oxidative dehydrogenation of n-butane on iron-zinc oxide catalysts. Applied Catalysis A: General, 1992, 92, 29-38.	4.3	48
21	Blue and red emission in wide band gap BaZrO3:Yb3+,Tm3+. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 174, 169-173.	3.5	48
22	One-Step "Green―Synthesis and Stabilization of Au and Ag Nanoparticles Using Ionic Polymers. Chemistry of Materials, 2008, 20, 5146-5153.	6.7	47
23	Color tunability of the upconversion emission in Er–Yb doped the wide band gap nanophosphors ZrO2 and Y2O3. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 174, 177-181.	3.5	47
24	Comparative studies of Zr-based MCM-41 and MCM-48 mesoporous molecular sieves: Synthesis and physicochemical properties. Applied Surface Science, 2006, 253, 2443-2451.	6.1	45
25	Effect of the Si/Zr molar ratio on the synthesis of Zr-based mesoporous molecular sieves. Materials Chemistry and Physics, 2009, 114, 139-144.	4.0	44
26	Surfactant effect on the upconversion emission and decay time of ZrO2:Yb-Er nanocrystals. Journal of Luminescence, 2009, 129, 449-455.	3.1	43
27	Refractive index measurement of pure and Er3+-doped ZrO2–SiO2 sol–gel film by using the Brewster angle technique. Optical Materials, 2002, 19, 275-281.	3.6	41
28	Concentration enhanced red upconversion in nanocrystalline ZrO2Â:ÂEr under IR excitation. Journal Physics D: Applied Physics, 2004, 37, 2489-2495.	2.8	41
29	Strong broad green UV-excited photoluminescence in rare earth (RE=Ce, Eu, Dy, Er, Yb) doped barium zirconate. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 1388-1392.	3.5	40
30	Brilliant blue, green and orange–red emission band on Tm3+-, Tb3+- and Eu3+-doped ZrO2nanocrystals. Journal Physics D: Applied Physics, 2010, 43, 465105.	2.8	38
31	Metal-support effects and catalytic properties of platinum supported on zinc aluminate. Applied Catalysis A: General, 1992, 90, 25-34.	4.3	37
32	Luminescence and thermoluminescence induced by Gamma and UV-irradiation in pure and rare earth doped zirconium oxide. Optical Materials, 2002, 19, 195-199.	3.6	37
33	Nanocrystalline tetragonal zirconium oxide stabilization at low temperatures by using rare earth ions: Sm3+ and Tb3+. Optical Materials, 2002, 20, 263-271.	3.6	37
34	Title is missing!. Catalysis Letters, 1999, 60, 21-25.	2.6	36
35	Thermoluminescence characterization of Tb3+ and Ce3+ doped nanocrystalline Y3Al5O12 exposed to X- and \hat{l}^2 -ray irradiation. Optical Materials, 2004, 27, 293-299.	3.6	36
36	Structural study, photoluminescence, and photocatalytic activity of semiconducting BaZrO3:Bi nanocrystals. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 1382-1387.	3.5	35

#	Article	IF	Citations
37	Thermoluminescence and infrared stimulated luminescence in long persistent monoclinic SrAl2O4:Eu2+,Dy3+ and SrAl2O4:Eu2+,Nd3+ phosphors. Optical Materials, 2019, 92, 46-52.	3.6	33
38	Persistent luminescence nanothermometers. Applied Physics Letters, 2017, 111, .	3.3	32
39	Green and red upconverted emission of hydrothermal synthesized Y2O3: Er3+–Yb3+ nanophosphors using different solvent ratio conditions. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 174, 164-168.	3 . 5	29
40	Strong blue and white photoluminescence emission of BaZrO3 undoped and lanthanide doped phosphor for light emitting diodes application. Journal of Solid State Chemistry, 2012, 196, 243-248.	2.9	29
41	Effect of calcium addition on zinc aluminate spinel. Catalysis Letters, 1992, 15, 179-188.	2.6	28
42	Blue-green upconversion emission in ZrO2:Yb3+ nanocrystals. Journal of Applied Physics, 2008, 104, .	2.5	27
