Juan-Carlos Cano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2412645/publications.pdf

Version: 2024-02-01

308 papers 5,747 citations

35 h-index 59 g-index

309 all docs 309 docs citations

309 times ranked 4775 citing authors

#	Article	IF	CITATIONS
1	Al-Enabled Autonomous Drones for Fast Climate Change Crisis Assessment. IEEE Internet of Things Journal, 2022, 9, 7286-7297.	8.7	12
2	NOTA: a novel online teaching and assessment scheme using Blockchain for emergency cases. Education and Information Technologies, 2022, 27, 115-132.	5.7	22
3	A LoRa-based protocol for connecting IoT edge computing nodes to provide small-data-based services. Digital Communications and Networks, 2022, 8, 257-266.	5.0	10
4	Flood Detection Using Real-Time Image Segmentation from Unmanned Aerial Vehicles on Edge-Computing Platform. Remote Sensing, 2022, 14, 223.	4.0	19
5	Improving UAV Mission Quality and Safety through Topographic Awareness. Drones, 2022, 6, 74.	4.9	1
6	Improving Air Quality in Urban Recreational Areas through Smart Traffic Management. Sustainability, 2022, 14, 3445.	3.2	3
7	Safe and Efficient Take-Off of VTOL UAV Swarms. Electronics (Switzerland), 2022, 11, 1128.	3.1	4
8	Performance evaluation of edge-computing platforms for the prediction of low temperatures in agriculture using deep learning. Journal of Supercomputing, 2021, 77, 818-840.	3.6	58
9	WATERSensing: A Smart Warning System for Natural Disasters in Spain. IEEE Consumer Electronics Magazine, 2021, 10, 89-96.	2.3	7
10	Collaborative Solutions for Unmanned Aerial Vehicles. Internet of Things, 2021, , 121-137.	1.7	0
11	Towards a Sustainable City for Cyclists: Promoting Safety through a Mobile Sensing Application. Sensors, 2021, 21, 2116.	3.8	5
12	A novel resilient and reconfigurable swarm management scheme. Computer Networks, 2021, 194, 108119.	5.1	8
13	Use of Receiver Operating Characteristic Curve to Evaluate a Street Lighting Control System. IEEE Access, 2021, 9, 144660-144675.	4.2	6
14	Assessing the impact of road traffic constraints on pollution. , 2021, , .		1
15	Evaluation of Clustering Algorithms on GPU-Based Edge Computing Platforms. Sensors, 2020, 20, 6335.	3.8	12
16	Efficient and coordinated vertical takeoff of UAV swarms. , 2020, , .		11
17	Mobile crowdsensing approaches to address the COVIDâ€19 pandemic in Spain. IET Smart Cities, 2020, 2, 58-63.	3.1	46
18	Evaluating the Effectiveness of COVID-19 Bluetooth-Based Smartphone Contact Tracing Applications. Applied Sciences (Switzerland), 2020, 10, 7113.	2.5	39

#	Article	IF	CITATIONS
19	Providing resilience to UAV swarms following planned missions. , 2020, , .		4
20	Social Network Analysis Based Localization Technique with Clustered Closeness Centrality for 3D Wireless Sensor Networks. Electronics (Switzerland), 2020, 9, 738.	3.1	23
21	Evaluating How Smartphone Contact Tracing Technology Can Reduce the Spread of Infectious Diseases: The Case of COVID-19. IEEE Access, 2020, 8, 99083-99097.	4.2	115
22	Detecting Vehicles' Relative Position on Two-Lane Highways Through a Smartphone-Based Video Overtaking Aid Application. Mobile Networks and Applications, 2020, 25, 1084-1094.	3.3	3
23	Optimising data diffusion while reducing local resources consumption in Opportunistic Mobile Crowdsensing. Pervasive and Mobile Computing, 2020, 67, 101201.	3.3	11
24	Optimising message broadcasting in opportunistic networks. Computer Communications, 2020, 157, 162-178.	5.1	8
25	UAV Mobility model for dynamic UAV-to-car communications in 3D environments. Ad Hoc Networks, 2020, 107, 102193.	5 . 5	10
26	FUDGE., 2020,,.		6
27	Three Dimensional UAV Positioning for Dynamic UAV-to-Car Communications. Sensors, 2020, 20, 356.	3.8	17
28	A Centralized Route-Management Solution for Autonomous Vehicles in Urban Areas. Electronics (Switzerland), 2019, 8, 722.	3.1	53
29	Leveraging a Publish/Subscribe Fog System to Provide Collision Warnings in Vehicular Networks. Sensors, 2019, 19, 3852.	3.8	2
30	Indoor Vehicles Geolocalization Using LoRaWAN. Future Internet, 2019, 11, 124.	3.8	22
31	Using the smartphone camera as a sensor for safety applications. , 2019, , .		2
32	A Distributed Approach for Collision Avoidance between Multirotor UAVs Following Planned Missions. Sensors, 2019, 19, 2404.	3.8	17
33	FSF: Applying Machine Learning Techniques to Data Forwarding in Socially Selfish Opportunistic Networks. Sensors, 2019, 19, 2374.	3.8	7
34	Evaluating UAV-to-Car Communications Performance: From Testbed to Simulation Experiments. , 2019, , .		15
35	Accurate Landing of Unmanned Aerial Vehicles Using Ground Pattern Recognition. Electronics (Switzerland), 2019, 8, 1532.	3.1	53
36	optimizing UAV-to-Car Communications in 3D Environments Through Dynamic UAV Positioning. , 2019, , .		6

