Klement Tockner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2412991/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A global agenda for advancing freshwater biodiversity research. Ecology Letters, 2022, 25, 255-263.	3.0	95
2	Introduction to European rivers. , 2022, , 1-26.		3
3	The Danube River Basin. , 2022, , 81-180.		8
4	Combined effects of lifeâ€history traits and human impact on extinction risk of freshwater megafauna. Conservation Biology, 2021, 35, 643-653.	2.4	18
5	Urgent plea for global protection of springs. Conservation Biology, 2021, 35, 378-382.	2.4	38
6	Freshwaters: Global Distribution, Biodiversity, Ecosystem Services, and Human Pressures. , 2021, , 489-501.		2
7	Integrated Impact Assessment for Sustainable Hydropower Planning in the Vjosa Catchment (Greece,) Tj ETQq1	1 0.7843 1.6	14 rgBT /Ove
8	Global prevalence of non-perennial rivers and streams. Nature, 2021, 594, 391-397.	13.7	221
9	Drivers, Pressures and Stressors: The Societal Framework of Water Resources Management. , 2021, , 329-364.		0
10	Revisiting global trends in freshwater insect biodiversity. Wiley Interdisciplinary Reviews: Water, 2021, 8, e1506.	2.8	34
11	Impacts of loss of free-flowing rivers on global freshwater megafauna. Biological Conservation, 2021, 263, 109335.	1.9	23
12	Dynamics of ground-dwelling arthropod metacommunities in intermittent streams: The key role of dry riverbeds. Biological Conservation, 2020, 241, 108328.	1.9	18
13	Clear Language for Ecosystem Management in the Anthropocene: A Reply to Bridgewater and Hemming. BioScience, 2020, 70, 374-376.	2.2	2
14	SMART Research: Toward Interdisciplinary River Science in Europe. Frontiers in Environmental Science, 2020, 8, .	1.5	6
15	Dams and protected areas: Quantifying the spatial and temporal extent of global dam construction within protected areas. Conservation Letters, 2020, 13, e12719.	2.8	38
16	Rethinking megafauna. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192643.	1.2	35
17	Bending the Curve of Global Freshwater Biodiversity Loss: An Emergency Recovery Plan. BioScience, 2020, 70, 330-342.	2.2	553
18	The global decline of freshwater megafauna. Global Change Biology, 2019, 25, 3883-3892.	4.2	158

#	Article	IF	CITATIONS
19	A global survey of freshwater biological field stations. River Research and Applications, 2019, 35, 1314-1324.	0.7	3
20	Towards an Integrative, Eco-Evolutionary Understanding of Ecological Novelty: Studying and Communicating Interlinked Effects of Global Change. BioScience, 2019, 69, 888-899.	2.2	55
21	The Freshwater Information Platform: a global online network providing data, tools and resources for science and policy support. Hydrobiologia, 2019, 838, 1-11.	1.0	32
22	River research and applications across borders. River Research and Applications, 2019, 35, 768-775.	0.7	7
23	Flooding and hydrologic connectivity modulate community assembly in a dynamic river-floodplain ecosystem. PLoS ONE, 2019, 14, e0213227.	1.1	40
24	Future large hydropower dams impact global freshwater megafauna. Scientific Reports, 2019, 9, 18531.	1.6	96
25	Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews, 2019, 94, 849-873.	4.7	1,766
26	Simulating rewetting events in intermittent rivers and ephemeral streams: A global analysis of leached nutrients and organic matter. Global Change Biology, 2019, 25, 1591-1611.	4.2	71
27	Knowledge in the dark: scientific challenges and ways forward. Facets, 2019, 4, 423-441.	1.1	34
28	Flow intermittence and ecosystem services in rivers of the Anthropocene. Journal of Applied Ecology, 2018, 55, 353-364.	1.9	113
29	Evolutionary responses of aquatic macroinvertebrates to two contrasting flow regimes. Hydrobiologia, 2018, 808, 353-370.	1.0	15
30	Global Water Transfer Megaprojects: A Potential Solution for the Water-Food-Energy Nexus?. Frontiers in Environmental Science, 2018, 6, .	1.5	120
31	Protecting U.S. temporary waterways. Science, 2018, 361, 856-857.	6.0	29
32	Thermal discontinuities along a lowland river: The importance of urban areas and lakes. Journal of Hydrology, 2018, 564, 811-823.	2.3	17
33	Spatial and topical imbalances in biodiversity research. PLoS ONE, 2018, 13, e0199327.	1.1	56
34	The <i>Alliance for Freshwater Life</i> : A global call to unite efforts for freshwater biodiversity science and conservation. Aquatic Conservation: Marine and Freshwater Ecosystems, 2018, 28, 1015-1022.	0.9	190
35	Understanding the effects of predictability, duration, and spatial pattern of drying on benthic invertebrate assemblages in two contrasting intermittent streams. PLoS ONE, 2018, 13, e0193933.	1.1	18
36	Freshwater megafauna diversity: Patterns, status and threats. Diversity and Distributions, 2018, 24, 1395-1404.	1.9	59