43	Hydroxyapatite-Functionalized Graphene: A New Hybrid Nanomaterial. Journal of Nanomaterials, 2014, 2014, 1-7.	2.7	26
44	Nanobodies as efficient drug-carriers: Progress and trends in chemotherapy. Journal of Controlled Release, 2021, 334, 389-412.	9.9	26
45	Red, green, blue and white light upconversion emission in Yb3+/Tm3+/Ho3+co-doped tellurite glasses. Journal Physics D: Applied Physics, 2011, 44, 455308.	2.8	25
46	Nanomolar detection of glucose using SERS substrates fabricated with albumin coated gold nanoparticles. Nanoscale, 2016, 8, 11862-11869.	5 . 6	25
47	Effect of the CTAB concentration on the upconversion emission of ZrO2:Er3+ nanocrystals. Optical Materials, 2006, 29, 31-37.	3.6	24
48	Comparison Between Isothermal Cold and Melt Crystallization of Polylactide/Clay Nanocomposites. Journal of Nanoscience and Nanotechnology, 2008, 8, 1658-1668.	0.9	24
49	Effect of TEA on the blue emission of ZnO quantum dots with high quantum yield. Optical Materials Express, 2015, 5, 1109.	3.0	24
50	Stealth modified bottom up SERS substrates for label-free therapeutic drug monitoring of doxorubicin in blood serum. Talanta, 2020, 218, 121138.	5 . 5	24
51	Thermoluminescence and optically stimulated luminescence properties of nanocrystalline Er3+and Yb3+doped Y3Al5O12exposed to \hat{l}^2 -rays. Journal Physics D: Applied Physics, 2005, 38, 3854-3859.	2.8	23
52	Controlling trapping states on selective theranostic core@shell (NaYF ₄ :Yb,Tm@TiO ₂ -ZrO ₂) nanocomplexes for enhanced NIR-activated photodynamic therapy against breast cancer cells. Dalton Transactions, 2019, 48, 9962-9973.	3.3	23
53	Thermoluminescence characterization of nanocrystalline and single Y3Al5O12 crystal exposed to \hat{l}^2 -irradiation for dosimetric applications. Optical Materials, 2005, 27, 1240-1244.	3 . 6	22
54	Enhancing the Up-Conversion Emission of ZrO ₂ :Er ³⁺ Nanocrystals Prepared by a Micelle Process. Journal of Physical Chemistry C, 2007, 111, 17110-17117.	3.1	22

#	Article	IF	CITATIONS
55	Thermoluminescence properties of undoped and Tb3+ and Ce3+ doped YAG nanophosphor under UV-, X- and β-ray irradiation. Nuclear Instruments & Methods in Physics Research B, 2007, 255, 357-364.	1.4	22
56	Structural and photoluminescence study of Er–Yb codoped nanocrystalline ZrO2–B2O3 solid solution. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 1423-1429.	3 . 5	22
57	Nanoparticle-enhanced thermoluminescence in silica gels. Nanotechnology, 2003, 14, L19-L22.	2.6	21
58	Visible upconversion emission and non-radiative direct Yb3+ to Er3+ energy transfer processes in nanocrystalline ZrO2:Yb3+,Er3+. Optics and Lasers in Engineering, 2011, 49, 703-708.	3.8	20
59	Photoluminescent and photocatalytic properties of bismuth doped strontium aluminates blended with titanium dioxide. Materials Science in Semiconductor Processing, 2015, 37, 105-111.	4.0	20
60	Effect of tin content on silica mixed oxides: Sulfated and unsulfated catalysts. Journal of Molecular Catalysis A, 1997, 123, 149-154.	4.8	19
61	Ceâ^'Al-Pillared Clays:Â Synthesis, Characterization, and Catalytic Performance. Industrial & Description	3.7	19
62	Solvent and surfactant effect on the self-assembly and luminescence properties of ZrO2:Eu3+nanoparticles. Applied Physics B: Lasers and Optics, 2011, 102, 641-649.	2.2	17
63	White light generation from YAG/YAM:Ce3+, Pr3+, Cr3+ nanophosphors mixed with a blue dye under 340nm excitation. Journal of Luminescence, 2014, 154, 185-192.	3.1	17
64	Thermally and optically stimulated luminescence in long persistent orthorhombic strontium aluminates doped with Eu, Dy and Eu, Nd. Optical Materials, 2017, 67, 91-97.	3 . 6	17