#	Article	IF	Citations
37	Towards a Centralized Route Management Solution for Autonomous Vehicles. , 2019, , .		1
38	Using Local Expiration Timers to Reduce Buffer Utilisation When Using Epidemic Diffusion., 2019,,.		1
39	An UAV Swarm Coordination Protocol Supporting Planned Missions. , 2019, , .		6
40	3D Simulation Modeling of UAV-to-Car Communications. IEEE Access, 2019, 7, 8808-8823.	4.2	14
41	TACASHI: Trust-Aware Communication Architecture for Social Internet of Vehicles. IEEE Internet of Things Journal, 2019, 6, 5870-5877.	8.7	59
42	Convergence of Heterogeneous Wireless Networks for 5G-and-Beyond Communications: Applications, Architecture, and Resource Management. Wireless Communications and Mobile Computing, 2019, 2019, 1-2.	1.2	6
43	Wireless digital traffic signs of the future. IET Networks, 2019, 8, 74-78.	1.8	14
44	An Intelligent Transportation System Application for Smartphones Based on Vehicle Position Advertising and Route Sharing in Vehicular Ad-Hoc Networks. Journal of Computer Science and Technology, 2018, 33, 249-262.	1.5	28
45	Experimental characterization of UAV-to-car communications. Computer Networks, 2018, 136, 105-118.	5.1	29
46	On the Correlation Between Heart Rate and Driving Style in Real Driving Scenarios. Mobile Networks and Applications, 2018, 23, 128-135.	3.3	20
47	A Smartphone-Based System Supporting Forward Collision Warning Generation. , 2018, , .		O
48	Efficient Data Forwarding in Internet of Things and Sensor Networks. Wireless Communications and Mobile Computing, 2018, 2018, 1-2.	1.2	1
49	A Location-Aware Waypoint-Based Routing Protocol for Airborne DTNs in Search and Rescue Scenarios. Sensors, 2018, 18, 3758.	3.8	28
50	GRC-Sensing: An Architecture to Measure Acoustic Pollution Based on Crowdsensing. Sensors, 2018, 18, 2596.	3.8	14
51	Information Dissemination using Opportunistic Networks in Scenarios with People Renewal. , 2018, , .		1
52	A Discretized Approach to Air Pollution Monitoring Using UAV-based Sensing. Mobile Networks and Applications, 2018, 23, 1693-1702.	3.3	22
53	UNION: A Trust Model Distinguishing Intentional and Unintentional Misbehavior in Inter-UAV Communication. Journal of Advanced Transportation, 2018, 2018, 1-12.	1.7	24
54	Intelligent Autonomous Transport Systems Design and Simulation. Journal of Advanced Transportation, 2018, 2018, 1-2.	1.7	3

#	Article	IF	CITATIONS
55	Evaluating and Enhancing Information Dissemination in Urban Areas of Interest Using Opportunistic Networks. IEEE Access, 2018, 6, 32514-32531.	4.2	21
56	On the Human Factor Consideration for VANETs Security Based on Social Networks. , 2018, , .		3
57	Evaluating RaptorQ-Based Content Broadcasting Strategies in Vehicular Environments. , 2018, , .		1
58	FALCON: A new approach for the evaluation of opportunistic networks. Ad Hoc Networks, 2018, 81, 109-121.	5.5	5
59	Crowdsensing in Smart Cities: Overview, Platforms, and Environment Sensing Issues. Sensors, 2018, 18, 460.	3.8	84
60	Supporting Beacon and Event-Driven Messages in Vehicular Platoons through Token-Based Strategies. Sensors, 2018, 18, 955.	3.8	13
61	Modeling and Characterization of Traffic Flows in Urban Environments. Sensors, 2018, 18, 2020.	3.8	56
62	ArduSim: Accurate and real-time multicopter simulation. Simulation Modelling Practice and Theory, 2018, 87, 170-190.	3.8	28
63	MBCAP: Mission Based Collision Avoidance Protocol for UAVs. , 2018, , .		4
64	A Forward Collision Warning System for Smartphones Using Image Processing and V2V Communication. Sensors, 2018, 18, 2672.	3.8	10
65	Friendly-drop: A social-based buffer management algorithm for opportunistic networks. , 2018, , .		6
66	Drivingstyles: a mobile platform for driving styles and fuel consumption characterization. Journal of Communications and Networks, 2017, 19, 162-168.	2.6	71
67	Analysis and Classification of the Vehicular Traffic Distribution in an Urban Area. Lecture Notes in Computer Science, 2017, , 121-134.	1.3	4
68	An Android ITS Driving Safety Application Based on Vehicle-to-Vehicle (V2V) Communications. , 2017, , .		9
69	A disruption tolerant architecture based on MQTT for IoT applications. , 2017, , .		13
70	An energy-efficient technique for MANETs distributed monitoring., 2017,,.		1
71	On the impact of urban intersection characteristics in vehicular to vehicular (V2V) communications. , 2017, , .		3
72	On the impact of inter-UAV communications interference in the 2.4 GHz band., 2017, , .		19

