
N John Anderson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2412166/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	210Pb dating by low background gamma counting. Hydrobiologia, 1986, 143, 21-27.	2.0	469
2	Variability of the North Atlantic Oscillation over the past 5,200 years. Nature Geoscience, 2012, 5, 808-812.	12.9	394
3	Predicting Epilimnetic Phosphorus Concentrations Using an Improved Diatom-Based Transfer Function and Its Application to Lake Eutrophication Management. Environmental Science & Technology, 1996, 30, 2004-2007.	10.0	222
4	Miniview: Diatoms, temperature and climatic change. European Journal of Phycology, 2000, 35, 307-314.	2.0	192
5	Abrupt Holocene climate change as an important factor for human migration in West Greenland. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9765-9769.	7.1	191
6	Lake eutrophication and its implications for organic carbon sequestration in Europe. Global Change Biology, 2014, 20, 2741-2751.	9.5	180
7	Global change revealed by palaeolimnological records from remote lakes: a review. Journal of Paleolimnology, 2013, 49, 513-535.	1.6	173
8	Chironomid stratigraphy in the shallow and eutrophic Lake SÃ,bygaard, Denmark: chironomid-macrophyte co-occurrence. Freshwater Biology, 2001, 46, 253-267.	2.4	165
9	Paleolimnological evidence of the effects on lakes of energy and mass transfer from climate and humans. Limnology and Oceanography, 2009, 54, 2330-2348.	3.1	163
10	The ecology of the planktonic diatom <i>Cyclotella</i> and its implications for global environmental change studies. Biological Reviews, 2015, 90, 522-541.	10.4	162
11	Surface sediment diatom assemblages and epilimnetic total phosphorus in large, shallow lakes of the Yangtze floodplain: their relationships and implications for assessing longâ€ŧerm eutrophication. Freshwater Biology, 2008, 53, 1273-1290.	2.4	156
12	Combining palaeolimnological and limnological approaches in assessing lake ecosystem response to nutrient reduction. Freshwater Biology, 2005, 50, 1772-1780.	2.4	144
13	Mercury Accumulation Rates and Spatial Patterns in Lake Sediments from West Greenland:Â A Coast to Ice Margin Transect. Environmental Science & Technology, 2001, 35, 1736-1741.	10.0	131
14	Carbon burial by shallow lakes on the <scp>Y</scp> angtze floodplain and its relevance to regional carbon sequestration. Global Change Biology, 2012, 18, 2205-2217.	9.5	128
15	Large increases in carbon burial in northern lakes during the Anthropocene. Nature Communications, 2015, 6, 10016.	12.8	124
16	Distribution of chironomids (Diptera) in low arctic West Greenland lakes: trophic conditions, temperature and environmental reconstruction. Freshwater Biology, 2002, 47, 1137-1157.	2.4	122
17	Linking palaeoenvironmental data and models to understand the past and to predict the future. Trends in Ecology and Evolution, 2006, 21, 696-704.	8.7	116
18	Physical and chemical predictors of diatom dissolution in freshwater and saline lake sediments in North America and West Greenland. Limnology and Oceanography, 2006, 51, 1355-1368.	3.1	115

#	Article	IF	CITATIONS
19	CONTROLS OF ALGAL ABUNDANCE AND COMMUNITY COMPOSITION DURING ECOSYSTEM STATE CHANGE. Ecology, 2005, 86, 2200-2211.	3.2	107
20	Pb isotope ratios of lake sediments in West Greenland: inferences on pollution sources. Atmospheric Environment, 2001, 35, 4675-4685.	4.1	102
21	Land-use change, not climate, controls organic carbon burial in lakes. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131278.	2.6	100
22	The effect of evapoconcentration on dissolved organic carbon concentration and quality in lakes of SW Greenland. Freshwater Biology, 2007, 52, 280-289.	2.4	99