#	Article	IF	CITATIONS
37	Disappearing giants: a review of threats to freshwater megafauna. Wiley Interdisciplinary Reviews: Water, 2017, 4, e1208.	2.8	61
38	<scp>IRBAS</scp> : An online database to collate, analyze, and synthesize data on the biodiversity and ecology of intermittent rivers worldwide. Ecology and Evolution, 2017, 7, 815-823.	0.8	5
39	Components and drivers of change in European freshwater fish faunas. Journal of Biogeography, 2017, 44, 1781-1790.	1.4	29
40	Non-perennial Mediterranean rivers in Europe: Status, pressures, and challenges for research and management. Science of the Total Environment, 2017, 577, 1-18.	3.9	192
41	Freshwater Megafauna: Flagships for Freshwater Biodiversity under Threat. BioScience, 2017, 67, 919-927.	2.2	68
42	How large is a river? Conceptualizing river landscape signatures and envelopes in four dimensions. Wiley Interdisciplinary Reviews: Water, 2016, 3, 313-325.	2.8	27
43	Changing river temperatures in northern Germany: trends and drivers of change. Hydrological Processes, 2016, 30, 3084-3096.	1.1	68
44	Dry riverbeds: corridors for terrestrial vertebrates. Ecosphere, 2016, 7, e01508.	1.0	33
45	Global Database on Biological Field Stations a pivotal infrastructure for environmental research, education and public information. Limnology and Oceanography Bulletin, 2016, 25, 88-88.	0.2	3
46	Responses of groundâ€dwelling arthropods to surface flow drying in channels and adjacent habitats along Mediterranean streams. Ecohydrology, 2016, 9, 1376-1387.	1.1	25
47	Biological Field Stations: A Global Infrastructure for Research, Education, and Public Engagement. BioScience, 2016, 66, 164-171.	2.2	30
48	Dissolved nitrogen release from coarse and amphipod-produced fine particulate organic matter in freshwater column. Limnology, 2016, 17, 33-46.	0.8	2
49	A Global View on Future Major Water Engineering Projects. Water Resources Development and Management, 2016, , 47-64.	0.3	6
50	Neglected Values of Major Water Engineering Projects: Ecosystem Services, Social Impacts, and Economic Valuation. Water Resources Development and Management, 2016, , 65-78.	0.3	2
51	One for All, All for One: A Global River Research Network. Eos, 2016, 97, .	0.1	15
52	Frontiers in realâ€ŧime ecohydrology – a paradigm shift in understanding complex environmental systems. Ecohydrology, 2015, 8, 529-537.	1.1	49
53	A global boom in hydropower dam construction. Aquatic Sciences, 2015, 77, 161-170.	0.6	1,512
54	Hydrological transitions drive dissolved organic matter quantity and composition in a temporary Mediterranean stream. Biogeochemistry, 2015, 123, 429-446.	1.7	46

