Weiping Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2413207/publications.pdf

Version: 2024-02-01

128	6,275	46 h-index	72
papers	citations		g-index
159	159	159	6235
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Streamlined Iterative Assembly of Thioâ€Oligosaccharides by Aqueous S â€Glycosylation of Diverse Deoxythio Sugars. ChemSusChem, 2022, 15, .	3.6	4
2	General Strategy for the Synthesis of Rare Sugars via Ru(II)-Catalyzed and Boron-Mediated Selective Epimerization of 1,2- <i>trans</i> -Diols to 1,2- <i>cis</i> -Diols. Journal of the American Chemical Society, 2022, 144, 3727-3736.	6.6	11
3	A platform for the rapid synthesis of proteolysis targeting chimeras (Rapid-TAC) under miniaturized conditions. European Journal of Medicinal Chemistry, 2022, 236, 114317.	2.6	19
4	In Silico Modeling and Scoring of PROTAC-Mediated Ternary Complex Poses. Journal of Medicinal Chemistry, 2022, 65, 6116-6132.	2.9	29
5	Proteolysis-targeting chimera (PROTAC) delivery system: advancing protein degraders towards clinical translation. Chemical Society Reviews, 2022, 51, 5330-5350.	18.7	50
6	Transition Metal-Catalyzed Selective Carbon–Carbon Bond Cleavage of Vinylcyclopropanes in Cycloaddition Reactions. Chemical Reviews, 2021, 121, 110-139.	23.0	187
7	A dancing nickel in asymmetric catalysis: Enantioselective synthesis of boronic esters by 1,1-addition to terminal alkenes. Green Synthesis and Catalysis, 2021, 2, 1-3.	3.7	12
8	Development of Triantennary N-Acetylgalactosamine Conjugates as Degraders for Extracellular Proteins. ACS Central Science, 2021, 7, 499-506.	5.3	101
9	Evaluation of the binding affinity of E3 ubiquitin ligase ligands by cellular target engagement and in-cell ELISA assay. STAR Protocols, 2021, 2, 100288.	0.5	1
10	Energy Decomposition Analysis Reveals the Nature of Lone Pairâ⁻'Ï€ Interactions with Cationic Ï€ Systems in Catalytic Acyl Transfer Reactions. Organic Letters, 2021, 23, 4411-4414.	2.4	12
11	Development of MDM2 degraders based on ligands derived from Ugi reactions: Lessons and discoveries. European Journal of Medicinal Chemistry, 2021, 219, 113425.	2.6	36
12	A mechanism linking perinatal 2,3,7,8 tetrachlorodibenzo-p-dioxin exposure to lower urinary tract dysfunction in adulthood. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	4
13	Correction to "lridium-Catalyzed Highly Efficient and Site-Selective Deoxygenation of Alcohols― ACS Catalysis, 2021, 11, 10478-10478.	5.5	5
14	Synthesis and biological evaluation of FICZ analogues as agonists of aryl hydrocarbon receptor. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126959.	1.0	3
15	Highly Selective Hydroxylation and Alkoxylation of Silanes: One-Pot Silane Oxidation and Reduction of Aldehydes/Ketones. Organometallics, 2020, 39, 165-171.	1.1	25
16	Rhodium-Catalyzed $(5 + 2)$ and $(5 + 1)$ Cycloadditions Using 1,4-Enynes as Five-Carbon Building Blocks. Accounts of Chemical Research, 2020, 53, 231-243.	7.6	37
17	Mechanism of activation for the sirtuin 6 protein deacylase. Journal of Biological Chemistry, 2020, 295, 1385-1399.	1.6	30
18	Mild Cu(OTf) ₂ -Mediated C-Glycosylation with Chelation-Assisted Picolinate as a Leaving Group. Journal of Organic Chemistry, 2020, 85, 16218-16225.	1.7	6