23	The relative influences of climate and catchment processes on Holocene lake development in glaciated regions. Journal of Paleolimnology, 2013, 49, 349-362.	1.6	96
24	Aulacoseira subarctica: taxonomy, physiology, ecology and palaeoecology. European Journal of Phycology, 2003, 38, 83-101.	2.0	93
25	Regionalisation of chemical variability in European mountain lakes. Freshwater Biology, 2009, 54, 2452-2469.	2.4	91
26	Climate Versus In-Lake Processes as Controls on the Development of Community Structure in a Low-Arctic Lake (South-West Greenland). Ecosystems, 2008, 11, 307-324.	3.4	89
27	Longâ€ŧerm trends in eutrophication and nutrients in the coastal zone. Limnology and Oceanography, 2006, 51, 385-397.	3.1	85
28	Ecological effects of reduced nutrient loading (oligotrophication) on lakes: an introduction. Freshwater Biology, 2005, 50, 1589-1593.	2.4	83
29	Combining limnological and palaeolimnological data to disentangle the effects of nutrient pollution and climate change on lake ecosystems: problems and potential. Freshwater Biology, 2012, 57, 2091-2106.	2.4	80
30	Anthropogenic alteration of nutrient supply increases the global freshwater carbon sink. Science Advances, 2020, 6, eaaw2145.	10.3	80
31	Holocene carbon burial by lakes in SW Greenland. Global Change Biology, 2009, 15, 2590-2598.	9.5	79
32	Deciphering the effect of climate change and separating the influence of confounding factors in sediment core records using additive models. Limnology and Oceanography, 2009, 54, 2529-2541.	3.1	78
33	Diatom response to climate forcing of a deep, alpine lake (Lugu Hu, Yunnan, SW China) during the Last Glacial Maximum and its implications for understanding regional monsoon variability. Quaternary Science Reviews, 2014, 86, 1-12.	3.0	77
34	Diagenesis of magnetic minerals in the recent sediments of a eutrophic lake. Limnology and Oceanography, 1988, 33, 1476-1492.	3.1	76
35	Dominant Factors Controlling Variability in the Ionic Composition of West Greenland Lakes. Arctic, Antarctic, and Alpine Research, 2001, 33, 418-425.	1.1	75
36	Development and evaluation of a diatom-conductivity model from lakes in West Greenland. Freshwater Biology, 2002, 47, 995-1014.	2.4	75

3

#	Article	IF	CITATIONS
37	Holocene records of effective precipitation in West Greenland. Holocene, 2003, 13, 239-249.	1.7	75
38	Increased aridity during the early Holocene in West Greenland inferred from stable isotopes in laminated-lake sediments. Quaternary Science Reviews, 2004, 23, 841-849.	3.0	74
39	Catchmentâ€mediated atmospheric nitrogen deposition drives ecological change in two alpine lakes in SE Tibet. Global Change Biology, 2014, 20, 1614-1628.	9.5	69
40	A Whole-Basin Diatom Accumulation Rate for a Small Eutrophic Lake in Northern Ireland and its Palaeoecological Implications. Journal of Ecology, 1989, 77, 926.	4.0	68
41	Diatom Production Responses to the Development of Early Agriculture in a Boreal Forest Lake-Catchment (Kassjon, Northern Sweden). Journal of Ecology, 1995, 83, 809.	4.0	66
42	Long-Term Persistence of an Anxiolytic Drug (Oxazepam) in a Large Freshwater Lake. Environmental Science & Technology, 2015, 49, 10406-10412.	10.0	66
43	Mid- to late-Holocene land-use change and lake development at Dallund SÃ, Denmark: trends in lake primary production as reflected by algal and macrophyte remains. Holocene, 2005, 15, 1130-1142.	1.7	64
44	Validation of a diatom-phosphorus calibration set for Sweden. Freshwater Biology, 2001, 46, 1035-1048.	2.4	62
45	Dead or alive: sediment DNA archives as tools for tracking aquatic evolution and adaptation. Communications Biology, 2020, 3, 169.	4.4	62