#	Article	IF	CITATIONS
55	Edge Effects Are Important in Supporting Beetle Biodiversity in a Gravel-Bed River Floodplain. PLoS ONE, 2014, 9, e114415.	1.1	11
56	ls the unsaturated sediment a neglected habitat for riparian arthropods? Evidence from a large gravel-bed river. Global Ecology and Conservation, 2014, 2, 129-137.	1.0	9
57	Artificial light as a disturbance to lightâ€naÃ⁻ve streams. Freshwater Biology, 2014, 59, 2235-2244.	1.2	45
58	The effects of artificial lighting on adult aquatic and terrestrial insects. Freshwater Biology, 2014, 59, 368-377.	1.2	89
59	Why Should We Care About Temporary Waterways?. Science, 2014, 343, 1080-1081.	6.0	270
60	How wide is a stream? Spatial extent of the potential "stream signature―in terrestrial food webs using metaâ€analysis. Ecology, 2014, 95, 44-55.	1.5	137
61	Intermittent Rivers: A Challenge for Freshwater Ecology. BioScience, 2014, 64, 229-235.	2.2	488
62	Release of Nutrients and Organic Matter from River Floodplain Habitats: Simulating Seasonal Inundation Dynamics. Wetlands, 2013, 33, 847-859.	0.7	8
63	The contribution of lateral aquatic habitats to insect diversity along river corridors in the Alps. Landscape Ecology, 2013, 28, 1755-1767.	1.9	25
64	Environmental heterogeneity affects input, storage, and transformation of coarse particulate organic matter in a floodplain mosaic. Aquatic Sciences, 2013, 75, 335-348.	0.6	16
65	Environmental flows and water governance: managing sustainable water uses. Current Opinion in Environmental Sustainability, 2013, 5, 341-351.	3.1	198
66	Vertical hydrological exchange, and ecosystem properties and processes at two spatial scales along a floodplain river (Tagliamento, Italy). Freshwater Science, 2013, 32, 12-25.	0.9	12
67	Including the Introduction of Exotic Species in Life Cycle Impact Assessment: The Case of Inland Shipping. Environmental Science & amp; Technology, 2013, 47, 13934-13940.	4.6	30
68	Floodplain. Encyclopedia of Earth Sciences Series, 2013, , 337-338.	0.1	1
69	When the river runs dry: human and ecological values of dry riverbeds. Frontiers in Ecology and the Environment, 2012, 10, 202-209.	1.9	241
70	Freshwater Journals Unite to Boost Primary Biodiversity Data Publication. BioScience, 2012, 62, 529-530.	2.2	11
71	Soil Nitrogen Dynamics in a River Floodplain Mosaic. Journal of Environmental Quality, 2012, 41, 2033-2045.	1.0	22
72	The distribution and environmental state of vegetated islands within humanâ€impacted European rivers. Freshwater Biology, 2012, 57, 2539-2549.	1.2	15

#	Article	IF	CITATIONS
73	Linking fish assemblages and spatiotemporal thermal heterogeneity in a river-floodplain landscape using high-resolution airborne thermal infrared remote sensing and in-situ measurements. Remote Sensing of Environment, 2012, 125, 134-146.	4.6	25
74	Nitrate removal in a restored riparian groundwater system: functioning and importance of individual riparian zones. Biogeosciences, 2012, 9, 4295-4307.	1.3	15
75	Obstacles to data access for research related to climate and water: Implications for science and EU policy-making. Environmental Science and Policy, 2012, 17, 41-48.	2.4	58
76	Domesticated ecosystems and novel communities: challenges for the management of large rivers. Ecohydrology and Hydrobiology, 2011, 11, 167-174.	1.0	45
77	Heterogeneity of soil carbon pools and fluxes in a channelized and a restored floodplain section (Thur River, Switzerland). Hydrology and Earth System Sciences, 2011, 15, 1757-1769.	1.9	46
78	Spatiotemporal heterogeneity of soil and sediment respiration in a river-floodplain mosaic (Tagliamento, NE Italy). Freshwater Biology, 2011, 56, 1297-1311.	1.2	31
79	Arbuscular mycorrhizal fungi on developing islands within a dynamic river floodplain: an investigation across successional gradients and soil depth. Aquatic Sciences, 2011, 73, 35-42.	0.6	39
80	Contraction, fragmentation and expansion dynamics determine nutrient availability in a Mediterranean forest stream. Aquatic Sciences, 2011, 73, 485-497.	0.6	89
81	Terrestrial invertebrates of dry river beds are not simply subsets of riparian assemblages. Aquatic Sciences, 2011, 73, 551-566.	0.6	71
82	Preconditioning effects of intermittent stream flow on leaf litter decomposition. Aquatic Sciences, 2011, 73, 599-609.	0.6	52
83	Biological Treatment of Municipal Organic Waste using Black Soldier Fly Larvae. Waste and Biomass Valorization, 2011, 2, 357-363.	1.8	328
84	Societal Learning Needed to Face the Water Challenge. Ambio, 2011, 40, 549-553.	2.8	39
85	The influence of artificial light on stream and riparian ecosystems: questions, challenges, and perspectives. Ecosphere, 2011, 2, art122.	1.0	133
86	Characterization of spatial heterogeneity in underwater soundscapes at the river segment scale. Limnology and Oceanography, 2011, 56, 2319-2333.	1.6	28
87	Thermal Heterogeneity in River Floodplains. Ecosystems, 2010, 13, 727-740.	1.6	78
88	Spatial variation in abiotic and biotic factors in a floodplain determine anuran body size and growth rate at metamorphosis. Oecologia, 2010, 163, 637-649.	0.9	28
89	Instream release of dissolved organic matter from coarse and fine particulate organic matter of different origins. Biogeochemistry, 2010, 100, 151-165.	1.7	33
90	A fieldâ€based investigation to examine underwater soundscapes of five common river habitats. Hydrological Processes, 2010, 24, 3146-3156.	1.1	44