#	Article	IF	Citations
73	Flying ad-hoc network application scenarios and mobility models. International Journal of Distributed Sensor Networks, 2017, 13, 155014771773819.	2.2	107
74	Integration of vehicular network and smartphones to provide real-time visual assistance during overtaking. International Journal of Distributed Sensor Networks, 2017, 13, 155014771774811.	2.2	3
75	A density-based contention window control scheme for unicast communications in vehicular ad hoc networks. International Journal of Ad Hoc and Ubiquitous Computing, 2017, 24, 65.	0.5	5
76	Accurate Ambient Noise Assessment Using Smartphones. Sensors, 2017, 17, 917.	3.8	42
77	Empirical Study and Modeling of Vehicular Communications at Intersections in the 5 GHz Band. Mobile Information Systems, 2017, 2017, 1-15.	0.6	4
78	Smartphone tuning for accurate ambient noise assessment., 2017,,.		2
79	Noise-Sensing Using Smartphones. , 2017, , .		1
80	Towards Realistic Urban Traffic Experiments Using DFROUTER: Heuristic, Validation and Extensions. Sensors, 2017, 17, 2921.	3.8	24
81	DrivingStyles: Assessing the Correlation of Driving Behavior with Heart Rate Changes. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2017, , 21-30.	0.3	3
82	Friendly-Sharing: Improving the Performance of City Sensoring through Contact-Based Messaging Applications. Sensors, 2016, 16, 1523.	3.8	12
83	Improving MQTT Data Delivery in Mobile Scenarios: Results from a Realistic Testbed. Mobile Information Systems, 2016, 2016, 1-11.	0.6	12
84	A Survey on Smartphone-Based Crowdsensing Solutions. Mobile Information Systems, 2016, 2016, 1-26.	0.6	25
85	Enabling Technologies towards Next Generation Mobile Systems and Networks. Mobile Information Systems, 2016, 2016, 1-2.	0.6	1
86	A Survey and Comparative Study of Broadcast Warning Message Dissemination Schemes for VANETs. Mobile Information Systems, 2016, 2016, 1-18.	0.6	42
87	An Architecture Offering Mobile Pollution Sensing with High Spatial Resolution. Journal of Sensors, 2016, 2016, 1-13.	1.1	13
88	Trust Management for Vehicular Networks: An Adversary-Oriented Overview. IEEE Access, 2016, 4, 9293-9307.	4.2	155
89	Hierarchical adaptive trust establishment solution for vehicular networks. , 2016, , .		9
90	Evaluating the Impact of Data Transfer Time and Mobility Patterns in Opportunistic Networks. , 2016, , .		2

#	Article	IF	CITATIONS
91	Trust-Aware Opportunistic Dissemination Scheme for VANET Safety Applications., 2016,,.		11
92	Using Real Traffic Data for ITS Simulation: Procedure and Validation. , 2016, , .		10
93	T-VNets: A novel trust architecture for vehicular networks using the standardized messaging services of ETSI ITS. Computer Communications, 2016, 93, 68-83.	5.1	73
94	New approaches for characterizing inter-contact times in opportunistic networks. Ad Hoc Networks, 2016, 52, 160-172.	5 . 5	16
95	Analytical evaluation of the performance of contact-Based messaging applications. Computer Networks, 2016, 111, 45-54.	5.1	11
96	FSF: Friendship and selfishness forwarding for Delay Tolerant Networks. , 2016, , .		10
97	EcoSensor: Monitoring environmental pollution using mobile sensors. , 2016, , .		12
98	Determining the relative position of vehicles considering bidirectional traffic scenarios in VANETS. , 2016, , .		1
99	RITA: RIskâ€nware Trustâ€based Architecture for collaborative multiâ€hop vehicular communications. Security and Communication Networks, 2016, 9, 4428-4442.	1.5	18
100	Foreword by Guest Editors for the Selected Papers from 2014 ICUFN (International Conference on) Tj ETQq0 0 C) rgBT /Ove 2.7	erlock 10 Tf 5
101	Improving Message Delivery Performance inÂOpportunistic Networks Using a Forced-Stop Diffusion Scheme. Lecture Notes in Computer Science, 2016, , 156-168.	1.3	2
102	Assessing the Impact of Continuous Evaluation Strategies: Tradeoff Between Student Performance and Instructor Effort. IEEE Transactions on Education, 2016, 59, 17-23.	2.4	20
103	A Reliable Token-Based MAC Protocol for Delay Sensitive Platooning Applications. , 2015, , .		8
104	Power consumption evaluation in vehicular opportunistic networks. , 2015, , .		3
105	An ITS solution providing real-time visual overtaking assistance using smartphones. , 2015, , .		4
106	Mobile Pollution Data Sensing Using UAVs. , 2015, , .		17
107	Sensing Traffic Density Combining V2V and V2I Wireless Communications. Sensors, 2015, 15, 31794-31810.	3.8	48
108	Traffic Management as a Service: The Traffic Flow Pattern Classification Problem. Mathematical Problems in Engineering, 2015, 2015, 1-14.	1.1	22