46	Phosphorus dynamics in Danish lakes and the implications for diatom ecology and palaeoecology. Freshwater Biology, 2002, 47, 1963-1975.	2.4	61
47	Isotopic variation in modern lake waters from western Greenland. Holocene, 2003, 13, 605-611.	1.7	60
48	The Arctic in the Twenty-First Century: Changing Biogeochemical Linkages across a Paraglacial Landscape of Greenland. BioScience, 2017, 67, 118-133.	4.9	60
49	Natural and anthropogenic forcing of aquatic macrophyte development in a shallow Danish lake during the last 7000 years. Journal of Biogeography, 2005, 32, 1993-2005.	3.0	59
50	Dominant Factors Controlling Variability in the Ionic Composition of West Greenland Lakes. Arctic, Antarctic, and Alpine Research, 2001, 33, 418.	1.1	59
51	Empirical modeling of summer lake surface temperatures in southwest Greenland. Limnology and Oceanography, 2004, 49, 271-282.	3.1	57
52	Accuracy of diatom-inferred total phosphorus concentrations and the accelerated eutrophication of a lake due to reduced flushing and increased internal loading. Canadian Journal of Fisheries and Aquatic Sciences, 1997, 54, 2637-2646.	1.4	56
53	Deciphering longâ€ŧerm records of natural variability and human impact as recorded in lake sediments: a palaeolimnological puzzle. Wiley Interdisciplinary Reviews: Water, 2017, 4, e1195.	6.5	56
54	Low organic carbon burial efficiency in arctic lake sediments. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1231-1243.	3.0	55

#	Article	IF	CITATIONS
55	Change to a diatom assemblage in a eutrophic lake following point source nutrient re-direction: a palaeolimnological approach. Freshwater Biology, 1990, 23, 205-217.	2.4	53
56	Using diatoms to assess the impacts of prehistoric, pre-industrial and modern land-use on Danish lakes. Regional Environmental Change, 2006, 6, 17-24.	2.9	51
57	Lake and catchment response to Holocene environmental change: spatial variability along a climate gradient in southwest Greenland. Journal of Paleolimnology, 2012, 48, 209-222.	1.6	51
58	Reconstructing epilimnetic total phosphorus using diatoms: statistical and ecological constraints. Journal of Paleolimnology, 2013, 49, 373-390.	1.6	51
59	Diatom ecological response to altered hydrological forcing of a shallow lake on the Yangtze floodplain, SE China. Ecohydrology, 2012, 5, 316-325.	2.4	50
60	Direct versus indirect climate controls on Holocene diatom assemblages in a sub-tropical deep, alpine lake (Lugu Hu, Yunnan, SW China). Quaternary Research, 2016, 86, 1-12.	1.7	49
61	Recent palaeolimnology of three shallow Danish lakes. Hydrobiologia, 1994, 275-276, 411-422.	2.0	47
62	Diatoms reveal complex spatial and temporal patterns of recent limnological change in West Greenland. Journal of Paleolimnology, 2009, 42, 233-247.	1.6	46
63	Defining ecological and chemical reference conditions and restoration targets for nine European lakes. Journal of Paleolimnology, 2011, 45, 415-431.	1.6	46
64	A palaeolimnological test of the influence of Norway spruce (Picea abies) immigration on lake-water acidity. Holocene, 1994, 4, 132-140.	1.7	44
65	The influence of temperature, moisture, and eolian activity on Holocene lake development in West Greenland. Journal of Paleolimnology, 2012, 48, 223-239.	1.6	44
66	Response of Cyclotella species to nutrients and incubation depth in Arctic lakes. Journal of Plankton Research, 2014, 36, 450-460.	1.8	44
67	Autotrophic response to lake age, conductivity and temperature in two West Greenland lakes. Journal of Paleolimnology, 2008, 39, 301-317.	1.6	43