#	Article	IF	Citations
19	A marine microbiome antifungal targets urgent-threat drug-resistant fungi. Science, 2020, 370, 974-978.	6.0	102
20	From methylene bridged diindole to carbonyl linked benzimidazoleindole: Development of potent and metabolically stable PCSK9 modulators. European Journal of Medicinal Chemistry, 2020, 206, 112678.	2.6	6
21	A Cell-Based Target Engagement Assay for the Identification of Cereblon E3ÂUbiquitin Ligase Ligands and Their Application in HDAC6 Degraders. Cell Chemical Biology, 2020, 27, 866-876.e8.	2.5	51
22	Development of Selective Histone Deacetylase 6 (HDAC6) Degraders Recruiting Von Hippel–Lindau (VHL) E3 Ubiquitin Ligase. ACS Medicinal Chemistry Letters, 2020, 11, 575-581.	1.3	79
23	Chemical Synthesis and Biological Application of Modified Oligonucleotides. Bioconjugate Chemistry, 2020, 31, 1213-1233.	1.8	50
24	Synthesis of Glycosyl Chlorides and Bromides by Chelation Assisted Activation of Picolinic Esters under Mild Neutral Conditions. Organic Letters, 2020, 22, 1495-1498.	2.4	7
25	Synthesis of Lactams via Ir-Catalyzed C–H Amidation Involving Ir-Nitrene Intermediates. Journal of Organic Chemistry, 2020, 85, 4430-4440.	1.7	17
26	Two-Stage Strategy for Development of Proteolysis Targeting Chimeras and its Application for Estrogen Receptor Degraders. ACS Chemical Biology, 2020, 15, 1487-1496.	1.6	38
27	and lactational 2,3,7,8-tetrachlorodibenzo-dioxin (TCDD) exposure exacerbates urinary dysfunction in hormone-treated C57BL/6J mice through a non-malignant mechanism involving proteomic changes in the prostate that differ from those elicited by testosterone and estradiol. American Journal of Clinical and Experimental Urology, 2020, 8, 59-72.	0.4	8
28	Highly pH-Dependent Chemoselective Transfer Hydrogenation of \hat{l}_{\pm} , \hat{l}^2 -Unsaturated Aldehydes in Water. Organometallics, 2019, 38, 3025-3031.	1.1	29
29	Finding the Sweet Spot in ERLIC Mobile Phase for Simultaneous Enrichment of N-Glyco and Phosphopeptides. Journal of the American Society for Mass Spectrometry, 2019, 30, 2491-2501.	1.2	23
30	Development of Multifunctional Histone Deacetylase 6 Degraders with Potent Antimyeloma Activity. Journal of Medicinal Chemistry, 2019, 62, 7042-7057.	2.9	121
31	A general strategy for diversifying complex natural products to polycyclic scaffolds with medium-sized rings. Nature Communications, 2019, 10, 4015.	5.8	68
32	Site―and Stereoselective Phosphoramidation of Carbohydrates Using a Chiral Catalyst and a Chiral Electrophile. Advanced Synthesis and Catalysis, 2019, 361, 3729-3732.	2.1	9
33	Discovery of 2,3′-diindolylmethanes as a novel class of PCSK9 modulators. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2345-2348.	1.0	8
34	S â€Adamantyl Group Directed Siteâ€Selective Acylation: Applications in Streamlined Assembly of Oligosaccharides. Angewandte Chemie, 2019, 131, 9642-9646.	1.6	2
35	<i>S</i> >â€Adamantyl Group Directed Siteâ€Selective Acylation: Applications in Streamlined Assembly of Oligosaccharides. Angewandte Chemie - International Edition, 2019, 58, 9542-9546.	7.2	20
36	Development of selective small molecule MDM2 degraders based on nutlin. European Journal of Medicinal Chemistry, 2019, 176, 476-491.	2.6	51