#	Article	IF	CITATIONS
91	River scienceâ€"What has it contributed to general ecological theory?. River Research and Applications, 2010, 26, 1-4.	0.7	6
92	River flood plains are model ecosystems to test general hydrogeomorphic and ecological concepts. River Research and Applications, 2010, 26, 76-86.	0.7	147
93	Differential response to abiotic conditions and predation risk rather than competition avoidance determine breeding site selection by anurans. Ecography, 2010, 33, 887-895.	2.1	43
94	Emerging concepts in temporaryâ€river ecology. Freshwater Biology, 2010, 55, 717-738.	1.2	552
95	Multiple stressors in coupled river–floodplain ecosystems. Freshwater Biology, 2010, 55, 135-151.	1.2	337
96	The effects of alterations in temperature and flow regime on organic carbon dynamics in Mediterranean river networks. Global Change Biology, 2010, 16, 2638-2650.	4.2	41
97	The Dark Side of Light: A Transdisciplinary Research Agenda for Light Pollution Policy. Ecology and Society, 2010, 15, .	1.0	375
98	Light pollution as a biodiversity threat. Trends in Ecology and Evolution, 2010, 25, 681-682.	4.2	592
99	Managing the world's most international river: the Danube River Basin. Marine and Freshwater Research, 2010, 61, 736.	0.7	55
100	Effects of Hydrologic Alterations on the Ecological Quality of River Ecosystems. Handbook of Environmental Chemistry, 2009, , 15-39.	0.2	30
101	Differential resource selection within shared habitat types across spatial scales in sympatric toads. Ecology, 2009, 90, 3430-3444.	1.5	28
102	The Danube River Basin. , 2009, , 59-112.		66
103	A flume experiment to examine underwater sound generation by flowing water. Aquatic Sciences, 2009, 71, 449-462.	0.6	35
104	Linkages and feedbacks in highly dynamic alpine fluvial systems. Aquatic Sciences, 2009, 71, 251-252.	0.6	1
105	Understanding reference processes: linkages between river flows, sediment dynamics and vegetated landforms along the Tagliamento River, Italy. River Research and Applications, 2009, 25, 501-516.	0.7	121
106	Surface–subsurface water exchange rates along alluvial river reaches control the thermal patterns in an Alpine river network. Freshwater Biology, 2009, 54, 306-320.	1.2	40
107	Behaviorâ€Based Scale Definitions for Determining Individual Space Use: Requirements of Two Amphibians. American Naturalist, 2009, 173, 60-71	1.0	34
108	Conversion of organic material by black soldier fly larvae: establishing optimal feeding rates. Waste Management and Research, 2009, 27, 603-610.	2.2	496

