Brian Zenger Bs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2413487/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reducing Line-of-Block Artifacts in Cardiac Activation Maps Estimated Using ECG Imaging: A Comparison of Source Models and Estimation Methods. IEEE Transactions on Biomedical Engineering, 2022, 69, 2041-2052.	4.2	8
2	Reconstruction of cardiac position using body surface potentials. Computers in Biology and Medicine, 2022, 142, 105174.	7.0	3
3	Patientâ€reported outcomes and costs associated with vascular closure and sameâ€day discharge following atrial fibrillation ablation. Journal of Cardiovascular Electrophysiology, 2022, 33, 1737-1744.	1.7	3
4	Estimation and Validation of Cardiac Conduction Velocity and Wavefront Reconstruction Using Epicardial and Volumetric Data. IEEE Transactions on Biomedical Engineering, 2021, 68, 3290-3300.	4.2	12
5	Electrocardiographic Imaging for Atrial Fibrillation: A Perspective From Computer Models and Animal Experiments to Clinical Value. Frontiers in Physiology, 2021, 12, 653013.	2.8	20
6	Quantifying the spatiotemporal influence of acute myocardial ischemia on volumetric conduction velocity. Journal of Electrocardiology, 2021, 66, 86-94.	0.9	3
7	Transient recovery of epicardial and torso ST-segment ischemic signals during cardiac stress tests: A possible physiological mechanism. Journal of Electrocardiology, 2021, 69S, 38-44.	0.9	3
8	The electrocardiographic forward problem: A benchmark study. Computers in Biology and Medicine, 2021, 134, 104476.	7.0	7
9	How simple ideas forged in the fire of adversity can change healthcare: telehealth for atrial fibrillation during the COVID 19 pandemic. Europace, 2021, 23, 1153-1154.	1.7	1
10	Pharmacological and simulated exercise cardiac stress tests produce different ischemic signatures in high-resolution experimental mapping studies. Journal of Electrocardiology, 2021, 68, 56-64.	0.9	2
11	Combining endocardial mapping and electrocardiographic imaging (ECGI) for improving PVC localization: A feasibility study. Journal of Electrocardiology, 2021, 69S, 51-54.	0.9	2
12	Simultaneous Multi-heartbeat ECGI Solution with a Time-Varying Forward Model: A Joint Inverse Formulation. Lecture Notes in Computer Science, 2021, 12738, 493-502.	1.3	2
13	Impact of Catheter Ablation on Stroke, Cognitive Decline and Dementia. Arrhythmia and Electrophysiology Review, 2021, 10, 205-210.	2.4	Ο
14	Body Surface Potential Mapping: Contemporary Applications and Future Perspectives. Hearts, 2021, 2, 514-542.	0.9	14
15	The Role of Myocardial Fiber Direction in Epicardial Activation Patterns via Uncertainty Quantification. , 2021, 48, .		4
16	Uncertainty Quantification in Simulations of Myocardial Ischemia. , 2021, 48, .		3
17	Myocardial Ischemia Detection Using Body Surface Potential Mappings and Machine Learning. , 2021, 48, .		1
18	Systematic collection of patient-reported outcomes in atrial fibrillation: feasibility and initial results of the Utah mEVAL AF programme. Europace, 2020, 22, 368-374.	1.7	15

BRIAN ZENGER BS

#	Article	lF	CITATIONS
19	Social Media Influence Does Not Reflect Scholarly or Clinical Activity in Real Life. Circulation: Arrhythmia and Electrophysiology, 2020, 13, e008847.	4.8	4
20	Patientâ€reported outcomes and subsequent management in atrial fibrillation clinical practice: Results from the Utah mEVAL AF program. Journal of Cardiovascular Electrophysiology, 2020, 31, 3187-3195.	1.7	6
21	Accuracy of Patient Identification of Electrocardiogram-Verified Atrial Arrhythmias. JAMA Network Open, 2020, 3, e205431.	5.9	3
22	Novel experimental model for studying the spatiotemporal electrical signature of acute myocardial ischemia: a translational platform. Physiological Measurement, 2020, 41, 015002.	2.1	20
23	Improving Localization of Cardiac Geometry Using ECGI. , 2020, 47, .		5
24	Novel Experimental Preparation to Assess Electrocardiographic Imaging Reconstruction Techniques. , 2020, 47, .		6
25	Effect of Myocardial Fiber Direction on Epicardial Activation Patterns. , 2020, 47, .		1
26	Experimental Validation of a Novel Extracellular-Based Source Representation of Acute Myocardial Ischemia. , 2020, 47, .		3
27	Quantifying the Spatiotemporal Influence of Acute Myocardial Ischemia on Volumetric Conduction Velocity. , 2020, 47, .		1
28	High-Capacity Cardiac Signal Acquisition System for Flexible, Simultaneous, Multidomain Acquisition. , 2020, 47, .		5
29	GR×MeR: A Pipeline for Geodesic Refinement of Mesh Registration. Lecture Notes in Computer Science, 2019, 11504, 37-45.	1.3	12
30	Experimental Validation of Image-Based Modeling of Torso Surface Potentials During Acute Myocardial Ischemia. , 2019, 46, .		0
31	Validation of Intramural Wavefront Reconstruction and Estimation of 3D Conduction Velocity. , 2019, 46, .		1
32	Optimizing the Reconstruction of Cardiac Potentials Using a Novel High Resolution Pericardiac Cage. , 2019, 46, .		6
33	Novel Metric Using Laplacian Eigenmaps to Evaluate Ischemic Stress on the Torso Surface. , 2018, 45, .		4
34	Temporal Performance of Laplacian Eigenmaps and 3D Conduction Velocity in Detecting Ischemic Stress. Journal of Electrocardiology, 2018, 51, S116-S120.	0.9	11
35	Reducing Error in ECG Forward Simulations With Improved Source Sampling. Frontiers in Physiology, 2018, 9, 1304.	2.8	11
36	A Framework for Image-Based Modeling of Acute Myocardial Ischemia Using Intramurally Recorded Extracellular Potentials. Annals of Biomedical Engineering, 2018, 46, 1325-1336.	2.5	15

#	Article	IF	CITATIONS
37	PFEIFER: Preprocessing Framework for Electrograms Intermittently Fiducialized from Experimental Recordings. Journal of Open Source Software, 2018, 3, 472.	4.6	34
38	Electrocardiographic Comparison of Dobutamine and Bruce Cardiac Stress Testing With High Resolution Mapping in Experimental Models. , 2018, 45, .		6
39	A Practical Algorithm for Improving Localization and Quantification of Left Ventricular Scar. Computing in Cardiology, 2014, 2014, 105-108.	0.4	1