#	Article	IF	CITATIONS
109	Breaking the Vehicular Wireless Communications Barriers: Vertical Handover Techniques for Heterogeneous Networks. IEEE Transactions on Vehicular Technology, 2015, 64, 5878-5890.	6.3	87
110	RTAD: A real-time adaptive dissemination system for VANETs. Computer Communications, 2015, 60, 53-70.	5.1	41
111	DTN Protocols for Vehicular Networks: An Application Oriented Overview. IEEE Communications Surveys and Tutorials, 2015, 17, 868-887.	39.4	114
112	A V2I-Based Real-Time Traffic Density Estimation System in Urban Scenarios. Wireless Personal Communications, 2015, 83, 259-280.	2.7	33
113	An Adaptive Anycasting Solution for Crowd Sensing in Vehicular Environments. IEEE Transactions on Industrial Electronics, 2015, 62, 7911-7919.	7.9	29
114	Validation of a vehicle emulation platform supporting OBD-II communications. , 2015, , .		5
115	Impact of mobility on Message Oriented Middleware (MOM) protocols for collaboration in transportation. , 2015, , .		1
116	Handling mobility in IoT applications using the MQTT protocol. , 2015, , .		33
117	Evaluating the Impact of Data Transfer Time in Contact-Based Messaging Applications. IEEE Communications Letters, 2015, 19, 1814-1817.	4.1	10
118	EYES: A Novel Overtaking Assistance System for Vehicular Networks. Lecture Notes in Computer Science, 2015, , 375-389.	1.3	7
119	Epidgeons., 2015,,.		2
120	Assessing the impact of driving behavior on instantaneous fuel consumption. , 2015, , .		30
121	DTB-MAC: Dynamic Token-Based MAC Protocol for reliable and efficient beacon broadcasting in VANETs. , 2015, , .		5
122	A comparative evaluation of AMQP and MQTT protocols over unstable and mobile networks. , 2015, , .		99
123	CoCoWa: A Collaborative Contact-Based Watchdog for Detecting Selfish Nodes. IEEE Transactions on Mobile Computing, 2015, 14, 1162-1175.	5.8	76
124	Evaluation of flooding schemes for real-time video transmission in VANETs. Ad Hoc Networks, 2015, 24, 3-20.	5.5	38
125	Securing Warning Message Dissemination in VANETs Using Cooperative Neighbor Position Verification. IEEE Transactions on Vehicular Technology, 2015, 64, 2538-2550.	6.3	44
126	GRCBox: Extending Smartphone Connectivity in Vehicular Networks. International Journal of Distributed Sensor Networks, 2015, 11, 478064.	2.2	22

#	Article	IF	Citations
127	Underwater Wireless Sensor Networks 2015. International Journal of Distributed Sensor Networks, 2015, 11, 623042.	2.2	2
128	Data Disseminations in Vehicular Environments 2014. International Journal of Distributed Sensor Networks, 2015, 11, 765103.	2.2	0
129	Vehicular Delay Tolerant and Sensor Networks: Protocols and Applications. International Journal of Distributed Sensor Networks, 2015, 11, 463539.	2.2	0
130	TGRP: Topological-Geographical adaptive Routing Protocol for vehicular environments., 2014,,.		1
131	Evaluating metrics for optimal path selection in large wireless community networks. , 2014, , .		0
132	Underwater Wireless Sensor Networks. International Journal of Distributed Sensor Networks, 2014, 10, 860813.	2.2	3
133	Foreword by Guest Editors for the Special Issue on the 2013 ICUFN Conference. Wireless Personal Communications, 2014, 78, 1827-1831.	2.7	0
134	Evaluating H.265 real-time video flooding quality in highway V2V environments. , 2014, , .		9
135	A System for Automatic Notification and Severity Estimation of Automotive Accidents. IEEE Transactions on Mobile Computing, 2014, 13, 948-963.	5.8	55
136	A Fast Model for Evaluating the Detection of Selfish Nodes Using a Collaborative Approach in MANETs. Wireless Personal Communications, 2014, 74, 1099-1116.	2.7	28
137	Reducing emergency services arrival time by using vehicular communications and Evolution Strategies. Expert Systems With Applications, 2014, 41, 1206-1217.	7.6	32
138	V2X solutions for real-time video collection. , 2014, , .		4
139	Rumours and good practices in community networks wireless links. , 2014, , .		0
140	Accelerating vehicle network simulations in urban scenarios through caching. , 2014, , .		1
141	Using topology and neighbor information to overcome adverse vehicle density conditions. Transportation Research Part C: Emerging Technologies, 2014, 42, 1-13.	7.6	19
142	Topology-based broadcast schemes for urban scenarios targeting adverse density conditions., 2014,,.		3
143	VEWE: A Vehicle ECU Wireless Emulation Tool Supporting OBD-II Communication and Geopositioning. Lecture Notes in Computer Science, 2014, , 432-445.	1.3	1
144	Fighting against Black Hole Attacks in Mobile Ad Hoc Networks. , 2014, , 73-100.		0

