Sergio M CorrÃ^aa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2412657/publications.pdf Version: 2024-02-01

SERCIO M CORRÃA

#	Article	IF	CITATIONS
1	Amazonia as a carbon source linked to deforestation and climate change. Nature, 2021, 595, 388-393.	27.8	371
2	Aromatic hydrocarbons emissions in diesel and biodiesel exhaust. Atmospheric Environment, 2006, 40, 6821-6826.	4.1	198
3	Carbonyl emissions in diesel and biodiesel exhaust. Atmospheric Environment, 2008, 42, 769-775.	4.1	183
4	The impact of BTEX emissions from gas stations into the atmosphere. Atmospheric Pollution Research, 2012, 3, 163-169.	3.8	109
5	Formaldehyde and acetaldehyde in a high traffic street of Rio de Janeiro, Brazil. Atmospheric Environment, 2003, 37, 23-29.	4.1	85
6	Polycyclic aromatic hydrocarbons in diesel emission, diesel fuel and lubricant oil. Fuel, 2016, 185, 925-931.	6.4	75
7	Prediction of ozone concentration in tropospheric levels using artificial neural networks and support vector machine at Rio de Janeiro, Brazil. Atmospheric Environment, 2014, 98, 98-104.	4.1	70
8	Five years of formaldehyde and acetaldehyde monitoring in the Rio de Janeiro downtown area – Brazil. Atmospheric Environment, 2010, 44, 2302-2308.	4.1	59
9	Ozone precursors for the São Paulo Metropolitan Area. Science of the Total Environment, 2010, 408, 1612-1620.	8.0	57
10	Formaldehyde and acetaldehyde associated with the use of natural gas as a fuel for light vehicles. Atmospheric Environment, 2005, 39, 4513-4518.	4.1	47
11	Alkyl polycyclic aromatic hydrocarbons emissions in diesel/biodiesel exhaust. Atmospheric Environment, 2014, 96, 107-116.	4.1	43
12	Genotoxicity of Polycyclic Aromatic Hydrocarbons and Nitro-Derived in Respirable Airborne Particulate Matter Collected from Urban Areas of Rio de Janeiro (Brazil). BioMed Research International, 2013, 2013, 1-9.	1.9	38
13	Determining VOCs Reactivity for Ozone Forming Potential in the Megacity of São Paulo. Aerosol and Air Quality Research, 2018, 18, 2460-2474.	2.1	32
14	Main ozone-forming VOCs in the city of Sao Paulo: observations, modelling and impacts. Air Quality, Atmosphere and Health, 2017, 10, 421-435.	3.3	28
15	The relationship between solvent use and BTEX concentrations in occupational environments. Environmental Monitoring and Assessment, 2016, 188, 608.	2.7	26
16	Role of carbonyls and aromatics in the formation of tropospheric ozone in Rio de Janeiro, Brazil. Environmental Monitoring and Assessment, 2016, 188, 289.	2.7	25
17	Amazon methane budget derived from multi-year airborne observations highlights regional variations in emissions. Communications Earth & Environment, 2021, 2, .	6.8	24
18	A minimum set of ozone precursor volatile organic compounds in an urban environment. Atmospheric Pollution Research, 2018, 9, 369-378.	3.8	23