65	Ligand-targeted Theranostic Liposomes combining methylene blue attached upconversion nanoparticles for NIR activated bioimaging and photodynamic therapy against HER-2 positive breast cancer. Journal of Luminescence, 2021, 237, 118143.	3.1	17
66	Annealing effect on the luminescence properties of BaZrO3:Yb3+ microcrystals. Journal of Applied Physics, 2008, 104, .	2.5	16
67	Oxidative dehydrogenation of n-butane on zinc-chromium ferrite catalysts. Journal of Molecular Catalysis, 1994, 92, 325-332.	1.2	15
68	Strong Visible Cooperative Up-Conversion Emission in ZrO ₂ :Yb ³⁺ Nanocrystals. Journal of Nanoscience and Nanotechnology, 2005, 5, 1480-1486.	0.9	15
69	Photoluminescence characterization of porous YAG: Yb3+–Er3+ nanoparticles. Journal of Luminescence, 2014, 153, 21-28.	3.1	15
70	UV photochemical synthesis of heparin-coated gold nanoparticles. Gold Bulletin, 2014, 47, 21-31.	2.4	14
71	Comparison as Effective Photocatalyst or Adsorbent of Carbon Materials of One, Two, and Three Dimensions for the Removal of Reactive Red 2 in Water. Environmental Engineering Science, 2015, 32, 872-880.	1.6	14
72	Improving pure red upconversion emission of Co-doped Y2O3:Yb3+–Er3+ nanocrystals with a combination of sodium sulfide and surfactant Pluronic-F127. Journal of Luminescence, 2014, 145, 292-298.	3.1	13

#	Article	IF	CITATIONS
73	One- and two-dimensional carbon nanomaterials as adsorbents of cationic and anionic dyes from aqueous solutions. Carbon Letters, 2019, 29, 155-166.	5.9	13
74	A New Blue, Green and Red Upconversion Emission Nanophosphor: BaZrO ₃ :Er,Yb. Journal of Nanoscience and Nanotechnology, 2008, 8, 6425-6430.	0.9	13
75	Tunable white light from photo- and electroluminescence of ZnO nanoparticles. Journal Physics D: Applied Physics, 2014, 47, 015104.	2.8	12
76	Oxidative dehydrogenation of 1 -butene to butadiene on ?-Fe2O3/ZnAl2O4 and ZnFexAl2-xO4 catalysts. Catalysis Letters, 1995, 30, 279-288.	2.6	11
77	Synthesis and photoluminescence of Y2O3:Yb3+–Er3+ nanofibers. Microelectronics Journal, 2008, 39, 551-555.	2.0	11
78	Structural and Chemical Characterization of Yb ₂ O ₃ -ZrO ₂ System by HAADF-STEM and HRTEM. Microscopy and Microanalysis, 2009, 15, 46-53.	0.4	11
79	Green synthesis of nanosilverâ€decorated graphene oxide sheets. IET Nanobiotechnology, 2016, 10, 301-307.	3.8	11
80	Tuning from green to red the upconversion emission of Y2O3:Er3+–Yb3+ nanophosphors. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	11
81	The effect of sulfate ion on the synthesis and stability of mesoporous materials. Studies in Surface Science and Catalysis, 2002, , 1039-1046.	1.5	10
82	Nanoparticle thin films of nanocrystalline YAG by pulsed laser deposition. Optical Materials, 2005, 27, 1217-1220.	3.6	10
83	Thermal stability and surface acidity of mesoporous silica doubly doped by incorporation of sulfate and zirconium ions. Applied Surface Science, 2005, 252, 1123-1131.	6.1	10
84	Synthesis and Characterization of Amorphous SiO ₂ Nanowires Derived from a Polymeric Precursor. Journal of Nanoscience and Nanotechnology, 2008, 8, 997-1002.	0.9	10
85	Biomolecule Assisted Hydrothermal Synthesis of Chainlike Network of Silver Sulfide Nanostructures. Journal of Nanoscience and Nanotechnology, 2008, 8, 986-992.	0.9	10
86	Switching green to red emission in tridoped ZrO2:Yb3+–Er3+–Bi3+ nanocrystals. Optical Materials, 2015, 48, 92-96.	3.6	10
87	Effect of thermal treatment on luminescence properties of long persistent CaAl2O4:Eu2+,Dy3+ synthesized by combustion method. Optical Materials, 2020, 101, 109763.	3.6	10