#	Article	IF	CITATIONS
37	Identification of a novel class of RIP1/RIP3 dual inhibitors that impede cell death and inflammation in mouse abdominal aortic aneurysm models. Cell Death and Disease, 2019, 10, 226.	2.7	69
38	Iridium-catalysed highly selective reduction–elimination of steroidal 4-en-3-ones to 3,5-dienes in water. Green Chemistry, 2019, 21, 2088-2094.	4.6	33
39	Site-Selective and Stereoselective <i>O</i> -Alkylation of Glycosides by Rh(II)-Catalyzed Carbenoid Insertion. Journal of the American Chemical Society, 2019, 141, 19902-19910.	6.6	36
40	Recent advances in site-selective functionalization of carbohydrates mediated by organocatalysts. Carbohydrate Research, 2019, 471, 64-77.	1.1	39
41	Intermolecular Regio―and Stereoselective Heteroâ€{5+2] Cycloaddition of Oxidopyrylium Ylides and Cyclic Imines. Angewandte Chemie - International Edition, 2019, 58, 887-891.	7.2	25
42	Intermolecular Regio―and Stereoselective Heteroâ€[5+2] Cycloaddition of Oxidopyrylium Ylides and Cyclic Imines. Angewandte Chemie, 2019, 131, 897-901.	1.6	1
43	Catalytic Asymmetric Synthesis of All Possible Stereoisomers of 2,3,4,6â€√etradeoxyâ€4â€Aminohexopyranosides. Advanced Synthesis and Catalysis, 2018, 360, 2211-2215.	2.1	6
44	Trace derivatives of kynurenine potently activate the aryl hydrocarbon receptor (AHR). Journal of Biological Chemistry, 2018, 293, 1994-2005.	1.6	107
45	Iridium-catalyzed efficient reduction of ketones in water with formic acid as a hydride donor at low catalyst loading. Green Chemistry, 2018, 20, 2118-2124.	4.6	57
46	Chiral reagents in glycosylation and modification of carbohydrates. Chemical Society Reviews, 2018, 47, 681-701.	18.7	67
47	Iridiumâ€Catalyzed Dynamic Kinetic Stereoselective Allylic Etherification of Achmatowicz Rearrangement Products. Advanced Synthesis and Catalysis, 2018, 360, 595-599.	2.1	7
48	Organocatalystâ€Mediated Dynamic Kinetic Enantioselective Acylation of 2â€Chromanols. Advanced Synthesis and Catalysis, 2018, 360, 4646-4649.	2.1	9
49	Development of the first small molecule histone deacetylase 6 (HDAC6) degraders. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2493-2497.	1.0	135
50	Iridium-Catalyzed Highly Efficient and Site-Selective Deoxygenation of Alcohols. ACS Catalysis, 2018, 8, 9320-9326.	5.5	43
51	Chiral Catalyst-Directed Dynamic Kinetic Diastereoselective Acylation of Anomeric Hydroxyl Groups and a Controlled Reduction of the Glycosyl Ester Products. Organic Letters, 2017, 19, 508-511.	2.4	24
52	Neuroendocrine Tumorâ€Targeted Upconversion Nanoparticleâ€Based Micelles for Simultaneous NIRâ€Controlled Combination Chemotherapy and Photodynamic Therapy, and Fluorescence Imaging. Advanced Functional Materials, 2017, 27, 1604671.	7.8	138
53	AB3-loaded and tumor-targeted unimolecular micelles for medullary thyroid cancer treatment. Journal of Materials Chemistry B, 2017, 5, 151-159.	2.9	21
54	Iridium-catalyzed highly efficient chemoselective reduction of aldehydes in water using formic acid as the hydrogen source. Green Chemistry, 2017, 19, 3296-3301.	4.6	71

#	Article	IF	CITATIONS
55	De Novo Synthesis of Mono―and Oligosaccharides via Dihydropyran Intermediates. Chemistry - an Asian Journal, 2017, 12, 1027-1042.	1.7	34