68	Shifts in the Source and Composition of Dissolved Organic Matter in Southwest Greenland Lakes Along a Regional Hydro limatic Gradient. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 3431-3445.	3.0	43
69	Reconstruction of Lake Phosphorus Loading and Dynamics Using the Sedimentary Record. Environmental Science & Technology, 1996, 30, 1786-1788.	10.0	42
70	Natural Fluctuations of Mercury and Lead in Greenland Lake Sediments. Environmental Science & Technology, 2006, 40, 90-95.	10.0	42
71	The accuracy of methods used to estimate the whole-lake accumulation rate of organic carbon, major cations, phosphorus and heavy metals in sediment. Journal of Paleolimnology, 2008, 39, 83-99.	1.6	42
72	Holocene palaeoecology of southwest Greenland inferred from macrofossils in sediments of an oligosaline lake. Journal of Paleolimnology, 2010, 43, 787-798.	1.6	40

#	Article	IF	CITATIONS
73	Patterns and drivers of change in organic carbon burial across a diverse landscape: Insights from 116 Minnesota lakes. Global Biogeochemical Cycles, 2015, 29, 708-727.	4.9	39
74	Thermal stratification in small arctic lakes of southwest Greenland affected by water transparency and epilimnetic temperatures. Limnology and Oceanography, 2016, 61, 1530-1542.	3.1	39
75	A wholeâ€lake experiment confirms a small centric diatom species as an indicator of changing lake thermal structure. Limnology and Oceanography Letters, 2016, 1, 27-35.	3.9	38
76	Arctic climate shifts drive rapid ecosystem responses across the West Greenland landscape. Environmental Research Letters, 2019, 14, 074027.	5.2	38
77	ENVIRONMENTAL FACTORS CORRELATED WITH CHRYSOPHYTE CYST ASSEMBLAGES IN LOW ARCTIC LAKES OF SOUTHWEST GREENLAND1. Journal of Phycology, 2005, 41, 957-974.	2.3	35
78	Environmental factors that control the abundance ofCyclostephanos duhius(Bacillariophyceae) in Danish lakes, from seasonal to century scale. European Journal of Phycology, 2003, 38, 265-276.	2.0	34
79	Limnological controls on stable isotope records of late-Holocene palaeoenvironment change in SW Greenland: a paired lake study. Quaternary Science Reviews, 2013, 66, 85-95.	3.0	34
80	An experimental investigation of phytoplankton nutrient limitation in two contrasting low arctic lakes. Polar Biology, 2006, 29, 487-494.	1.2	31
81	Temporalâ€spatial pattern of organic carbon sequestration by Chinese lakes since 1850. Limnology and Oceanography, 2018, 63, 1283-1297.	3.1	30
82	An experimental and palaeoecological study of algal responses to lake acidification and liming in three central Swedish lakes. European Journal of Phycology, 1997, 32, 35-48.	2.0	29
83	Landscape Disturbance and Lake Response: Temporal and Spatial Perspectives. Freshwater Reviews: A Journal of the Freshwater Biological Association, 2014, 7, 77-120.	1.0	29
84	Nutrient limitation of periphyton growth in arctic lakes in south-west Greenland. Polar Biology, 2014, 37, 1331-1342.	1.2	29
85	Seasonal and Regional Controls of Phytoplankton Production along a Climate Gradient in South-West Greenland During Ice-Cover and Ice-Free Conditions. Arctic, Antarctic, and Alpine Research, 2016, 48, 139-159.	1.1	28
86	Longâ€ŧerm perspectives on terrestrial and aquatic carbon cycling from palaeolimnology. Wiley Interdisciplinary Reviews: Water, 2016, 3, 211-234.	6.5	27
87	The historical dependency of organic carbon burial efficiency. Limnology and Oceanography, 2017, 62, 1480-1497.	3.1	27
88	Recent decrease in DOC concentrations in Arctic lakes of southwest Greenland. Geophysical Research Letters, 2015, 42, 6703-6709.	4.0	26
89	Diatom Seasonality and Sedimentation in a Subtropical Alpine Lake (Lugu Hu, Yunnan-Sichuan,) Tj ETQq1 1 0.784	-314 rgBT 1.1	/Overlock 10