#	Article	IF	CITATIONS
145	A Tool Offering Steady-State Simulations for VANETs. Recent Advances in Communications and Networking Technology, 2014, 2, 102-112.	0.1	2
146	Performance Evaluation of Realistic Vehicular Networks: A MAC Layer Perspective., 2014,, 571-594.		0
147	Computer Simulations of VANETs Using Realistic City Topologies. Wireless Personal Communications, 2013, 69, 639-663.	2.7	46
148	A Collaborative Bayesian Watchdog for Detecting Black Holes in MANETs. Studies in Computational Intelligence, 2013, , 221-230.	0.9	7
149	Reducing channel contention in vehicular environments through an adaptive contention window solution., 2013,,.		2
150	Road Side Unit Deployment: A Density-Based Approach. IEEE Intelligent Transportation Systems Magazine, 2013, 5, 30-39.	3.8	108
151	Assessing vehicular density estimation using vehicle-to-infrastructure communications. , 2013, , .		1
152	Assessing the effectiveness of DTN techniques under realistic urban environments. , $2013, \ldots$		5
153	RCDP: Raptor-based content delivery protocol for unicast communication in wireless networks for ITS. Journal of Communications and Networks, 2013, 15, 198-206.	2.6	7
154	On the use of a Cooperative Neighbor Position Verification scheme to secure warning message dissemination in VANETs. , 2013, , .		5
155	A novel approach for traffic accidents sanitary resource allocation based on multi-objective genetic algorithms. Expert Systems With Applications, 2013, 40, 323-336.	7.6	35
156	An Adaptive System Based on Roadmap Profiling to Enhance Warning Message Dissemination in VANETs. IEEE/ACM Transactions on Networking, 2013, 21, 883-895.	3.8	27
157	I-VDE: A Novel Approach to Estimate Vehicular Density by Using Vehicular Networks. Lecture Notes in Computer Science, 2013, , 63-74.	1.3	7
158	A representative and accurate characterization of inter-contact times in mobile opportunistic networks. , $2013, \ldots$		2
159	VACaMobil: VANET Car Mobility Manager for OMNeT++. , 2013, , .		24
160	Evaluating the Feasibility of Using Smartphones for ITS Safety Applications. , 2013, , .		14
161	Comprehensive Vehicular Networking Platform for V2I and V2V Communications within the Walkie-Talkie Project. International Journal of Distributed Sensor Networks, 2013, 9, 676850.	2.2	10
162	Data Disseminations in Vehicular Environments. International Journal of Distributed Sensor Networks, 2013, 9, 291635.	2.2	2

#	Article	IF	CITATIONS
163	On the selection of optimal broadcast schemes in VANETs. , 2013, , .		10
164	An Integral Model for Target Tracking Based on the Use of a WSN. Sensors, 2013, 13, 7250-7278.	3.8	20
165	An Infrastructureless Approach to Estimate Vehicular Density in Urban Environments. Sensors, 2013, 13, 2399-2418.	3.8	35
166	Identifying the Key Factors Affecting Warning Message Dissemination in VANET Real Urban Scenarios. Sensors, 2013, 13, 5220-5250.	3.8	13
167	A novel approach for the fast detection of black holes in mobile ad hoc networks. Concurrent Engineering Research and Applications, 2013, 21, 177-185.	3.2	0
168	Assessing the impact of obstacle modeling accuracy on IEEE 802.11p based message dissemination. , 2013, , .		0
169	Redesigning engineering courses by introducing digital ink technology. , 2013, , .		1
170	An analytical evaluation of a Map-based Sensor-data Delivery Protocol for VANETs., 2013,,.		0
171	V2X-d: A vehicular density estimation system that combines V2V and V2I communications. , 2013, , .		29
172	DrivingStyles: A smartphone application to assess driver behavior., 2013,,.		60
173	Using Evolution Strategies to Reduce Emergency Services Arrival Time in Case of Accident. , 2013, , .		0
174	Seamless MANET Autoconfiguration through Enhanced 802.11 Beaconing. Mobile Information Systems, 2013, 9, 19-35.	0.6	3
175	INET framework extensions for TCP Vegas and TCP Westwood. , 2013, , .		0
176	Vertical handover., 2012,,.		1
177	Evaluation of collaborative selfish node detection in MANETS and DTNs. , 2012, , .		14
178	A Map-based Sensor data Delivery Protocol for vehicular networks. , 2012, , .		5
179	Improving Selfish Node Detection in MANETs Using a Collaborative Watchdog. IEEE Communications Letters, 2012, 16, 642-645.	4.1	79
180	Determining the Representative Factors Affecting Warning Message Dissemination in VANETs. Wireless Personal Communications, 2012, 67, 295-314.	2.7	19