56	Catalytic Site-Selective Acylation of Carbohydrates Directed by Cation– <i>n</i> Interaction. Journal of the American Chemical Society, 2017, 139, 4346-4349.	6.6	75
57	Synthesis of Highly Substituted Benzofuran–containing Natural Products via Rh–catalyzed Carbonylative Benzannulation. Advanced Synthesis and Catalysis, 2017, 359, 693-697.	2.1	35
58	Isoquinolineâ€1â€Carboxylate as a Traceless Leaving Group for Chelationâ€Assisted Glycosylation under Mild and Neutral Reaction Conditions. Angewandte Chemie - International Edition, 2017, 56, 15698-15702.	7.2	27
59	Harnessing the Reactivity of Iridium Hydrides by Air: Iridium-Catalyzed Oxidation of Aldehydes to Acids in Water. Organometallics, 2017, 36, 4095-4098.	1.1	31
60	Transition metal mediated carbonylative benzannulations. Organic and Biomolecular Chemistry, 2017, 15, 7490-7504.	1.5	32
61	Addressing the Challenge of Carbohydrate Site Selectivity by Synergistic Catalysis. CheM, 2017, 3, 722-723.	5.8	2
62	Isoquinolineâ€1 arboxylate as a Traceless Leaving Group for Chelationâ€Assisted Glycosylation under Mild and Neutral Reaction Conditions. Angewandte Chemie, 2017, 129, 15904-15908.	1.6	6
63	Rhodiumâ€Catalyzed Intramolecular [5+2] Cycloaddition of Inverted 3â€Acyloxyâ€1,4â€enyne and Alkyne: Experimental and Theoretical Studies. Chemistry - A European Journal, 2016, 22, 7079-7083.	1.7	13
64	Rhodiumâ€Catalyzed [5+2] Cycloaddition of 3â€Acyloxyâ€1,4â€enyne with Alkene or Allene. Advanced Synthesis and Catalysis, 2016, 358, 2007-2011.	2.1	16
65	Total synthesis of diptoindonesin G and its analogues as selective modulators of estrogen receptors. Organic and Biomolecular Chemistry, 2016, 14, 8927-8930.	1.5	23
66	Discovery of selective small-molecule HDAC6 inhibitor for overcoming proteasome inhibitor resistance in multiple myeloma. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13162-13167.	3.3	112
67	Rhodium(I)â€Catalyzed Benzannulation of Heteroaryl Propargylic Esters: Synthesis of Indoles and Related Heterocycles. Chemistry - A European Journal, 2016, 22, 10410-10414.	1.7	27
68	Design and synthesis of a new generation of substituted purine hydroxamate analogs as histone deacetylase inhibitors. Bioorganic and Medicinal Chemistry, 2016, 24, 1446-1454.	1.4	19
69	Synthesis of Carbazoles and Carbazole-Containing Heterocycles via Rhodium-Catalyzed Tandem Carbonylative Benzannulations. Journal of Organic Chemistry, 2016, 81, 2930-2942.	1.7	53
70	Divergent Reactivity of Rhodium(I) Carbenes Derived from Indole Annulations. Angewandte Chemie - International Edition, 2015, 54, 12905-12908.	7.2	28
71	Tumor-Suppressor Role of Notch3 in Medullary Thyroid Carcinoma Revealed by Genetic and Pharmacological Induction. Molecular Cancer Therapeutics, 2015, 14, 499-512.	1.9	40
72	Gold versus Rhodium: Divergent Reactivity Enabled by the Catalyst. ChemCatChem, 2015, 7, 574-576.	1.8	2

#	Article	IF	Citations
73	Mechanism and reactivity of rhodium-catalyzed intermolecular [5+1] cycloaddition of 3-acyloxy-1,4-enyne (ACE) and CO: A computational study. Chinese Chemical Letters, 2015, 26, 730-734.	4.8	12