Sergio M CorrÃ^aA

#	Article	IF	CITATIONS
19	Mercaptans emissions in diesel and biodiesel exhaust. Atmospheric Environment, 2008, 42, 6721-6725.	4.1	22
20	Polycyclic aromatic hydrocarbon emissions in diesel exhaust using gas chromatography–mass spectrometry with programmed temperature vaporization and large volume injection. Atmospheric Environment, 2015, 103, 222-230.	4.1	21
21	Determination of size-segregated elements in diesel-biodiesel blend exhaust emissions. Environmental Science and Pollution Research, 2018, 25, 18121-18129.	5.3	18
22	BTEX emissions from flex fuel motorcycles. Atmospheric Pollution Research, 2017, 8, 1160-1169.	3.8	17
23	Atmospheric Impacts due to Anthropogenic Activities in Remote Areas: The Case Study of Admiralty Bay/King George Island/Antarctic Peninsula. Water, Air, and Soil Pollution, 2008, 188, 67-80.	2.4	16
24	A two-year monitoring program of aromatic hydrocarbons in Rio de Janeiro downtown area. Journal of the Brazilian Chemical Society, 2007, 18, 539-543.	0.6	15
25	Prediction of health risk due to polycyclic aromatic hydrocarbons present in urban air in Rio de Janeiro, Brazil. Genetics and Molecular Research, 2013, 12, 3992-4002.	0.2	15
26	Volatile Organic Compounds in the Atmosphere of the Botanical Garden of the City of Rio de Janeiro: A Preliminary Study. Bulletin of Environmental Contamination and Toxicology, 2016, 97, 653-658.	2.7	14
27	Emission of Volatile Organic Compounds and Greenhouse Gases from the Anaerobic Bioremediation of Soils Contaminated with Diesel. Water, Air, and Soil Pollution, 2014, 225, 1.	2.4	13
28	Isoprene Emissions and Ozone Formation in Urban Conditions: A Case Study in the City of Rio de Janeiro. Bulletin of Environmental Contamination and Toxicology, 2018, 100, 184-188.	2.7	12
29	Understanding ozone formation at two islands of Rio de Janeiro, Brazil. Atmospheric Pollution Research, 2018, 9, 278-288.	3.8	12
30	Kinetic and mechanistic reactivity. Isoprene impact on ozone levels in an urban area near Tijuca Forest, Rio de Janeiro. Bulletin of Environmental Contamination and Toxicology, 2016, 97, 781-785.	2.7	11
31	Understanding high tropospheric ozone episodes in Bangu, Rio de Janeiro, Brazil. Environmental Monitoring and Assessment, 2020, 192, 156.	2.7	10
32	Simulation of Air Pollution from Mobile Source Emissions in the City of Rio de Janeiro. Journal of the Brazilian Chemical Society, 1999, 10, 203-208.	0.6	9
33	Volatile organic compound emissions from a landfill, plume dispersion and the tropospheric ozone modeling. Journal of the Brazilian Chemical Society, 2012, 23, 496-504.	0.6	9
34	BTEX Emissions from the Largest Landfill in Operation in Rio de Janeiro, Brazil. Bulletin of Environmental Contamination and Toxicology, 2017, 98, 624-631.	2.7	9
35	Aerosol distribution over Brazil with ECHAM-HAM and CAM5-MAM3 simulations and its comparison with ground-based and satellite data. Atmospheric Pollution Research, 2017, 8, 718-728.	3.8	9
36	Evaluating Carbon Monoxide and Aerosol Optical Depth Simulations from CAM-Chem Using Satellite Observations. Remote Sensing, 2021, 13, 2231.	4.0	9

Sergio M CorrÃ≜a

#	Article	IF	CITATIONS
37	Preliminary Study of Ambiente Levels and Exposure to BTEX in the Rio de Janeiro Olympic Metropolitan Region, Brazil. Bulletin of Environmental Contamination and Toxicology, 2020, 104, 786-791.	2.7	8
38	Determination of size-segregated polycyclic aromatic hydrocarbon and its nitro and alkyl analogs in emissions from diesel-biodiesel blends. Fuel, 2021, 283, 118912.	6.4	8
39	Measurements of emissions from motorcycles and modeling its impact on air quality. Journal of the Brazilian Chemical Society, 2013, 24, 375-384.	0.6	8
40	Understanding Ozone Concentrations During Weekdays and Weekends in the Urban Area of the City of Rio de Janeiro. Journal of the Brazilian Chemical Society, 2015, , .	0.6	8
41	Biomonitoring of tunnel workers exposed to heavy air pollution in Rio de Janeiro, Brazil. Air Quality, Atmosphere and Health, 2016, 9, 881-886.	3.3	7
42	EstatÃstica Multivariada Aplicada ao Estudo da Qualidade do Ar. Revista Brasileira De Meteorologia, 2017, 32, 235-241.	0.5	7
43	Polycyclic aromatic hydrocarbon patterns in the city of Rio de Janeiro. Air Quality, Atmosphere and Health, 2018, 11, 581-590.	3.3	7
44	Particulate matter emissions from flex-fuel vehicles with direct fuel injection. Atmospheric Pollution Research, 2021, 12, 101078.	3.8	7
45	Seedling Emergence and Biomass Growth of Oleaginous and Other Tropical Species in Oil Contaminated Soil. The Open Waste Management Journal, 2010, 3, 26-32.	2.8	7
46	Avaliação ambiental de BTEX (benzeno, tolueno, etilbenzeno, xilenos) e biomarcadores de genotoxicidade em trabalhadores de postos de combustÃveis. Revista Brasileira De Saúde Ocupacional, 2017, 42, .	0.2	6
47	Main Greenhouse Gases levels in the largest secondary urban forest in the world. Atmospheric Pollution Research, 2019, 10, 564-570.	3.8	6
48	BTEX no interior de salas de aula de spinning. Cadernos Saude Coletiva, 2014, 22, 218-220.	0.6	6
49	Emission of Volatile Organic Compounds and Greenhouse Gases from the Aerobic Bioremediation of Soils Contaminated with Diesel. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	5
50	Forecasts of tropospheric ozone in the Metropolitan Area of Rio de Janeiro based on missing data imputation and multivariate calibration techniques. Environmental Monitoring and Assessment, 2021, 193, 531.	2.7	5
51	Principais carbonilas no ar de locais públicos no Rio de Janeiro. Quimica Nova, 2008, 31, 249-253.	0.3	4
52	Measurements of Emissions from Motorcycles and Modeling Its Impact on Air Quality. Journal of the Brazilian Chemical Society, 2013, , .	0.6	4
53	Emissão de gases do efeito estufa de um aterro sanitário no Rio de Janeiro. Engenharia Sanitaria E Ambiental, 2018, 23, 101-111.	0.5	4
54	Emissions of Criteria and Non-Criteria Pollutants by a Flex-Fuel Motorcycle. Journal of the Brazilian Chemical Society, 2016, , .	0.6	4