90	Diatom biostratigraphy and comparative core correlation within a small lake basin. Hydrobiologia, 1986, 143, 105-112.	2.0	25

6

#	Article	IF	CITATIONS
91	Marine resource abundance drove pre-agricultural population increase in Stone Age Scandinavia. Nature Communications, 2020, 11, 2006.	12.8	25
92	Recovery of viable cyanophages from the sediments of a eutrophic lake at decadal timescales. FEMS Microbiology Ecology, 2013, 83, 450-456.	2.7	24
93	Diatoms, temperature and climatic change. European Journal of Phycology, 2000, 35, 307-314.	2.0	23
94	Diatom floristic change and lake paleoproduction as evidence of recent eutrophication in shallow lakes of the midwestern USA. Journal of Paleolimnology, 2015, 53, 17-34.	1.6	23
95	Spatial distribution of subfossil Chironomidae in surface sediments of a large, shallow and hypertrophic lake (Taihu, SE China). Hydrobiologia, 2012, 691, 59-70.	2.0	22
96	The impacts of changing nutrient load and climate on a deep, eutrophic, monomictic lake. Freshwater Biology, 2019, 64, 1169-1182.	2.4	22
97	Deglaciation and catchment ontogeny in coastal southâ€west Greenland: implications for terrestrial and aquatic carbon cycling. Journal of Quaternary Science, 2012, 27, 575-584.	2.1	21
98	Diatom taphonomy and silica cycling in two freshwater lakes and their implications for inferring past lake productivity. Journal of Paleolimnology, 2013, 49, 411-430.	1.6	21
99	The response of Cladocerans to recent environmentalÂforcing in an Alpine Lake on the SE Tibetan Plateau. Hydrobiologia, 2017, 784, 171-185.	2.0	21
100	Title is missing!. Journal of Paleolimnology, 1998, 20, 47-55.	1.6	20
101	Functional attributes of epilithic diatoms for palaeoenvironmental interpretations in South-West Greenland lakes. Journal of Paleolimnology, 2018, 60, 273-298.	1.6	20
102	Vegetation transitions drive the autotrophy–heterotrophy balance in Arctic lakes. Limnology and Oceanography Letters, 2018, 3, 246-255.	3.9	20
103	The Landscape–Atmosphere Continuum Determines Ecological Change in Alpine Lakes of SE Tibet. Ecosystems, 2018, 21, 839-851.	3.4	18
104	Interactions between climate change and early agriculture in SW China and their effect on lake ecosystem functioning at centennial timescales over the last 2000 years. Quaternary Science Reviews, 2020, 233, 106238.	3.0	18
105	Climate forcing of diatom productivity in a lowland, eutrophic lake: White Lough revisited. Freshwater Biology, 2012, 57, 2030-2043.	2.4	17
106	Responses of microbial phototrophs to lateâ€Holocene environmental forcing of lakes in southâ€west Greenland. Freshwater Biology, 2013, 58, 690-704.	2.4	17
107	Stable isotopes reveal independent carbon pools across an Arctic hydroâ€climatic gradient: Implications for the fate of carbon in warmer and drier conditions. Limnology and Oceanography Letters, 2019, 4, 205-213.	3.9	15
108	Determining the date of ice-melt for low Arctic lakes along SÃ,ndre StrÃ,mfjord, southern West Greenland. Geological Survey of Denmark and Greenland Bulletin, 0, 189, 54-59.	0.0	15

#	Article	IF	CITATIONS
109	Coring of laminated lake sediments for pigment and mineral magnetic analyses, SÃ,ndre StrÃ,mfjord, southern West Greenland. Geological Survey of Denmark and Greenland Bulletin, 0, 186, 83-89.	0.0	14
110	Limnological Responses to Environmental Changes at Inter-annual to Decadal Time-Scales. Developments in Paleoenvironmental Research, 2012, , 557-578.	8.0	13
111	Climate and tectonic effects on Holocene development of an alpine lake (Muge Co, SE margin of Tibet). Holocene, 2016, 26, 801-813.	1.7	13