74	Design, synthesis and preliminary bioactivity evaluations of substituted quinoline hydroxamic acid derivatives as novel histone deacetylase (HDAC) inhibitors. Bioorganic and Medicinal Chemistry, 2015, 23, 4364-4374.	1.4	36
75	Synthesis of substituted tropones by sequential Rh-catalyzed [5+2] cycloaddition and elimination. Tetrahedron, 2015, 71, 5979-5984.	1.0	15
76	Chiral Catalyst-Directed Dynamic Kinetic Diastereoselective Acylation of Lactols for <i>De Novo</i> Synthesis of Carbohydrate. Organic Letters, 2015, 17, 5272-5275.	2.4	43
77	Iridiumâ€Catalyzed Dynamic Kinetic Isomerization: Expedient Synthesis of Carbohydrates from Achmatowicz Rearrangement Products. Angewandte Chemie - International Edition, 2015, 54, 8756-8759.	7.2	46
78	Rhodium-Catalyzed Stereoselective Intramolecular $[5+2]$ Cycloaddition of 3-Acyloxy 1,4-Enyne and Alkene. Organic Letters, 2015, 17, 5128-5131.	2.4	13
79	Rhodium-Catalyzed Intermolecular [5+1] and [5+2] Cycloadditions Using 1,4-Enynes with an Electron-Donating Ester on the 3-Position. Synthesis, 2015, 47, 1076-1084.	1.2	14
80	Divergent de novo synthesis of all eight stereoisomers of 2,3,6-trideoxyhexopyranosides and their oligomers. Chemical Communications, 2015, 51, 17475-17478.	2.2	35
81	Note: Stereoselective Halocyclization of Alkenes With N-Acyl Hemiaminal Nucleophiles. Chirality, 2014, 26, III-IV.	1.3	0
82	3-Acyloxy-1,4-enyne: A new five-carbon synthon for rhodium-catalyzed [5 + 2] cycloadditions. Pure and Applied Chemistry, 2014, 86, 409-417.	0.9	25
83	Copper-catalyzed tandem annulation/arylation for the synthesis of diindolylmethanes from propargylic alcohols. Chemical Communications, 2014, 50, 12293-12296.	2.2	30
84	Synthesis and biological evaluation of 2,3′-diindolylmethanes as agonists of aryl hydrocarbon receptor. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4023-4025.	1.0	11
85	Design, synthesis, and preliminary bioactivity studies of substituted purine hydroxamic acid derivatives as novel histone deacetylase (HDAC) inhibitors. MedChemComm, 2014, 5, 1887-1891.	3.5	10
86	Intermolecular bromoesterification of conjugated enynes: an efficient synthesis of bromoallenes. Organic Chemistry Frontiers, 2014, 1, 386-390.	2.3	17
87	Design, synthesis and preliminary bioactivity studies of 1,2-dihydrobenzo[d]isothiazol-3-one-1,1-dioxide hydroxamic acid derivatives as novel histone deacetylase inhibitors. Bioorganic and Medicinal Chemistry, 2014, 22, 1529-1538.	1.4	15
88	Improved antiproliferative activity of 1,3,4-thiadiazole-containing histone deacetylase (HDAC) inhibitors by introduction of the heteroaromatic surface recognition motif. Bioorganic and Medicinal Chemistry, 2014, 22, 5766-5775.	1.4	33
89	Synthesis of naturally occurring tropones and tropolones. Tetrahedron, 2014, 70, 9281-9305.	1.0	87
90	Cinchona Alkaloids as Organocatalysts in Enantioselective Halofunctionalization of Alkenes and Alkynes. Asian Journal of Organic Chemistry, 2014, 3, 366-376.	1.3	118

#	Article	IF	Citations
91	Stereoselective Addition of Halogen to Conjugated Enynes and Its Application in the Total Synthesis of (\hat{a}^{-2}) -Kumausallene. Strategies and Tactics in Organic Synthesis, 2013, 9, 275-291.	0.1	1
92	Stereoselective Total Synthesis of Hainanolidol and Harringtonolide via Oxidopyrylium-Based [5 + 2] Cycloaddition. Journal of the American Chemical Society, 2013, 135, 12434-12438.	6.6	125