Sergio M CorrÃ≜a

#	Article	IF	CITATIONS
55	Measurement of Legislated Emissions, Unburned Alcohol and Potential Formation of Ozone from a Light Flex-Fuel Vehicle. , 2014, , .		3
56	The Effect of Fuel Sulfur Content on Ammonia, Aldehyde and Regulated Emissions Emitted from a Euro III Motorcycle. , 2016, , .		3
57	Criteria and aldehyde emissions from a diesel Euro V engine using diesel/biodiesel blends in Brazil. Environmental Science and Pollution Research, 2019, 26, 12470-12480.	5.3	3
58	Speciation Analysis of Ozone Precursor Volatile Organic Compounds in the Air Basins of the Rio de Janeiro Metropolitan Area. Revista Virtual De Quimica, 2017, 9, 1887-1909.	0.4	3
59	Determination of Greenhouse Gases in Five Capitals in Different Brazilian Biomes. Revista Virtual De Quimica, 2017, 9, 2032-2051.	0.4	3
60	Comparison of the sensitivity of strains of Salmonella enterica serovar Typhimurium in the detection of mutagenicity induced by nitroarenes. Genetics and Molecular Research, 2014, 13, 3667-3672.	0.2	3
61	Potential source regions of biogenic aerosol number concentration apportioning at King George Island, Antarctic Peninsula. Antarctic Science, 2010, 22, 580-588.	0.9	2
62	Impacto ambiental de kartódromos situados na cidade do Rio de Janeiro: monitoramento de BTEX no ar e do nÃvel de ruÃdo. Quimica Nova, 2012, 35, 1865-1869.	0.3	2
63	Preliminary Study by Environmental Indicator Measurements of Sediments in a Mangrove Forest in Ilha Grande Bay, Rio de Janeiro, Southeastern Brazil. Journal of Environmental Protection, 2012, 03, 731-739.	0.7	2
64	Atmospheric odor dispersion from oil refinery flare system: a case study. Environmental Monitoring and Assessment, 2022, 194, .	2.7	2
65	Aromatic Volatile Organic Compounds Emissions in a Tire Recapping Unit. Bulletin of Environmental Contamination and Toxicology, 2004, 72, 255-260.	2.7	1
66	A simulation study about the impact of biodiesel use on the atmosphere of Rio de Janeiro city. Brazilian Journal of Chemical Engineering, 2017, 34, 727-738.	1.3	1
67	Determination of trace elements in the nanometer, ultrafine, fine, and coarse particulate matters in an area affected by light vehicular emissions in the city of Rio de Janeiro. Environmental Monitoring and Assessment, 2021, 193, 92.	2.7	1
68	Determination of CO ₂ , CH ₄ and N ₂ O: a Case Study for the City of Rio de Janeiro Using a New Sampling Method. Journal of the Brazilian Chemical Society, 2015, , .	0.6	1
69	MODELOS FOTOQUÃMICOS SIMPLES COMO FERRAMENTA PARA O GERENCIAMENTO DA QUALIDADE DO AR. Quimica Nova, 2019, , .	0.3	1
70	IMPACTOS DOS BTEX EM ÃREAS URBANAS DA CIDADE DO RIO DE JANEIRO. Quimica Nova, 2020, , .	0.3	1
71	CARACTERIZAÇÃO DA EMISSÃO DE GASES DE EFEITO ESTUFA DO LIXÃO EM CABO FRIO, RJ. Revista Internacional De Ciências, 2022, 12, 26-40.	0.1	1
72	Estudo da formação de ozônio em câmara de reação por motociclos flex fuel. , 0, , .		0

5

#	Article	IF	CITATIONS
73	Influence of Biodiesel on Vehicle Emissions and Ozone Formation. , 0, , .		0
74	Impact of motorcycles on urban tropospheric ozone. WIT Transactions on Ecology and the Environment, 2013, , .	0.0	0
75	Biomonitoring of genotoxic risk of workers exposed to heavy air pollution. , 2015, , .		0
76	Ozone Forming Potential at Rio de Janeiro Petrochemical Complex, Brazil. Revista Virtual De Quimica, 2016, 8, .	0.4	0
77	Avaliação da eficiência do método TO-15 para determinação de compostos orgânicos voláteis em condições tÃpicas de ambiente urbano. Quimica Nova, 0, , .	0.3	0
78	Assessment of the water quality of rainfall collected from State University of Rio de Janeiro in the Maracanã district. International Journal of Environmental Engineering, 2021, 11, 132.	0.1	0