#	Article	lF	CITATIONS
181	Towards realistic vehicular network simulation models. , 2012, , .		16
182	Automatic Accident Detection: Assistance Through Communication Technologies and Vehicles. IEEE Vehicular Technology Magazine, 2012, 7, 90-100.	3.4	80
183	Implementing and testing a driving safety application for smartphones based on the eMDR protocol. , 2012, , .		4
184	CAOVA: A Car Accident Ontology for VANETs. , 2012, , .		21
185	Collaborative watchdogs: A fast and efficient approach to deal with selfish nodes in MANETs. , 2012, , .		1
186	Intruder tracking in WSNs using binary detection sensors and mobile sinks. , 2012, , .		1
187	Evaluating the impact of a novel message dissemination scheme for vehicular networks using real maps. Transportation Research Part C: Emerging Technologies, 2012, 25, 61-80.	7.6	62
188	Accurate detection of black holes in MANETs using collaborative bayesian watchdogs. , 2012, , .		9
189	MACHU: A novel vertical handover algorithm for vehicular environments. , 2012, , .		12
190	A geolocation-based Vertical Handover Decision Algorithm for Vehicular Networks. , 2012, , .		4
191	VEACON: A Vehicular Accident Ontology designed to improve safety on the roads. Journal of Network and Computer Applications, 2012, 35, 1891-1900.	9.1	45
192	Real-time density estimation in urban environments by using vehicular communications. , 2012, , .		2
193	An efficient solution offering sink mobility support in wireless sensor networks. , 2012, , .		1
194	Evaluating the Effectiveness of a QoS Framework for MANETs in a Real Testbed. Lecture Notes in Computer Science, 2012, , 221-234.	1.3	1
195	An overview of anonymous communications in mobile <i>ad hoc</i> networks. Wireless Communications and Mobile Computing, 2012, 12, 661-675.	1.2	7
196	Assessing the IEEE 802.11e QoS effectiveness in multi-hop indoor scenarios. Ad Hoc Networks, 2012, 10, 186-198.	5 . 5	7
197	An efficient and robust content delivery solution for IEEE 802.11p vehicular environments. Journal of Network and Computer Applications, 2012, 35, 753-762.	9.1	29
198	Highlights: IEEE ITS Society Technical Committee on Mobile Communications Networks for ITS [Technical Committees]. IEEE Intelligent Transportation Systems Magazine, 2012, 4, 33-35.	3.8	1

#	Article	IF	Citations
199	Using Data Mining and Vehicular Networks to Estimate the Severity of Traffic Accidents. Advances in Intelligent Systems and Computing, 2012, , 37-46.	0.6	10
200	A Realistic Simulation Framework for Vehicular Networks. , 2012, , .		27
201	RCDP: A Novel Content Delivery Solution for Wireless Networks Based on Raptor Codes. Lecture Notes in Computer Science, 2012, , 288-301.	1.3	0
202	Efficient routing in large sensor grids supporting mobile drains., 2011,,.		3
203	Performance Trade-Offs of a IEEE 802.21-Based Vertical Handover Decision Algorithm under Different Network Conditions. , 2011, , .		4
204	PAWDS: A Roadmap Profile-Driven Adaptive System for Alert Dissemination in VANETs., 2011,,.		4
205	Design, implementation, and optimization of a Raptor-based content delivery protocol., 2011, , .		0
206	Assessing the best strategy to improve the stability of scalable video transmission in MANETs. , 2011, , .		5
207	Prototyping an automatic notification scheme for traffic accidents in vehicular networks., 2011,,.		38
208	Studying the feasibility of IEEE 802.15.4-Based WSNs for gas and fire tracking applications through simulation. , 2011, , .		4
209	Providing accident detection in vehicular networks through OBD-II devices and Android-based smartphones. , 2011, , .		148
210	HOP: Achieving Efficient Anonymity in MANETs by Combining HIP, OLSR, and Pseudonyms. Eurasip Journal on Wireless Communications and Networking, 2011, 2011, .	2.4	4
211	A Street Broadcast Reduction Scheme (SBR) to Mitigate the Broadcast Storm Problem in VANETs. Wireless Personal Communications, 2011, 56, 559-572.	2.7	29
212	A survey and comparative study of simulators for vehicular <i>ad hoc</i> networks (VANETs). Wireless Communications and Mobile Computing, 2011, 11, 813-828.	1.2	232
213	An overview of vertical handover techniques: Algorithms, protocols and tools. Computer Communications, 2011, 34, 985-997.	5.1	183
214	Evaluation of a technology-aware vertical handover algorithm based on the IEEE 802.21 standard. , 2011, , .		18
215	Distributed admission control in 802.11e-based MANETs: From theory to practice. , 2011, , .		0
216	Using roadmap profiling to enhance the warning message dissemination in vehicular environments. , $2011,\ ,\ .$		4