93	Platinum-Catalyzed Tandem Indole Annulation/Arylation for the Synthesis of Diindolylmethanes and Indolo[3,2- <i>b</i>)carbazoles. Organic Letters, 2013, 15, 4162-4165.	2.4	49
94	Tethered Spectroscopic Probes Estimate Dynamic Distances with Subnanometer Resolution in Voltage-Dependent Potassium Channels. Biophysical Journal, 2013, 105, 2724-2732.	0.2	11
95	Transfer of Chirality in the Rhodiumâ€Catalyzed Intramolecular [5+2] Cycloaddition of 3â€Acyloxyâ€1,4â€enynes (ACEs) and Alkynes: Synthesis of Enantioenriched Bicyclo[5.3.0]decatrienes. Angewandte Chemie - International Edition, 2013, 52, 13601-13605.	7.2	51
96	Rhodium-Catalyzed Tandem Annulation and $(5 + 1)$ Cycloaddition: 3-Hydroxy-1,4-enyne as the 5-Carbon Component. Journal of the American Chemical Society, 2013, 135, 16797-16800.	6.6	90
97	Ring expansion of alkynyl cyclopropanes to highly substituted cyclobutenes via a N-sulfonyl-1,2,3-triazole intermediate. Chemical Communications, 2013, 49, 4376-4378.	2.2	91
98	Effect of ester on rhodium-catalyzed intermolecular [5+2] cycloaddition of 3-acyloxy-1,4-enynes and alkynes. Chemical Communications, 2013, 49, 2616.	2.2	31
99	Rhodium―and Platinum atalyzed [4+3] Cycloaddition with Concomitant Indole Annulation: Synthesis of Cyclohepta[<i>b</i>)]indoles. Angewandte Chemie - International Edition, 2013, 52, 3237-3240.	7.2	105
100	Enantioselective intermolecular bromoesterification of allylic sulfonamides. Chemical Science, 2013, 4, 2652.	3.7	69
101	Generation of Rhodium(I) Carbenes from Ynamides and Their Reactions with Alkynes and Alkenes. Journal of the American Chemical Society, 2013, 135, 8201-8204.	6.6	132
102	Rh-Catalyzed (5+2) Cycloadditions of 3-Acyloxy-1,4-enynes and Alkynes: Computational Study of Mechanism, Reactivity, and Regioselectivity. Journal of the American Chemical Society, 2013, 135, 9271-9274.	6.6	76
103	Crebinostat: A novel cognitive enhancer that inhibits histone deacetylase activity and modulates chromatin-mediated neuroplasticity. Neuropharmacology, 2013, 64, 81-96.	2.0	87
104	Synthesis of Functionalized Cyclohexenone Core of Welwitindolinones via Rhodium-Catalyzed $[5+1]$ Cycloaddition. Organic Letters, 2012, 14, 3756-3759.	2.4	39
105	Rhodium-Catalyzed Intra- and Intermolecular [5 + 2] Cycloaddition of 3-Acyloxy-1,4-enyne and Alkyne with Concomitant 1,2-Acyloxy Migration. Journal of the American Chemical Society, 2012, 134, 5211-5221.	6.6	101
106	Rhodium-Catalyzed Carbonylation of 3-Acyloxy-1,4-enynes for the Synthesis of Cyclopentenones. Organic Letters, 2012, 14, 1584-1587.	2.4	47
107	Rhodium-catalyzed acyloxy migration of propargylic esters in cycloadditions, inspiration from the recent "gold rush― Chemical Society Reviews, 2012, 41, 7698.	18.7	155
108	Rhodium-catalyzed 1,3-acyloxy migration and subsequent intramolecular $[4+2]$ cycloaddition of vinylallene and unactivated alkyne. Chemical Communications, 2012, 48, 2204.	2.2	47

#	Article	IF	CITATIONS
109	Rhodium-Catalyzed Carbonylation of Cyclopropyl Substituted Propargyl Esters: A Tandem 1,3-Acyloxy Migration [5 + 1] Cycloaddition. Journal of Organic Chemistry, 2012, 77, 6463-6472.	1.7	45