#	Article	IF	CITATIONS
109	Ural River Basin. , 2009, , 673-684.		Ο
110	Introduction to European Rivers. , 2009, , 1-21.		62
111	Riparian arthropod responses to flow regulation and river channelization. Journal of Applied Ecology, 2008, 45, 894-903.	1.9	85
112	Leaf-decomposition heterogeneity across a riverine floodplain mosaic. Aquatic Sciences, 2008, 70, 337-346.	0.6	72
113	Predicting Carbon and Nutrient Transformations in Tidal Freshwater Wetlands of the Hudson River. Ecosystems, 2008, 11, 790-802.	1.6	27
114	Temperature dependence of stream benthic respiration in an Alpine river network under global warming. Freshwater Biology, 2008, 53, 2076-2088.	1.2	111
115	Riparian Wetlands of Tropical Streams. , 2008, , 199-217.		25
116	Chemical properties, microbial respiration, and decomposition of coarse and fine particulate organic matter. Journal of the North American Benthological Society, 2008, 27, 664-673.	3.0	56
117	Effect of transmitter mass and tracking duration on body mass change of two anuran species. Amphibia - Reptilia, 2008, 29, 263-269.	0.1	8
118	Flood plains: critically threatened ecosystems. , 2008, , 45-62.		113
119	Cotton strips as a leaf surrogate to measure decomposition in river floodplain habitats. Journal of the North American Benthological Society, 2007, 26, 70-77.	3.0	74
120	Concepts of decision support for river rehabilitation. Environmental Modelling and Software, 2007, 22, 188-201.	1.9	107
121	A strategy to assess river restoration success. Freshwater Biology, 2007, 52, 752-769.	1.2	203
122	FLOOD-PULSE AND RIVERSCAPE DYNAMICS IN A BRAIDED GLACIAL RIVER. Ecology, 2006, 87, 704-716.	1.5	123
123	Consumer-specific responses to riverine subsidy pulses in a riparian arthropod assemblage. Freshwater Biology, 2006, 51, 1103-1115.	1.2	88
124	The role of timing, duration, and frequency of inundation in controlling leaf litter decomposition in a river-floodplain ecosystem (Tagliamento, northeastern Italy). Oecologia, 2006, 147, 501-509.	0.9	129
125	Species diversity and functional assessment of macroinvertebrate communities in Austrian rivers. Limnology, 2006, 7, 63-74.	0.8	20
126	River and Wetland Restoration: Lessons from Japan. BioScience, 2006, 56, 419.	2.2	159

#	Article	IF	CITATIONS
127	Restoring Lateral Connections Between Rivers and Floodplains: Lessons from Rehabilitation Projects. , 2006, , 15-32.		9

128 ãf¨ãf¼ãfãffãfʿã,'ä,å;ƒãëã⊷ãŸå...^進å>½ã«ãŠãʿã,‹æ²³å·å¾©å...fã®ç¾çжãëæ—¥æœ¬ã®èª2題. Ecology and C0xil Enginæring, 2000

129	"Concave islands― Habitat heterogeneity of parafluvial ponds in a gravel-bed river. Wetlands, 2005, 25, 26-37.	0.7	42
130	Lateral organization of aquatic invertebrates along the corridor of a braided floodplain river. Journal of the North American Benthological Society, 2005, 24, 934-954.	3.0	79
131	Stating mechanisms and refining criteria for ecologically successful river restoration: a comment on Palmer etÂal. (2005). Journal of Applied Ecology, 2005, 42, 218-222.	1.9	90
132	Aquatic Terrestrial Linkages Along a Braided-River: Riparian Arthropods Feeding on Aquatic Insects. Ecosystems, 2005, 8, 748-759.	1.6	246
133	Present state of rivers and streams in Japan. River Research and Applications, 2005, 21, 93-112.	0.7	149
134	Effects of deposited wood on biocomplexity of river corridors. Frontiers in Ecology and the Environment, 2005, 3, 377-382.	1.9	245
135	Effects of riparian arthropod predation on the biomass and abundance of aquatic insect emergence. Journal of the North American Benthological Society, 2005, 24, 395-402.	3.0	72
136	Effects of Deposited Wood on Biocomplexity of River Corridors. Frontiers in Ecology and the Environment, 2005, 3, 377.	1.9	3
137	Drift benthos relationships in the seasonal colonization dynamics of alpine streams. Archiv Für Hydrobiologie, 2004, 160, 447-470.	1.1	25
138	Sources and distribution of organic carbon and nitrogen in the Tagliamento River, Italy. Aquatic Sciences, 2004, 66, 103-116.	0.6	28
139	The Tagliamento River: A model ecosystem of European importance. Aquatic Sciences, 2003, 65, 239-253.	0.6	210
140	Habitat Structure and Trichoptera Diversity in Two Headwater Flood Plains, N.E. Italy. International Review of Hydrobiology, 2003, 88, 255-273.	0.5	19
141	Habitat change in braided flood plains (Tagliamento, NE-Italy). Freshwater Biology, 2003, 48, 1799-1812.	1.2	114
142	Large Wood Dynamics of Complex Alpine River Floodplains. Journal of the North American Benthological Society, 2003, 22, 35-50.	3.0	40
143	Spatio-temporal patterns of benthic invertebrates along the continuum of a braided Alpine river. Archiv Für Hydrobiologie, 2003, 158, 431-460.	1.1	22
144	Nutrients and organic matter in a glacial river—floodplain system (Val Roseg, Switzerland). Limnology and Oceanography, 2002, 47, 266-277.	1.6	111