88	Catalysis Letters, 1996, 36, 135-138.	2.6	9
89	Optically stimulated luminescence properties of nanocrystalline Y3Al5O12 phosphor exposed to \hat{l}^2 radiation. Optical Materials, 2005, 27, 1245-1249.	3.6	9
90	Thermoluminescent Behavior of ZrO2–CeO2System Exposed to UV and Gamma Radiation. Materials and Manufacturing Processes, 2007, 22, 301-304.	4.7	8

#	Article	IF	Citations
91	A study of n-hexane hydroisomerization catalyzed with the Pt/H3PW12O40/Zr-MCM-41 catalysts. Catalysis Today, 2008, 133-135, 331-338.	4.4	8
92	Green upconverted emission enhancement of ZrO ₂ : Yb ³⁺ –Ho ³⁺ nanocrystals. Journal Physics D: Applied Ph	ys ics ,	8
93	Cooperative Pair Driven Quenching of Yb ³⁺ Emission in Nanocrystalline ZrO ₂ :Yb ³⁺ . Journal of Nano Research, 0, 5, 121-134.	0.8	8
94	Photocatalytic Activity and Optical Properties of Blue Persistent Phosphors under UV and Solar Irradiation. International Journal of Photoenergy, 2016, 2016, 1-8.	2.5	8
95	Wall Rock-Like Y2O3 Nanorods by Hydrothermal Synthesis and their Luminescence Properties. Science of Advanced Materials, 2012, 4, 551-557.	0.7	8
96	Effect of solvent on the up- and downconversion emissions of Y_2O_3:Yb^3+â^'Er^3+ nanofibers synthesized by a hydrothermal method. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 649.	2.1	7
97	Strong enhancement of the upconversion emission in ZrO2: Yb3+, Er3+, Gd3+ nanocubes synthesized with Na2S. Journal of Luminescence, 2016, 172, 154-160.	3.1	7
98	SERS-active Au/SiO_2 clouds in powder for rapid ex vivo breast adenocarcinoma diagnosis. Biomedical Optics Express, 2016, 7, 2407.	2.9	7
99	Hydrothermal synthesis of graphene oxide/multiform hydroxyapatite nanocomposite: its influence on cell cytotoxicity. Materials Research Express, 2018, 5, 125023.	1.6	7
100	OSL and TL dosimeter characterization of boron doped CVD diamond films. Optical Materials, 2005, 27, 1231-1234.	3.6	6
101	Enhancement of Visible Upconversion Emission in Y2O3:Er3+-Yb3+by Addition of Thiourea and LiOH in the Phosphor Synthesis. Journal of Nanomaterials, 2015, 2015, 1-8.	2.7	6
102	Temperature effect in the crystallite size and the photoluminescence of nanocrystalline ZrO 2 :Sm3+phosphor. , 2004, , .		5
103	High angle annular dark field-scanning transmission electron microscopy and high-resolution transmission electron microscopy studies in the Er2O3–ZrO2 system. Vacuum, 2010, 84, 1226-1231.	3.5	5
104	Structural and Spectroscopic Characterization of ZrO2:Eu3+ Nanoparticles. Journal of Nanoscience and Nanotechnology, 2008, 8, 6431-6436.	0.9	5
105	Structure of Pt/ZnAl2O4 catalysts. Reaction Kinetics and Catalysis Letters, 1992, 48, 121-126.	0.6	4
106	Reduction of NO by CO using a zeolite catalyst obtained from fly ash. Studies in Surface Science and Catalysis, 1997, , 1565-1570.	1.5	4
107	Preparation of magnesia-silica oxides: Effect of Mg/Si ratio and sulfate on acidity. Journal of Sol-Gel Science and Technology, 1997, 8, 321-325.	2.4	4
108	Thermo-luminescence induced by gamma irradiation in sol-gel prepared zirconia-silica materials. Materials Research Innovations, 2000, 4, 32-35.	2.3	4

#	Article	IF	Citations
109	Concentration and crystallite size dependence of the photoluminescence in YAG:Ce3+nanophosphor. , 2004, , .		4
110	NMR and Mössbauer Study of Al2O3–Eu2O3. Hyperfine Interactions, 2005, 161, 11-19.	0.5	4
111	Green upconversion emission dependence on size and surface residual contaminants in nanocrystalline ZrO2:Er3+. Journal of Sol-Gel Science and Technology, 2012, 63, 473-480.	2.4	4
