Joel E Schmidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2413192/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nano-scale insights regarding coke formation in zeolite SSZ-13 subject to the methanol-to-hydrocarbons reaction. Catalysis Science and Technology, 2022, 12, 1220-1228.	2.1	13
2	New insights into the NH ₃ -selective catalytic reduction of NO over Cu-ZSM-5 as revealed by <i>operando</i> spectroscopy. Catalysis Science and Technology, 2022, 12, 2589-2603.	2.1	12
3	Nanoscale Chemical Imaging in Zeolite Catalysts by Atom Probe Tomography. Microscopy and Microanalysis, 2021, 27, 984-985.	0.2	0
4	Studies on the use of faujasite as a reagent to deliver silica and alumina in building new zeolite structures with organo-cations. Microporous and Mesoporous Materials, 2020, 300, 110162.	2.2	18
5	Disentangling Reaction Processes of Zeolites within Singleâ€Oriented Channels. Angewandte Chemie - International Edition, 2020, 59, 15502-15506.	7.2	49
6	Deactivation of Cuâ€Exchanged Automotiveâ€Emission NH 3 â€5CR Catalysts Elucidated with Nanoscale Resolution Using Scanning Transmission Xâ€ray Microscopy. Angewandte Chemie, 2020, 132, 15740-15747.	1.6	8
7	Disentangling Reaction Processes of Zeolites within Singleâ€Oriented Channels. Angewandte Chemie, 2020, 132, 15632-15636.	1.6	10
8	Deactivation of Cuâ€Exchanged Automotiveâ€Emission NH ₃ â€SCR Catalysts Elucidated with Nanoscale Resolution Using Scanning Transmission Xâ€ray Microscopy. Angewandte Chemie - International Edition, 2020, 59, 15610-15617.	7.2	34
9	SSZâ€27: A Smallâ€Pore Zeolite with Large Heartâ€Shaped Cavities Determined by Using Multiâ€erystal Electron Diffraction. Angewandte Chemie, 2019, 131, 13214-13220.	1.6	2
10	SSZâ€27: A Smallâ€Pore Zeolite with Large Heartâ€Shaped Cavities Determined by Using Multiâ€crystal Electron Diffraction. Angewandte Chemie - International Edition, 2019, 58, 13080-13086.	7.2	15
11	Probing the Location and Speciation of Elements in Zeolites with Correlated Atom Probe Tomography and Scanning Transmission Xâ€Ray Microscopy. ChemCatChem, 2019, 11, 488-494.	1.8	19
12	Methane-to-methanol conversion over zeolite Cu-SSZ-13, and its comparison with the selective catalytic reduction of NO _x with NH ₃ . Catalysis Science and Technology, 2018, 8, 1028-1038.	2.1	72
13	Nanoscale Chemical Imaging of Zeolites Using Atom Probe Tomography. Angewandte Chemie - International Edition, 2018, 57, 10422-10435.	7.2	31
14	Diagnosing the Internal Architecture of Zeolite Ferrierite. ChemPhysChem, 2018, 19, 367-372.	1.0	7
15	Deconvoluting the Competing Effects of Zeolite Framework Topology and Diffusion Path Length on Methanol to Hydrocarbons Reaction. ACS Catalysis, 2018, 8, 11042-11053.	5.5	69
16	Uniformly Oriented Zeolite ZSMâ€5 Membranes with Tunable Wettability on a Porous Ceramic. Angewandte Chemie - International Edition, 2018, 57, 12458-12462.	7.2	19
17	Uniformly Oriented Zeolite ZSMâ€5 Membranes with Tunable Wettability on a Porous Ceramic. Angewandte Chemie, 2018, 130, 12638-12642.	1.6	7
18	Isolating Clusters of Light Elements in Molecular Sieves with Atom Probe Tomography. Journal of the American Chemical Society, 2018, 140, 9154-9158.	6.6	27

