
Takafumi Yatabe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/241246/publications.pdf Version: 2024-02-01

TAKAFUMI YATARE

#	Article	IF	CITATIONS
1	Gold Nanoparticles Supported on a Layered Double Hydroxide as Efficient Catalysts for the Oneâ€Pot Synthesis of Flavones. Angewandte Chemie - International Edition, 2015, 54, 13302-13306.	13.8	82
2	Supported Gold Nanoparticles for Efficient αâ€Oxygenation of Secondary and Tertiary Amines into Amides. Angewandte Chemie - International Edition, 2016, 55, 7212-7217.	13.8	74
3	Selective Synthesis of Primary Anilines from NH ₃ and Cyclohexanones by Utilizing Preferential Adsorption of Styrene on the Pd Nanoparticle Surface. Angewandte Chemie - International Edition, 2019, 58, 10893-10897.	13.8	40
4	Gold nanoparticles on OMS-2 for heterogeneously catalyzed aerobic oxidative α,β-dehydrogenation of β-heteroatom-substituted ketones. Chemical Communications, 2016, 52, 14314-14317.	4.1	31
5	Unusual Olefinic C–H Functionalization of Simple Chalcones toward Aurones Enabled by the Rational Design of a Function-Integrated Heterogeneous Catalyst. ACS Catalysis, 2018, 8, 4969-4978.	11.2	29
6	C(sp ³)–H Selective Benzylic Borylation by In Situ Reduced Ultrasmall Ni Species on CeO ₂ . ACS Catalysis, 2021, 11, 2150-2155.	11.2	26
7	Methylâ€Selective αâ€Oxygenation of Tertiary Amines to Formamides by Employing Copper/Moderately Hindered Nitroxyl Radical (DMNâ€AZADO or 1â€Meâ€AZADO). Angewandte Chemie - International Edition, 2019, 58, 16651-16659.	13.8	19
8	Supported Gold Nanoparticles for Efficient αâ€Oxygenation of Secondary and Tertiary Amines into Amides. Angewandte Chemie, 2016, 128, 7328-7333.	2.0	16
9	Supported Anionic Gold Nanoparticle Catalysts Modified Using Highly Negatively Charged Multivacant Polyoxometalates. Angewandte Chemie - International Edition, 2022, 61, .	13.8	16
10	CeO ₂ -Supported Pd(II)-on-Au Nanoparticle Catalyst for Aerobic Selective α,β-Desaturation of Carbonyl Compounds Applicable to Cyclohexanones. ACS Catalysis, 2020, 10, 5057-5063.	11.2	15
11	Synthesis of unsymmetrically substituted triarylamines <i>via</i> acceptorless dehydrogenative aromatization using a Pd/C and <i>p</i> -toluenesulfonic acid hybrid relay catalyst. Chemical Science, 2020, 11, 4074-4084.	7.4	12
12	Heterogeneously Catalyzed Selective Decarbonylation of Aldehydes by CeO ₂ -Supported Highly Dispersed Non-Electron-Rich Ni(0) Nanospecies. ACS Catalysis, 2021, 11, 13745-13751.	11.2	12
13	Selective Synthesis of Primary Anilines from NH 3 and Cyclohexanones by Utilizing Preferential Adsorption of Styrene on the Pd Nanoparticle Surface. Angewandte Chemie, 2019, 131, 11009-11013.	2.0	9
14	Transition-Metal-Free Catalytic Formal Hydroacylation of Terminal Alkynes. ACS Catalysis, 2018, 8, 11564-11569.	11.2	8
15	Heterogeneously Palladium-catalyzed Acceptorless Dehydrogenative Aromatization of Cyclic Amines. Chemistry Letters, 2019, 48, 517-520.	1.3	8
16	Oxidative Addition of C–X Bonds and H–H Activation Using PNNPâ€Iron Complexes. ChemistrySelect, 2020, 5, 15-17.	1.5	8
17	Nanostructured Manganese Oxides within a Ringâ€Shaped Polyoxometalate Exhibiting Unusual Oxidation Catalysis. Chemistry - A European Journal, 2022, 28, .	3.3	8
18	Selective primary aniline synthesis through supported Pd-catalyzed acceptorless dehydrogenative aromatization by utilizing hydrazine. Chemical Communications, 2021, 57, 6530-6533.	4.1	7

Такағимі Үатаве

#	Article	IF	CITATIONS
19	C–H Bond Activation Mechanism by a Pd(II)–(μ-O)–Au(0) Structure Unique to Heterogeneous Catalysts. Jacs Au, 2022, 2, 394-406.	7.9	6
20	Mechanistic study of C–H bond activation by O ₂ on negatively charged Au clusters: α,β-dehydrogenation of 1-methyl-4-piperidone by supported Au catalysts. Catalysis Science and Technology, 2021, 11, 3333-3346.	4.1	5
21	Heterogeneously Ni–Pd nanoparticle-catalyzed base-free formal C–S bond metathesis of thiols. Chemical Communications, 2021, 57, 3749-3752.	4.1	5
22	Cu/ <i>N</i> -Oxyl-catalyzed aerobic oxidative esterification to oxalic acid diesters from ethylene glycol <i>via</i> highly selective intermolecular alcohol oxidation. Green Chemistry, 2022, 24, 2017-2026.	9.0	4
23	Supported Anionic Gold Nanoparticle Catalysts Modified Using Highly Negatively Charged Multivacant Polyoxometalates. Angewandte Chemie, 0, , .	2.0	4
24	Methylâ€5elective αâ€Oxygenation of Tertiary Amines to Formamides by Employing Copper/Moderately Hindered Nitroxyl Radical (DMNâ€AZADO or 1â€Meâ€AZADO). Angewandte Chemie, 2019, 131, 16804-16812.	2.0	3
25	Development of Environmentally Friendly Dehydrogenative Oxidation Reactions Using Multifunctional Heterogeneous Catalysts. Bulletin of the Chemical Society of Japan, 2022, 95, 1332-1352.	3.2	0