#	Article	IF	CITATIONS
145	Riverine flood plains: present state and future trends. Environmental Conservation, 2002, 29, 308-330.	0.7	1,589
146	Aquatic Habitat Dynamics along a Braided Alpine River Ecosystem (Tagliamento River, Northeast Italy). Ecosystems, 2002, 5, 0802-0814.	1.6	141
147	Seasonal patterns in macroinvertebrate drift and seston transport in streams of an alpine glacial flood plain. Freshwater Biology, 2002, 47, 985-993.	1.2	25
148	Riverine landscape diversity. Freshwater Biology, 2002, 47, 517-539.	1.2	854
149	A landscape perspective of surface-subsurface hydrological exchanges in river corridors. Freshwater Biology, 2002, 47, 621-640.	1.2	277
150	Riverine landscapes: an introduction. Freshwater Biology, 2002, 47, 497-500.	1.2	49
151	The fauna of dynamic riverine landscapes. Freshwater Biology, 2002, 47, 661-677.	1.2	220
152	Landscape ecology: a framework for integrating pattern and process in river corridors. Landscape Ecology, 2002, 17, 35-45.	1.9	141
153	Thermal heterogeneity along a braided floodplain river (Tagliamento River, northeastern Italy). Canadian Journal of Fisheries and Aquatic Sciences, 2001, 58, 2359-2373.	0.7	114
154	Invertebrates in Freshwater Wetlands of North America. Freshwater Biology, 2000, 45, 103-104.	1.2	0
155	Physico-chemical heterogeneity in a glacial riverscape. Landscape Ecology, 2000, 15, 679-695.	1.9	83
156	Wood storage within the active zone of a large European gravel-bed river. Geomorphology, 2000, 34, 55-72.	1.1	121
157	Shifting Dominance of Subcatchment Water Sources and Flow Paths in a Glacial Floodplain, Val Roseg, Switzerland. Arctic, Antarctic, and Alpine Research, 1999, 31, 135-150.	0.4	74
158	Hydrological connectivity, and the exchange of organic matter and nutrients in a dynamic river-floodplain system (Danube, Austria). Freshwater Biology, 1999, 41, 521-535.	1.2	469
159	A conceptual model of vegetation dynamics on gravel bars of a large Alpine river. Wetlands Ecology and Management, 1999, 7, 141-153.	0.7	168
160	Restoration of floodplain rivers: The â€~Danube restoration project'. River Research and Applications, 1999, 15, 231-244.	1.2	149
161	Restoration of floodplain rivers: The †Danube restoration project'. , 1999, 15, 231.		1
162	Shifting Dominance of Subcatchment Water Sources and Flow Paths in a Glacial Floodplain, Val Roseg, Switzerland. Arctic, Antarctic, and Alpine Research, 1999, 31, 135.	0.4	72

#	Article	IF	CITATIONS
163	Ecological Aspects of the Restoration Strategy for a River-Floodplain System on the Danube River in Austria. Global Ecology and Biogeography Letters, 1997, 6, 321.	0.6	62
164	Aquatic–Terrestrial Subsidies along River Corridors. , 0, , 57-73.		5
165	Riverine flood plains: present state and future trends. , 0, .		1
166	Science and Management of Intermittent Rivers and Ephemeral Streams (SMIRES). Research Ideas and Outcomes, 0, 3, e21774.	1.0	33