#	Article	IF	CITATIONS
217	Analysis of the Most Representative Factors Affecting Warning Message Dissemination in VANETs under Real Roadmaps. , $2011, \dots$		13
218	Raptor-based reliable unicast content delivery in wireless network environments. , 2011, , .		0
219	A Methodology to Evaluate Video Streaming Performance in 802.11e Based MANETs. Lecture Notes in Computer Science, 2011, , 276-289.	1.3	0
220	Testing Applications in MANET Environments through Emulation. Eurasip Journal on Wireless Communications and Networking, 2010, 2009, .	2.4	9
221	Evaluating the Impact of a Novel Warning Message Dissemination Scheme for VANETs Using Real City Maps. Lecture Notes in Computer Science, 2010, , 265-276.	1.3	30
222	Emergency Services in Future Intelligent Transportation Systems Based on Vehicular Communication Networks. IEEE Intelligent Transportation Systems Magazine, 2010, 2, 6-20.	3.8	206
223	Black-Hole Attacks in P2P Mobile Networks Discovered through Bayesian Filters. Lecture Notes in Computer Science, 2010, , 543-552.	1.3	15
224	Supporting Instructors in Designing Tablet PC-Based Courses. , 2010, , .		0
225	Evaluating the performance boundaries of WI-FI, WIMAX and UMTS using the network simulator (ns-2). , 2010, , .		3
226	Efficient content pushing in IEEE 802.11p vehicular environments. , 2010, , .		0
227	Solving the MANET autoconfiguration problem using the 802.11 SSID field. , 2010, , .		1
228	EasyMANET: an extensible and configurable platform for service provisioning in MANET environments. , 2010, 48, 159-167.		7
229	Modeling emergency events to evaluate the performance of time-critical WSNs. , 2010, , .		6
230	Supporting Scalable Video Transmission in MANETs through Distributed Admission Control Mechanisms. , 2010, , .		16
231	Assessing the Impact of a Realistic Radio Propagation Model on VANET Scenarios Using Real Maps. , 2010, , .		31
232	On the design of interactive classroom environments based on the Tablet PC technology. , 2010, , .		6
233	Multi-Layer Performance Evaluation of a Content Delivery Framework for Urban Vehicular Networks. , 2010, , .		4
234	A Tablet PC-based teaching approach using conceptual maps. , 2010, , .		5

#	Article	IF	CITATIONS
235	Experiences in Developing Ubiquitous Applications. , 2010, , 97-112.		О
236	A-HIP: A Solution Offering Secure and Anonymous Communications in MANETs. Lecture Notes in Computer Science, 2010, , 217-231.	1.3	1
237	Deploying Pervasive Technologies. , 2010, , 503-510.		0
238	A Tablet PC-Based Learning Approach on a First-Year Computer Engineering Course., 2009,,.		2
239	Improving the evaluation of concept maps: a step-by-step analysis. , 2009, , .		3
240	A Comprehensive Methodology for Concept Map Assessment. , 2009, , .		4
241	Realistic Radio Propagation Models (RPMs) for VANET Simulations. , 2009, , .		52
242	An instructional approach to drive computer science courses through virtual learning environments. , 2009, , .		3
243	Markovian-based traffic modeling for mobile ad hoc networks. Computer Networks, 2009, 53, 2586-2600.	5.1	3
244	Assessing the impact of Link Layer Feedback mechanisms on MANET routing protocols. , 2009, , .		1
245	QoS Support in MANETs: a Modular Architecture Based on the IEEE 802.11e Technology. IEEE Transactions on Circuits and Systems for Video Technology, 2009, 19, 678-692.	8.3	38
246	Assessing the feasibility of a VANET driver warning system. , 2009, , .		8
247	Anonymous routing protocols: Impact on performance in MANETs. , 2009, , .		1
248	Deploying a real IEEE 802.11e testbed to validate simulation results. , 2009, , .		3
249	A performance evaluation of warning message dissemination in 802.11p based VANETs., 2009, , .		15
250	BlueFriend: Using Bluetooth technology for mobile social networking. , 2009, , .		9
251	Deploying Pervasive Technologies. , 2009, , 1001-1006.		0
252	Anonymous Communications in Computer Networks. , 2009, , 148-153.		0

#	Article	IF	Citations
253	OLSR vs DSR: A comparative analysis of proactive and reactive mechanisms from an energetic point of view in wireless ad hoc networks. Computer Communications, 2008, 31, 3843-3854.	5.1	34
254	Building a research prototype to provide pervasive services in hospitals., 2008,,.		5
255	Evaluating the Performance of Real Time Videoconferencing in Ad Hoc Networks Through Emulation. , 2008, , .		7
256	BlueMall., 2008,,.		14
257	Soft QoS Support for Mobile Ad Hoc Networks Based on End-to-End Path Probing and IEEE 802.11e Technology. Wireless Networks and Mobile Communications, 2008, , 145-178.	1.0	0
258	MAYA: A Tool For Wireless Mesh Networks Management. , 2007, , .		3
259	Solving the user-to-host binding problem in ad hoc networks through photo-ids. , 2007, , .		0
260	Assessing the effectiveness of longest-in-system (lis) schedulingin ad hoc networks. , 2007, , .		0
261	Comparing tcp and udp performance in manets using multipath enhanced versions of dsr and dymo. , 2007, , .		3
262	Castadiva: A Test-Bed Architecture for Mobile AD HOC Networks. , 2007, , .		12
263	Evaluation of the Impact of Multipath Data Dispersion for Anonymous TCP Connections. , 2007, , .		O
264	Design and Validation of a Low-Power Network Node for Pervasive Applications. , 2007, , .		6
265	Improving the Accuracy of Passive Duplicate Address Detection Algorithms over MANET On-demand Routing Protocols., 2007,,.		2
266	Evaluation of the Trade-Off between Power Consumption and Performance in Bluetooth Based Systems. , 2007, , .		4
267	A Wireless Mesh Network-based System for Hotspots Deployment and Management. , 2007, , .		4
268	Modeling of mobility and groups in inter-vehicular MANET-based networks. , 2007, , .		1
269	A distributed admission control system for MANET environments supporting multipath routing protocols. Microprocessors and Microsystems, 2007, 31, 236-251.	2.8	30
270	A Low-Complexity Routing Algorithm with Power Control for Self-Organizing Short-Range Wireless Networks. Wireless Personal Communications, 2007, 41, 407-425.	2.7	2

