Dongshan Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2412962/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Tuning Conjugated Polymer Chain Packing for Stretchable Semiconductors. Advanced Materials, 2022, 34, e2104747.	11.1	47
2	Layered double hydroxide-derived Fe-doped NiSe cathode towardÂstable and high-energy aluminum storage. Materials Today Energy, 2022, 24, 100940.	2.5	4
3	Observation of Stepwise Ultrafast Crystallization Kinetics of Donor–Acceptor Conjugated Polymers and Correlation with Field Effect Mobility. Chemistry of Materials, 2021, 33, 1637-1647.	3.2	17
4	Influence of sideâ \in chain isomerization on the isothermal crystallization kinetics of poly(3â \in alkylthiophenes). Journal of Materials Research, 2021, 36, 191-202.	1.2	8
5	Influence of side-chain isomerization on the isothermal crystallization kinetics of poly(3-alkylthiophenes). Journal of Materials Research, 2021, 36, 1-12.	1.2	2
6	Tacky Elastomers to Enable Tearâ€Resistant and Autonomous Selfâ€Healing Semiconductor Composites. Advanced Functional Materials, 2020, 30, 2000663.	7.8	85
7	Ultrasmall SnO ₂ nanocrystals embedded in porous carbon as potassium ion battery anodes with long-term cycling performance. New Journal of Chemistry, 2020, 44, 11678-11683.	1.4	16
8	Multiamorphous Phases in Diketopyrrolopyrrole-Based Conjugated Polymers: From Bulk to Ultrathin Films. Macromolecules, 2020, 53, 4480-4489.	2.2	18
9	Characterization of conformational transition of polymers with low molecular weights in solutions by fluorescence resonance energy transfer. Polymer, 2020, 190, 122217.	1.8	2
10	The Critical Role of Electronâ€Donating Thiophene Groups on the Mechanical and Thermal Properties of Donor–Acceptor Semiconducting Polymers. Advanced Electronic Materials, 2019, 5, 1800899.	2.6	89
11	Characterization of Hydrogen Bonding Formation and Breaking in Semiconducting Polymers under Mechanical Strain. Macromolecules, 2019, 52, 2476-2486.	2.2	54
12	Multi-scale ordering in highly stretchable polymer semiconducting films. Nature Materials, 2019, 18, 594-601.	13.3	251
13	A thin TiO ₂ NTs/GO hybrid membrane applied as an interlayer for lithium–sulfur batteries. RSC Advances, 2018, 8, 429-434.	1.7	29
14	A high-performance tin dioxide@carbon anode with a super high initial coulombic efficiency via a primary cell prelithiation process. Journal of Alloys and Compounds, 2018, 740, 830-835.	2.8	14
15	Micron-sized iron-oxide secondary particles as anode material for high volumetric-energy-density of lithium-ion batteries. Materials Today Energy, 2018, 7, 80-86.	2.5	12
16	Molecular weight and interfacial effect on the kinetic stabilization of ultrathin polystyrene films. Polymer, 2018, 134, 204-210.	1.8	6
17	Conformational Transitions of Polymer Chains in Solutions Characterized by Fluorescence Resonance Energy Transfer. Polymers, 2018, 10, 1007.	2.0	8
18	Probing the Viscoelastic Property of Pseudo Freeâ€Standing Conjugated Polymeric Thin Films. Macromolecular Rapid Communications, 2018, 39, e1800092.	2.0	79

Dongshan Zhou

#	Article	IF	CITATIONS
19	Interplay between Free Surface and Solid Interface Nucleation on Two-Step Crystallization of Poly(ethylene terephthalate) Thin Films Studied by Fast Scanning Calorimetry. Macromolecules, 2018, 51, 5209-5218.	2.2	26
20	Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science, 2017, 355, 59-64.	6.0	897
21	Associated inter―and intrachain conformational transitions in polystyrene solutions. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 1373-1379.	2.4	5
22	A Coldâ€Flow Process for Fabricating a Highâ€Volumetricâ€Energyâ€Density Anode for Lithiumâ€ion Batteries. Advanced Materials Technologies, 2017, 2, 1600156.	3.0	8
23	Synthesis of Siteâ€Specific Dyeâ€Labeled Polymer via Atom Transfer Radical Polymerization (ATRP) for Quantitative Characterization of the Wellâ€Defined Interchain Distance. Macromolecular Rapid Communications, 2017, 38, 1600568.	2.0	8
24	Synthesis of polymer with defined fluorescent end groups via reversible addition fragmentation transfer polymerization for characterizing the conformations of polymer chains in solutions. Journal of Polymer Science Part A, 2016, 54, 2413-2420.	2.5	15
25	Synthesis of Heterotelechelic α,ω-Dye-Labeled Polymer and Energy Transfer between the Chain Ends. Macromolecules, 2016, 49, 8274-8281.	2.2	11
26	Effect of geometric curvature on vitrification behavior for polymer nanotubes confined in anodic aluminum oxide templates. Physical Review E, 2015, 92, 032306.	0.8	31
27	Facile synthesis of tin dioxide-based high performance anodes for lithium ion batteries assisted by graphene gel. Journal of Power Sources, 2015, 295, 41-46.	4.0	21
28	The Optimized Tin Dioxide-Carbon Nanocomposites as High-performance Anode for Lithium ion Battery with a long cycle life. Electrochimica Acta, 2015, 167, 69-74.	2.6	14
29	Nanoporous iron oxide@carbon composites with low carbon content as high-performance anodes for lithium-ion batteries. RSC Advances, 2015, 5, 89092-89098.	1.7	5
30	Sensitive Characterization of the Influence of Substrate Interfaces on Supported Thin Films. Macromolecules, 2014, 47, 6365-6372.	2.2	42
31	Effect of Molecular Chain Architecture on Dynamics of Polymer Thin Films Measured by the Ac-Chip Calorimeter. Macromolecules, 2014, 47, 3497-3501.	2.2	16
32	Thickness Dependence of Glass Transitions Measured by AC-Chip Calorimetry in Films with Controlled Interface. Macromolecules, 2013, 46, 7006-7011.	2.2	18
33	Calorimetric Glass Transition of Poly(2,6-dimethyl-1,5-phenylene oxide) Thin Films. Macromolecules, 2008, 41, 7662-7666.	2.2	65