112	Spatial variations in snowpack chemistry, isotopic composition of NO ₃ ^{â^} and nitrogen deposition from the ice sheet margin to the coast of western Greenland. Biogeosciences, 2018, 15, 529-550.	3.3	13
113	A landscape perspective of Holocene organic carbon cycling in coastal SW Greenland lake-catchments. Quaternary Science Reviews, 2018, 202, 98-108.	3.0	12
114	Monitoring and moderating extreme indoor temperatures in low-income urban communities. Environmental Research Letters, 2021, 16, 024033.	5.2	12
115	Landscape-Scale Variability of Organic Carbon Burial by SW Greenland Lakes. Ecosystems, 2019, 22, 1706-1720.	3.4	11
116	A landscape-isotopic approach to the geochemical characterization of lakes in the Kangerlussuaq region, west Greenland. Arctic, Antarctic, and Alpine Research, 2018, 50, .	1.1	10
117	Understanding the transfer of contemporary temperature signals into lake sediments via paired oxygen isotope ratios in carbonates and diatom silica: Problems and potential. Chemical Geology, 2020, 552, 119705.	3.3	10
118	Regional variability in the atmospheric nitrogen deposition signal and its transfer to the sediment record in Greenland lakes. Limnology and Oceanography, 2018, 63, 2250-2265.	3.1	8
119	Lake-catchment interactions with climate in the low Arctic of southern West Greenland. Geological Survey of Denmark and Greenland Bulletin, 0, 191, 144-149.	0.0	8
120	Climatic influence on the interâ€annual variability of lateâ€Holocene minerogenic sediment supply in a boreal forest catchment. Earth Surface Processes and Landforms, 2010, 35, 390-398.	2.5	7
121	Impacts of forestry planting on primary production in upland lakes from northâ€west Ireland. Global Change Biology, 2016, 22, 1490-1504.	9.5	7
122	Landscape Controls on Nutrient Stoichiometry Regulate Lake Primary Production at the Margin of the Greenland Ice Sheet. Ecosystems, 2022, 25, 931-947.	3.4	5
123	Annual and seasonal variability in high latitude dust deposition, West Greenland. Earth Surface Processes and Landforms, 2022, 47, 2393-2409.	2.5	5
124	A Late Holocene record of landscape degradation from Heygsvatn, the Faroe Islands. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 264, 11-24.	2.3	4
125	Environmental change and impacts in the Kangerlussuaq area, West Greenland. Arctic, Antarctic, and Alpine Research, 2018, 50, .	1.1	4
126	The Influence of Climate Change on the Restoration Trajectory of a Nutrient-Rich Deep Lake. Ecosystems, 2020, 23, 859-872.	3.4	4

#	Article	IF	CITATIONS
127	Centennial clonal stability of asexual <i>Daphnia</i> in Greenland lakes despite climate variability. Ecology and Evolution, 2020, 10, 14178-14188.	1.9	4
128	Cladocera responses to climate changes and treeline shifts in an alpine lake-catchment since the Last Glacial Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 577, 110547.	2.3	4
129	Changes in coupled carbon‒nitrogen dynamics in a tundra ecosystem predate post-1950 regional warming. Communications Earth & Environment, 2020, 1, .	6.8	2
130	Cover Image, Volume 3, Issue 2. Wiley Interdisciplinary Reviews: Water, 2016, 3, i.	6.5	1
131	Terrestrial Ecosystems of West Greenland. , 2020, , 551-564.		1
132	An experimental and palaeoecological study of algal responses to lake acidification and liming in three central Swedish lakes. European Journal of Phycology, 1997, 32, 35-48.	2.0	1
133	Reply to "Marine abundance and its prehistoric past in the Baltic― Nature Communications, 2022, 13, .	12.8	Ο
134	Grazing and topography control nutrient pools in low Arctic soils of southwest Greenland. European Journal of Soil Science, 0, , .	3.9	0