
Sandeep K Sharma

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2413431/publications.pdf Version: 2024-02-01

SANDEED K SHADMA

#	Article	IF	CITATIONS
1	A quick and simple paper-based method for detection of furfural and 5-hydroxymethylfurfural in beverages and fruit juices. Food Chemistry, 2022, 377, 131532.	4.2	16
2	Engineered Nanoparticle-Protein Interactions Influence Protein Structural Integrity and Biological Significance. Nanomaterials, 2022, 12, 1214.	1.9	3
3	Challenges in assessing the quality of fruit juices: Intervening role of biosensors. Food Chemistry, 2022, 386, 132825.	4.2	11
4	Recent advances in the sustainable design and applications of biodegradable polymers. Bioresource Technology, 2021, 325, 124739.	4.8	226
5	A rapid and sensitive colorimetric method for the detection of cyanide ions in aqueous samples. Environmental Technology and Innovation, 2021, 24, 101973.	3.0	5
6	Fast kinetics of environmentally induced α-synuclein aggregation mediated by structural alteration in NAC region and result in structure dependent cytotoxicity. Scientific Reports, 2020, 10, 18412.	1.6	18
7	Structural–functional diversity of malaria parasite's PfHSP70-1 and PfHSP40 chaperone pair gives an edge over human orthologs in chaperone-assisted protein folding. Biochemical Journal, 2020, 477, 3625-3643.	1.7	11
8	Role of Molecular Chaperone Network in Understanding In Vitro Proteotoxicity. , 2018, , 143-164.		0
9	Cadmium Causes Misfolding and Aggregation of Cytosolic Proteins in Yeast. Molecular and Cellular Biology, 2017, 37, .	1.1	58
10	Expanding role of molecular chaperones in regulating α-synuclein misfolding; implications in Parkinson's disease. Cellular and Molecular Life Sciences, 2017, 74, 617-629.	2.4	23
11	Insulin-degrading enzyme prevents α-synuclein fibril formation in a nonproteolytical manner. Scientific Reports, 2015, 5, 12531.	1.6	88
12	Multi-layered molecular mechanisms of polypeptide holding, unfolding and disaggregation by HSP70/HSP110 chaperones. Frontiers in Molecular Biosciences, 2015, 2, 29.	1.6	106
13	Insulin-degrading enzyme is activated by the C-terminus of α-synuclein. Biochemical and Biophysical Research Communications, 2015, 466, 192-195.	1.0	27
14	Synergism between a foldase and an unfoldase: reciprocal dependence between the thioredoxin-like activity of DnaJ and the polypeptide-unfolding activity of DnaK. Frontiers in Molecular Biosciences, 2014, 1, 7.	1.6	13
15	Heavy Metals and Metalloids As a Cause for Protein Misfolding and Aggregation. Biomolecules, 2014, 4, 252-267.	1.8	316
16	Biophysical Characterization of Two Different Stable Misfolded Monomeric Polypeptides That Are Chaperone-Amenable Substrates. Journal of Molecular Biology, 2013, 425, 1158-1171.	2.0	33
17	GroEL and CCT are catalytic unfoldases mediating out-of-cage polypeptide refolding without ATP. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7199-7204.	3.3	75
18	Molecular chaperones as enzymes that catalytically unfold misfolded polypeptides. FEBS Letters, 2013, 587, 1981-1987.	1.3	83

SANDEEP K SHARMA

#	Article	IF	CITATIONS
19	Hsp110 Is a Bona Fide Chaperone Using ATP to Unfold Stable Misfolded Polypeptides and Reciprocally Collaborate with Hsp70 to Solubilize Protein Aggregates. Journal of Biological Chemistry, 2013, 288, 21399-21411.	1.6	139
20	Arsenite interferes with protein folding and triggers formation of protein aggregates in yeast. Journal of Cell Science, 2012, 125, 5073-83.	1.2	121
21	Probing the different chaperone activities of the bacterial HSP70â€HSP40 system using a thermolabile luciferase substrate. Proteins: Structure, Function and Bioinformatics, 2011, 79, 1991-1998.	1.5	33
22	Non-native Proteins as Newly-Identified Targets of Heavy Metals and Metalloids. , 2011, , 263-274.		15
23	The kinetic parameters and energy cost of the Hsp70 chaperone as a polypeptide unfoldase. Nature Chemical Biology, 2010, 6, 914-920.	3.9	205
24	Disaggregating Chaperones: An Unfolding Story. Current Protein and Peptide Science, 2009, 10, 432-446.	0.7	99
25	Heavy metal ions are potent inhibitors of protein folding. Biochemical and Biophysical Research Communications, 2008, 372, 341-345.	1.0	182
26	Lactose Biosensor Based on Lactase and Galactose Oxidase Immobilized in Polyvinyl Formal. Artificial Cells, Blood Substitutes, and Biotechnology, 2007, 35, 421-430.	0.9	8
27	Galactose sensor based on galactose oxidase immobilized in polyvinyl formal. Sensors and Actuators B: Chemical, 2006, 119, 15-19.	4.0	27
28	Recent trends in biosensors. Current Applied Physics, 2005, 5, 92-97.	1.1	126
29	Biosensor based on Langmuir–Blodgett films of poly(3-hexyl thiophene) for detection of galactose in human blood. Biotechnology Letters, 2004, 26, 645-647.	1.1	19
30	Langmuir–Blodgett film based biosensor for estimation of galactose in milk. Electrochimica Acta, 2004, 49, 2479-2485.	2.6	51
31	Biostrip technique for detection of galactose in dairy foods. Food Chemistry, 2004, 88, 299-303.	4.2	8
32	Lactose biosensor based on Langmuir–Blodgett films of poly(3-hexyl thiophene). Biosensors and Bioelectronics, 2004, 20, 651-657.	5.3	63
33	Biomolecules for development of biosensors and their applications. Current Applied Physics, 2003, 3, 307-316.	1.1	82
34	Dry-reagent strips for testing milk pasteurization. LWT - Food Science and Technology, 2003, 36, 567-571.	2.5	13
35	A quick and simple biostrip technique for detection of lactose. Biotechnology Letters, 2002, 24, 1737-1739.	1.1	18