110	Stereoselective Preparation of Cyclobutanes with Four Different Substituents: Total Synthesis and Structural Revision of Pipercyclobutanamideâ€A and Piperchabamideâ€G. Angewandte Chemie - International Edition, 2012, 51, 7503-7506.	7.2	53
111	Catalytic Enantioselective Halolactonization of Enynes and Alkenes. Chemistry - A European Journal, 2012, 18, 7296-7305.	1.7	93
112	Stereoselective Total Synthesis of (â^')-Kumausallene. Organic Letters, 2011, 13, 3664-3666.	2.4	48
113	Interception of a Rautenstrauch Intermediate by Alkynes for [5+2] Cycloaddition: Rhodiumâ€Catalyzed Cycloisomerization of 3â€Acyloxyâ€4â€eneâ€1,9â€diynes to Bicyclo[5.3.0]decatrienes. Angewandte Chemie - International Edition, 2011, 50, 8153-8156.	7.2	101
114	Effect of halogenation reagents on halocyclization and Overman rearrangement of allylic trichloroacetimidates. Tetrahedron Letters, 2011, 52, 6217-6219.	0.7	6
115	Synthesis of bromoallenyl pyrrolidines via 1,4-addition to 1,3-enynes. Science China Chemistry, 2011, 54, 56-60.	4.2	3
116	Synthesis of Highly Functionalized Cyclohexenone Rings: Rhodiumâ€Catalyzed 1,3â€Acyloxy Migration and Subsequent [5+1] Cycloaddition. Angewandte Chemie - International Edition, 2011, 50, 1346-1349.	7.2	92
117	Rhodiumâ€Catalyzed Ring Expansion of Cyclopropanes to Sevenâ€membered Rings by 1,5 CC Bond Migration. Angewandte Chemie - International Edition, 2011, 50, 10421-10424.	7.2	57
118	Discovery of histone deacetylase 8 selective inhibitors. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 2601-2605.	1.0	82
119	Intramolecular 1,4-addition of nitrogen nucleophile and bromine electrophile to conjugated 1,3-enyne. Tetrahedron, 2011, 67, 4385-4390.	1.0	16
120	Enantioselective Bromolactonization of Conjugated (<i>Z</i>)-Enynes. Journal of the American Chemical Society, 2010, 132, 3664-3665.	6.6	321
121	Intramolecular hydroamination of conjugated enynes. Tetrahedron, 2009, 65, 3090-3095.	1.0	15
122	Thermodynamic Control of the Electrocyclic Ring Opening of Cyclobutenes: Câ•X Substituents at C-3 Mask the Kinetic Torquoselectivity. Journal of the American Chemical Society, 2009, 131, 6664-6665.	6.6	40
123	Identification and Characterization of Small Molecule Inhibitors of a Class I Histone Deacetylase from <i>Plasmodium falciparum</i> . Journal of Medicinal Chemistry, 2009, 52, 2185-2187.	2.9	75
124	DABCO-Catalyzed 1,4-Bromolactonization of Conjugated Enynes: Highly Stereoselective Formation of a Stereogenic Center and an Axially Chiral Allene. Journal of the American Chemical Society, 2009, 131, 3832-3833.	6.6	115
125	Synthesis of Cyclobutenes by Highly Selective Transitionâ€Metalâ€Catalyzed Ring Expansion of Cyclopropanes. Angewandte Chemie - International Edition, 2008, 47, 8933-8936.	7.2	102
126	Base-Catalyzed Intramolecular Hydroamination of Conjugated Enynes. Organic Letters, 2008, 10, 2023-2026.	2.4	36

WEIPING TANG

#	Article	IF	CITATIONS
127	Fluorousâ€Based Smallâ€Molecule Microarrays for the Discovery of Histone Deacetylase Inhibitors. Angewandte Chemie - International Edition, 2007, 46, 7960-7964.	7.2	84
128	Migratory Hydroamination:Â A Facile Enantioselective Synthesis of Benzomorphans. Journal of the American Chemical Society, 2003, 125, 8744-8745.	6.6	54