#	Article	IF	Citations
271	Evaluating Energy Consumption of Proactive and Reactive Routing Protocols in a MANET. International Federation for Information Processing, 2007, , 119-130.	0.4	29
272	How does energy consumption impact performance in Bluetooth?. Performance Evaluation Review, 2007, 35, 7-9.	0.6	6
273	Evaluating the goodness of MANETs performance results obtained with the ns-2 simulator., 2007,,.		0
274	A comparison of the performance of TCP-Reno and TCP-Vegas over MANETs. , 2006, , .		11
275	Power Characterization of a Bluetooth-based Wireless Node for Ubiquitous Computing. , 2006, , .		16
276	A MANET Autoconfiguration System based on Bluetooth Technology. , 2006, , .		3
277	Predicting Traffic lights to Improve Urban Traffic Fuel Consumption. , 2006, , .		36
278	UbiqMuseum: A Bluetooth and Java Based Context-Aware System for Ubiquitous Computing. Wireless Personal Communications, 2006, 38, 187-202.	2.7	40
279	<tex>\$hbox RAC_rm FP\$</tex> : A Training Tool to Work With Floating-Point Representation, Algorithms, and Circuits in Undergraduate Courses. IEEE Transactions on Education, 2006, 49, 321-331.	2.4	3
280	Webgene\$_{m OS}\$: A Generative and Web-Based Learning Architecture to Teach Operating Systems in Undergraduate Courses. IEEE Transactions on Education, 2006, 49, 464-473.	2.4	15
281	Evaluation of the energetic impact of Bluetooth low-power modes for ubiquitous computing applications. , 2006, , .		6
282	Power Characterization of a Bluetooth-based Wireless Node for Ubiquitous Computing. , 2006, , .		0
283	Evaluating Bluetooth Performance as the Support for Context-Aware Applications. Telecommunication Systems, 2005, 28, 333-347.	2.5	9
284	Evaluating the impact of group mobility on the performance of mobile ad hoc networks. , 2004, , .		9
285	Group mobility impact over TCP and CBR traffic in mobile ad hoc networks. , 2004, , .		7
286	Grcmob: A Group Mobility Pattern Generator to Evaluate Mobile Ad Hoc Networks Performance. Lecture Notes in Computer Science, 2004, , 29-42.	1.3	0
287	Providing interoperability between IEEE 802.11 and Bluetooth protocols for Home Area Networks. Computer Networks, 2003, 42, 23-37.	5.1	4
288	Routing mechanisms for mobile ad hoc networks based on the energy drain rate. IEEE Transactions on Mobile Computing, 2003, 2, 161-173.	5.8	162

#	Article	IF	CITATIONS
289	A novel DSR-based energy-efficient routing algorithm for mobile ad-hoc networks., 2003,,.		37
290	CMDR: Conditional Minimum Drain Rate Protocol for Route Selection in Mobile Ad-Hoc Networks. Lecture Notes in Computer Science, 2003, , 702-712.	1.3	3
291	CERA: Cluster-Based Energy Saving Algorithm to Coordinate Routing in Short-Range Wireless Networks. Lecture Notes in Computer Science, 2003, , 306-315.	1.3	2
292	Investigating performance of power-aware routing protocols for mobile ad-hoc networks., 2002,,.		20
293	PERFORMANCE ANALYSIS OF POWER-AWARE ROUTE SELECTION PROTOCOLS IN MOBILE AD HOC NETWORKS., 2002,,.		7
294	The differences between distributed shared memory caching and proxy caching. IEEE Concurrency, 2000, 8, 45-47.	0.8	4
295	On the use and calculation of the Hurst parameter with MPEG videos data traffic. , 0, , .		10
296	A performance comparison of energy consumption for Mobile Ad Hoc Network routing protocols. , 0,		104
297	Evaluating the energy-consumption reduction in a MANET by dynamically switching-off network interfaces. , 0, , .		35
298	Integrating short-range wireless networks: an energy efficient proposal. , 0, , .		0
299	Power-aware routing based on the energy drain rate for mobile ad hoc networks. , 0, , .		50
300	A fuzzy method for automatic generation of membership function using fuzzy relations from training examples. , 0 , , .		8
301	A clustering algorithm to provide interoperability to local area wireless networks. , 0, , .		0
302	Evaluating Bluetooth performance as the support for context-aware applications. , 0, , .		2
303	A bounding algorithm for the broadcast storm problem in mobile ad hoc networks. , 0, , .		6
304	Analysis of the Interaction between TCP Variants and Routing Protocols in MANETs., 0,,.		8
305	A QoS architecture for MANETs supporting real-time peer-to-peer multimedia applications. , 0, , .		10
306	On the Design of Spontaneous Networks Using a P2P Approach and Bluetooth., 0,,.		1

#	Article	IF	CITATIONS
307	First Experiences with Bluetooth and Java in Ubiquitous Computing. , 0, , .		4
308	Evaluating the Performance of the IEEE 802.15.4 Standard in Supporting Time-Critical Wireless Sensor Networks., 0,, 142-158.		1