JOEL E SCHMIDT

#	Article	IF	CITATIONS
19	Nanoskalige chemische Bildgebung von Zeolithen durch Atomsondentomographie. Angewandte Chemie, 2018, 130, 10580-10593.	1.6	1
20	Revealing long- and short-range structural modifications within phosphorus-treated HZSM-5 zeolites by atom probe tomography, nuclear magnetic resonance and powder X-ray diffraction. Physical Chemistry Chemical Physics, 2018, 20, 27766-27777.	1.3	18
21	Probing Zeolite Crystal Architecture and Structural Imperfections using Differently Sized Fluorescent Organic Probe Molecules. Chemistry - A European Journal, 2017, 23, 6305-6314.	1.7	24
22	Enantiomerically enriched, polycrystalline molecular sieves. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5101-5106.	3.3	109
23	Probing Zeolite Crystal Architecture and Structural Imperfections using Differently Sized Fluorescent Organic Probe Molecules. Chemistry - A European Journal, 2017, 23, 6224-6224.	1.7	2
24	Structural and kinetic changes to small-pore Cu-zeolites after hydrothermal aging treatments and selective catalytic reduction of NO _x with ammonia. Reaction Chemistry and Engineering, 2017, 2, 168-179.	1.9	54
25	Nanoscale infrared imaging of zeolites using photoinduced force microscopy. Chemical Communications, 2017, 53, 13012-13014.	2.2	25
26	Innenrücktitelbild: Highly Oriented Growth of Catalytically Active Zeolite ZSMâ€5 Films with a Broad Range of Si/Al Ratios (Angew. Chem. 37/2017). Angewandte Chemie, 2017, 129, 11427-11427.	1.6	0
27	Highly Oriented Growth of Catalytically Active Zeolite ZSMâ€5 Films with a Broad Range of Si/Al Ratios. Angewandte Chemie - International Edition, 2017, 56, 11217-11221.	7.2	40
28	Highly Oriented Growth of Catalytically Active Zeolite ZSMâ€5 Films with a Broad Range of Si/Al Ratios. Angewandte Chemie, 2017, 129, 11369-11373.	1.6	10
29	Nanoscale Chemical Imaging of Coking Mechanisms in a Zeolite ZSM-5 Crystal by Atom Probe Tomography. Microscopy and Microanalysis, 2017, 23, 674-675.	0.2	5
30	Nanoscale tomography reveals the deactivation of automotive copper-exchanged zeolite catalysts. Nature Communications, 2017, 8, 1666.	5.8	105
31	Coke Formation in a Zeolite Crystal During the Methanolâ€ŧoâ€Hydrocarbons Reaction as Studied with Atom Probe Tomography. Angewandte Chemie, 2016, 128, 11339-11343.	1.6	16
32	Coke Formation in a Zeolite Crystal During the Methanolâ€ŧoâ€Hydrocarbons Reaction as Studied with Atom Probe Tomography. Angewandte Chemie - International Edition, 2016, 55, 11173-11177.	7.2	74
33	Template–Framework Interactions in Tetraethylammoniumâ€Directed Zeolite Synthesis. Angewandte Chemie, 2016, 128, 16278-16282.	1.6	13
34	Template–Framework Interactions in Tetraethylammoniumâ€Directed Zeolite Synthesis. Angewandte Chemie - International Edition, 2016, 55, 16044-16048.	7.2	58
35	Facile Synthesis, Characterization, and Catalytic Behavior of a Largeâ€Pore Zeolite with the IWV Framework. Chemistry - A European Journal, 2016, 22, 4022-4029.	1.7	24
36	High-silica, heulandite-type zeolites prepared by direct synthesis and topotactic condensation. Journal of Materials Chemistry A, 2015, 3, 12890-12897.	5.2	30

JOEL E SCHMIDT

#	Article	IF	CITATIONS
37	Facile Synthesis and Catalysis of Pure-Silica and Heteroatom LTA. Chemistry of Materials, 2015, 27, 7774-7779.	3.2	75
38	Synthesis of the RTH-type layer: the first small-pore, two dimensional layered zeolite precursor. Chemical Science, 2015, 6, 5955-5963.	3.7	34
39	Computationally-Guided Synthesis of the 8-Ring Zeolite AEI. Topics in Catalysis, 2015, 58, 410-415.	1.3	49
40	CIT-7, a crystalline, molecular sieve with pores bounded by 8 and 10-membered rings. Chemical Science, 2015, 6, 1728-1734.	3.7	40
41	Synthesis of RTH-Type Zeolites Using a Diverse Library of Imidazolium Cations. Chemistry of Materials, 2015, 27, 3756-3762.	3.2	47
42	Effect of Pore and Cage Size on the Formation of Aromatic Intermediates During the Methanol-to-Olefins Reaction. Topics in Catalysis, 2015, 58, 416-423.	1.3	31
43	Influence of Organic Structure Directing Agent Isomer Distribution on the Synthesis of SSZ-39. Chemistry of Materials, 2015, 27, 2695-2702.	3.2	57
44	Methanol-to-Olefins Catalysis with Hydrothermally Treated Zeolite SSZ-39. ACS Catalysis, 2015, 5, 6078-6085.	5.5	92
45	Facile Preparation of Aluminosilicate RTH across a Wide Composition Range Using a New Organic Structure-Directing Agent. Chemistry of Materials, 2014, 26, 7099-7105.	3.2	22
46	Synthesis of a Specified, Silica Molecular Sieve by Using Computationally Predicted Organic Structureâ€Directing Agents. Angewandte Chemie - International Edition, 2014, 53, 8372-8374.	7.2	100
47	The synthesis of aluminophosphate and germanosilicate LTA using a triquaternary structure directing agent. Microporous and Mesoporous Materials, 2014, 200, 132-139.	2.2	27
48	Expendable High Energy Density Thermal Management Material: Ammonium Carbamate. Journal of Thermophysics and Heat Transfer, 2012, 26, 345-351.	0.9	10
49	The Use of Ammonium Carbamate as a High Specific Thermal Energy Density Material for the Thermal Management of Low Grade Heat. , 2011, , .		0
50	The Use of Ammonium Carbamate as a High Energy Density Thermal Energy Storage Material. Materials Research Society Symposia Proceedings, 2011, 1325, 175.	0.1	2
51	Multidimensional nanoscopic approaches to new thermoelectric materials. , 2010, , .		2