112	Biomimetic coat enables the use of sonoporation to assist delivery of silica nanoparticle-cargoes into human cells. Biointerphases, 2016, 11, 04B303.	1.6	4
113	Enhanced Raman Effect of Solvothermal Synthesized Reduced Graphene Oxide/Titanium Dioxide Nanocomposites. ChemistrySelect, 2020, 5, 3789-3797.	1.5	4
114	Sulfated SnO2-SiO2 superacid catalysts by Sol-Gel method. Journal of Porous Materials, 1996, 3, 241-245.	2.6	3
115	Photoluminescence and thermoluminescence of YAG:Ce3+,Tb3+nanocrystalline under UV-, X- and \hat{l}^2 -irradiation. , 2003, , .		3
116	Visible emission of rare-earth-doped ZrO 2 nanocrystalline phosphor under UV and IR excitation. , 2004, , .		3
117	Dynamics of the Green and Red Upconversion Emissions inYb3+-Er3+-CodopedY2O3Nanorods. Journal of Nanomaterials, 2010, 2010, 1-8.	2.7	3
118	Role of the Hydrothermal Synthesis Conditions on the Structure and Morphology of Co-Doped Y ₂ O ₃ :Er ³⁺ -Yb ³⁺ Nanostructured Materials. Journal of Nano Research, 2010, 9, 109-116.	0.8	3
119	Segregation effects in sol-gel zirconia-silica materials analyzed through their radial distribution functions. Materials Research Innovations, 2000, 3, 205-211.	2.3	2
120	NaOH-controlled upconversion of nanocrystalline BaZrO _{3:Er,Yb phosphor. International Journal of Nanotechnology, 2013, 10, 1055.}	0.2	2
121	Synthesis Of Advanced Materials Via The Sol-Gel Route. Materials Technology, 2003, 18, 25-29.	3.0	1
122	Second-harmonic imaging of ZnO nanoparticles. , 2007, , .		1
123	Structural and photoluminescence characterization of nanocrystalline YAG: Er3+prepared with the addition of PVA and UREA., 2007,,.		1
124	Synthesis and characterization of upconversion emission on lanthanides doped ZrO 2 nanocrystals coated with SiO 2 for biological applications. Proceedings of SPIE, 2010, , .	0.8	1
125	Effect of ammonia on luminescent properties of YAG:Ce3+,Pr3+nanophosphors. , 2010, , .		1
126	Gd3+and S2+sensitizer effect on the upconversion emission of ZrO 2 :Yb3+, Er3+nanocrystals prepared by precipitation method with a hydrothermal process. , 2011 , , .		1

#	Article	IF	CITATIONS
127	UVA mediated synthesis of gold nanoparticles in pharmaceutical-grade heparin sodium solutions. , 2013, , .		1
128	Highly dispersible and fluorescent graphene-based materials obtained by underwater shock wave-induced oxidative cleavage. FlatChem, 2022, 32, 100338.	5.6	1
129	Preparation of Magnesia-Silica Oxides: Effect of Mg/Si Ratio and Sulfate on Acidity. Journal of Sol-Gel Science and Technology, 1997, 8, 321-325.	2.4	O
130	Effect of Tin Precursor on the Catalytic Properties of Pt-Sn/Al2O3 Sol-Gel Prepared Catalysts. Journal of Sol-Gel Science and Technology, 1997, 8, 847-849.	2.4	0
131	<pre><title>Nonradiative energy transfer process in the system Sm<formula><sup><roman>3</roman></sup></formula>+: ZrO<formula><inf><roman>2</roman></inf></formula> prepared by sol-gel technique</title>.,2001,,</pre>		O
132	Dopant concentration effect on the TL response of ZrO 2 :Lu \sup 3+ \langle sup $>$ nanocrystals under \hat{l}^2 -ray irradiation. Proceedings of SPIE, 2007, 6639, 79.	0.8	0
133	Facile synthesis and optical applications of ceramic nanophosphors. , 2008, , .		O
134	Synthesis and Catalytic Activity of Ni/Ce-MCM-41 Mesoporous Catalysts for Hydrogen Production. Materials Research Society Symposia Proceedings, 2010, 1279, 1.	0.1	0
135	Sorption Properties of Mesoporous SiO2 Sol-Gel Vitreous Substrata., 2003, , 104-115.		0
136	Algunas aplicaciones de la nanofotónica en la biomedicina. Mundo Nano Revista Interdisciplinaria En Nanociencia Y NanotecnologÃa, 2019, 13, 1e-24e.	0.1	0